JPS5952952B2 - Electroless plating control method and device - Google Patents

Electroless plating control method and device

Info

Publication number
JPS5952952B2
JPS5952952B2 JP16733379A JP16733379A JPS5952952B2 JP S5952952 B2 JPS5952952 B2 JP S5952952B2 JP 16733379 A JP16733379 A JP 16733379A JP 16733379 A JP16733379 A JP 16733379A JP S5952952 B2 JPS5952952 B2 JP S5952952B2
Authority
JP
Japan
Prior art keywords
plating
plating solution
concentration
conductivity
electroless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16733379A
Other languages
Japanese (ja)
Other versions
JPS5690967A (en
Inventor
建 荒木
裕允 酒井
裕 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uemera Kogyo Co Ltd
Original Assignee
Uemera Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP16733379A priority Critical patent/JPS5952952B2/en
Application filed by Uemera Kogyo Co Ltd filed Critical Uemera Kogyo Co Ltd
Priority to US06/204,046 priority patent/US4353933A/en
Priority to GB8036232A priority patent/GB2064827B/en
Priority to FR8024166A priority patent/FR2469466B1/en
Priority to DE19803043066 priority patent/DE3043066A1/en
Publication of JPS5690967A publication Critical patent/JPS5690967A/en
Priority to US06/352,549 priority patent/US4406248A/en
Priority to US06/352,550 priority patent/US4406249A/en
Priority to SG169/84A priority patent/SG16984G/en
Publication of JPS5952952B2 publication Critical patent/JPS5952952B2/en
Priority to HK64/85A priority patent/HK6485A/en
Priority to MY497/85A priority patent/MY8500497A/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は無電解ニッケルめつき等の無電解めつきの制御
方法及びこの無電解めつきに使用する制御装置に関し、
更に詳述すれば長期間に亘り安定して連続めつき作業を
行なうことを可能にした無電解めつき制御方法及びその
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling electroless plating such as electroless nickel plating, and a control device used for this electroless plating.
More specifically, the present invention relates to an electroless plating control method and an apparatus therefor that make it possible to stably perform continuous plating work over a long period of time.

無電解めつき液はその使用により金属塩、還元剤等がわ
ずかな時間で消耗し、液組成の変動が激しいため、ひん
ぱんに消耗薬品の補給を行なつて析出速度、めつき被膜
の性状等を一定にする必要があり、このため種々の無電
解めつき液自動制御乃至補給装置もしくは方法が提案さ
れている(特開昭53−44434号、同53−456
31号、同54−8123号等)。しかし、無電解めつ
き液、例えば高温用酸性無電解ニッケルめつき液は、液
寿命が短かく、上述した自動補給法によるにせよ、或い
は必要時に手により補給液を補給する方法によるにせよ
、比較的短時間で液が老化し、金属イオン濃度や還元剤
濃度等を建浴初期と同じ濃度になるように補給しても析
出速度が建浴初期と比べて著しく低下し、まためつき被
膜の性状もかなり変化したものになる。
When using an electroless plating solution, metal salts, reducing agents, etc. are consumed in a short period of time, and the composition of the solution fluctuates dramatically. Therefore, it is necessary to frequently replenish the consumable chemicals to improve the deposition rate, properties of the plating film, etc. It is necessary to keep the value constant, and for this purpose various automatic electroless plating solution control or replenishment devices or methods have been proposed (Japanese Patent Laid-Open Nos. 53-44434 and 53-456).
No. 31, No. 54-8123, etc.). However, electroless plating solutions, such as high-temperature acidic electroless nickel plating solutions, have a short lifespan, and whether by the automatic replenishment method described above or by manually replenishing the replenishment solution when necessary, The solution ages in a relatively short period of time, and even if you replenish metal ion concentration, reducing agent concentration, etc. to the same concentration as at the beginning of bath preparation, the precipitation rate will decrease significantly compared to the initial period of bath preparation, and the film will not form again. The properties of the will also change considerably.

こうなると液を廃棄し、新たな液を建浴しなければなら
ない。このため、上述した無電解めつき液の自動制御法
を採用して補給液を自動補給する場合にあつても、これ
とは別個に液の老化度を絶えず監視し、それに応じた対
策を購じる必要があり、従つて従来の無電解めつき法は
前記自動制御法を採用したとしても比較的短時間でめつ
き液を廃棄しなければならず、またその管理面でも十分
満足し得るものではなかつた。
In this case, the liquid must be discarded and a new bath prepared. For this reason, even if the above-mentioned automatic control method for electroless plating solution is adopted to automatically replenish the replenishment solution, the degree of aging of the solution must be constantly monitored and appropriate countermeasures should be taken. Therefore, in the conventional electroless plating method, even if the automatic control method described above is adopted, the plating solution must be disposed of in a relatively short period of time, and the management thereof is not sufficiently satisfactory. It wasn't something.

本発明は上期事情を改善するためになされたもので、長
期間の安定した連続めつき作業が可能であり、液の建て
換えの必要を殆んど無くすることができ、少なくとも従
来に比べて液の建て換え期間を著しく遅らせることがで
きて、廃液、廃水処理の面でも有利であると共に、析出
速度、めつき被膜の性状等を長期に亘りほぼ一定に保持
し得、液管理を簡単かつ確実に行なうことができてミ゛
特に無電解ニツケルめつき、無電解コバルトめつき、無
電解ニツケルーコバルト合金めつきの実施に好適な無電
解めつき制御方法及びその装置を提供することを目的と
する。
The present invention was made to improve the situation in the first half, and it enables stable continuous plating work over a long period of time, almost eliminates the need to rebuild the liquid, and is at least better than the conventional method. It is possible to significantly delay the period for rebuilding the liquid, which is advantageous in terms of waste liquid and wastewater treatment, and it is also possible to maintain the deposition rate, properties of the plating film, etc. almost constant over a long period of time, making liquid management simple and easy. The purpose of the present invention is to provide an electroless plating control method and apparatus that can perform electroless plating reliably and is particularly suitable for electroless nickel plating, electroless cobalt plating, and electroless nickel-cobalt alloy plating. do.

即ち、本発明者らは従来の欠点を解決するため種々検討
を行なつた結果、無電解めつき液の濃度を測定すること
により、めつきによる薬品消耗量を検知し、その測定値
に応じてめつきによる消耗成分を自動的に補給すると同
時に、無電解めつき液の電導度を測定することによつて
確実にめつき液の老化度を検知することができ、めつき
液の電導度が所定設定値以上になつた場合、めつき液の
−部を汲み出すと共に、この汲み出し成分に対応する補
給剤を自動的に補給することにより、めつき液が自動的
に少しづづ更新され、めつき液を長期間連続的に使用す
ることができ、しかも長期連続使用する間において析出
速度、析出物の性状等をほぼ一定化し得、上述した目的
が達成されることを知見し、本発明をなすに至つたもの
である。
That is, as a result of various studies conducted by the present inventors in order to solve the conventional drawbacks, the amount of chemical consumption due to plating can be detected by measuring the concentration of the electroless plating solution, and the amount of chemical consumption due to plating can be detected according to the measured value. By automatically replenishing components consumed by plating and at the same time measuring the conductivity of the electroless plating solution, it is possible to reliably detect the degree of aging of the plating solution. When the plating liquid exceeds a predetermined set value, the plating liquid is automatically renewed little by little by pumping out the negative part of the plating liquid and automatically replenishing the replenishing agent corresponding to this pumped-out component. It was discovered that the plating solution can be used continuously for a long period of time, and that the precipitation rate, properties of the precipitates, etc. can be kept almost constant during long-term continuous use, and the above objects are achieved, and the present invention has been made. This is what we have come to do.

以下、本発明の一実施例につき図面を参照して説明する
。第1図は無電解ニツケルめつきに使用する装置の一例
を示すもので、図中1はめつき槽であり、図示していな
いがこのめつき槽1には所用の装置(例えば、ヒーター
、スチームパイプ等の無電解ニツケルめつき液2を所定
温度に加熱するための加熱装置、めつき終了後めつき液
2を室温付近にまで冷却するための冷却装置、沢過機、
攪拌機など)が付帯している。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings. Fig. 1 shows an example of equipment used for electroless nickel plating, and 1 in the figure is a plating tank. A heating device for heating the electroless nickel plating solution 2 such as a pipe to a predetermined temperature, a cooling device for cooling the plating solution 2 to around room temperature after plating, a filtration machine,
A stirrer, etc.) is included.

前記めつき槽1には、濃度検知器3、電導度検知器4、
及びポンプ5を介装する循環パイプ6の一端が連通し、
前記ポンプ5の作動によりめつき槽1内のめつき液2が
このパイプ6の一端からパイプ6内に流入し、パイプ6
内を流れる間に濃度検知器3にてめつき液2の濃度(例
えばニツケルイオン濃度)が測定され、かつ電導度検知
器4にてめつき液2の電導度が測定された後、前記パイ
プ6の他端からめつき液2がめつき槽1内に戻されるよ
うになつている。
The plating tank 1 includes a concentration detector 3, a conductivity detector 4,
and one end of a circulation pipe 6 interposed with the pump 5 communicates with each other,
Due to the operation of the pump 5, the plating liquid 2 in the plating tank 1 flows into the pipe 6 from one end of the pipe 6.
After the concentration of the plating liquid 2 (for example, nickel ion concentration) is measured by the concentration detector 3 while flowing through the pipe, and the conductivity of the plating liquid 2 is measured by the conductivity detector 4, the The plating liquid 2 is returned into the plating tank 1 from the other end of the plating tank 6.

第2図は濃度検知器3の一例を示すもので、この例にあ
つては前記パイプ6にバイパス管7を配設し、このバイ
パス管7に流通形セル8aを備えた分光光度計8を介装
してあり、めつき液2がバイパス管7内を通つて分光光
度計8の流通形セル8aを流れる際にめつき液2の光の
透過率を測定することによりめつき液2中のニツケルイ
オン量が測定され(なお、次亜リン酸塩を還元剤とする
酸性無電解ニツケルめつきの場合、めつきによる金属消
耗を敏感にとらえるためにはめつき液中のニツケル錯体
の吸光度を検知することが好ましく、このニツケル錯体
の吸収波長におけるめつき液透過率を電圧に変換する機
構を採用することが好ましい。
FIG. 2 shows an example of the concentration detector 3. In this example, a bypass pipe 7 is disposed in the pipe 6, and a spectrophotometer 8 equipped with a flow type cell 8a is installed in the bypass pipe 7. By measuring the light transmittance of the plating solution 2 as it flows through the bypass pipe 7 and through the flow-through cell 8a of the spectrophotometer 8, The amount of nickel ions in the plating solution is measured (in the case of acidic electroless nickel plating using hypophosphite as the reducing agent, the absorbance of the nickel complex in the plating solution is detected in order to sensitively detect metal consumption due to plating). It is preferable to use a mechanism that converts the plating liquid transmittance at the absorption wavelength of the nickel complex into voltage.

)、これによりめつき液2の濃度が検知されるようにな
つていると共に、ニツケルイオン量が所定の濃度設定値
以下になつた場合、分光光度計8に連絡された制御装置
9より信号Aが発せられるようになつている。なお、こ
のようにニツケル分を分析することにより、めつきによ
るニツケル消耗量がわかると共に、通常還元剤の消耗量
、?変動量も同時にわかるものである。第3図は電導度
検知器4の一例を示すもので、この例もパイプ6にバイ
パス管10を設け、このバイパス管10に電導度測定用
セル11を介装し、かつこのセル11に電動度計測器1
2及び制御装置13を連絡しているものである。
), so that the concentration of the plating solution 2 is detected, and when the amount of nickel ions falls below a predetermined concentration setting value, a signal A is sent from the control device 9 communicated to the spectrophotometer 8. is beginning to be emitted. By analyzing the nickel content in this way, it is possible to determine the amount of nickel consumed due to plating, as well as the amount of consumption of the reducing agent. The amount of variation can also be known at the same time. FIG. 3 shows an example of the conductivity detector 4, in which a bypass pipe 10 is provided in the pipe 6, a conductivity measuring cell 11 is interposed in the bypass pipe 10, and the cell 11 is electrically connected. degree measuring instrument 1
2 and the control device 13.

前記セル11は両端面が閉塞した略円筒体11aの側部
に液流入管11b及び液流出管11Cが連結された構成
とされ、前記円筒体11aの両端面近傍に白金或いは白
金黒めつきされた白金等よりなる極板14a,14bが
所定間隔離間して配設されており、これら両極板14a
,14bはそれぞれ導線15a,15bを介して前記電
導度計測器12に接続されている。そして、セル11内
のめつき液2の電導度が前記両極板14a,14b間の
抵抗を検知することにより測定されると共に、その測定
電導度値が所定電導度設定値以上に増大した場合、計測
器12に連絡された制御装置13より信号Bが発せられ
るようになつている。この場合、両極板14a,14b
間の抵抗は、例えば両極板14a,14b間に一定電位
を与えることにより電流変動として、或いは両極板14
a,14b間に一定電流を流すことにより電圧変動とし
て検知することができる。なお、図示していないが前記
パイプ6には濃度検知器3配設箇所より上流側に冷却器
が介装され、バイパス管7,10を流れるめつき液が室
温まで冷却され、ほぼ一定温度で濃度或いは電導度測定
が行なわれるようになつている。
The cell 11 has a structure in which a liquid inflow pipe 11b and a liquid outflow pipe 11C are connected to the sides of a substantially cylindrical body 11a with both end faces closed, and the vicinity of both end faces of the cylindrical body 11a are plated with platinum or platinum black. Polar plates 14a and 14b made of platinum or the like are arranged with a predetermined distance apart, and these polar plates 14a and
, 14b are connected to the conductivity measuring device 12 via conducting wires 15a, 15b, respectively. Then, when the conductivity of the plating liquid 2 in the cell 11 is measured by detecting the resistance between the bipolar plates 14a and 14b, and the measured conductivity value increases to a predetermined conductivity setting value or more, A signal B is emitted from a control device 13 connected to the measuring instrument 12. In this case, the bipolar plates 14a, 14b
The resistance between the two polar plates 14a and 14b can be changed, for example, by applying a constant potential between the two polar plates 14a and 14b, or by changing the current between the two polar plates 14a and 14b.
By flowing a constant current between a and 14b, it can be detected as a voltage fluctuation. Although not shown, a cooler is installed in the pipe 6 on the upstream side of the concentration detector 3, and the plating liquid flowing through the bypass pipes 7 and 10 is cooled to room temperature and kept at a substantially constant temperature. Concentration or conductivity measurements are being made.

なお、これらの測定において温度による影響を防止する
ために、その他恒温槽を利用したり、測温プローブを設
け、電気的に補償を行なう等の方法も採用できる。16
は消耗薬品用補給剤補給機構で、補給剤タンク17と、
一端がこのタンク17に連結している補給剤供給管18
と、及びこの供給管18に介装されている電磁バルブ1
9とからなり、前記濃度検知器3の制御装置9からの信
号Aにより電磁バルブ19が所定時間開き、めつきによ
る薬品の消耗に対応して所定の補給剤、例えばニツケル
塩、還元剤、州調整剤等が所定量めつき槽1内に供給さ
れるようになつている。
In addition, in order to prevent the influence of temperature in these measurements, other methods such as using a constant temperature bath, providing a temperature measuring probe, and performing electrical compensation can also be adopted. 16
is a replenishment agent replenishment mechanism for consumable chemicals, which includes a replenishment tank 17;
Replenishment agent supply pipe 18 whose one end is connected to this tank 17
and the electromagnetic valve 1 interposed in this supply pipe 18.
9, an electromagnetic valve 19 is opened for a predetermined period of time in response to a signal A from the control device 9 of the concentration detector 3, and a predetermined replenisher, such as nickel salt, reducing agent, or A predetermined amount of a conditioning agent and the like is supplied into the plating tank 1.

なお、第1図においてはタンク17を1個設置している
だけであるが、補給用のニツケル塩、環元剤、阻調整剤
等をそれぞれ別個に収容するため、それに応じて複数個
のタンクを設置し、かつそれぞれに供給管、電磁バルブ
を配設するようにしてもよい。
In addition, although only one tank 17 is installed in FIG. 1, in order to store the nickel salt, cyclic agent, inhibitor, etc. for replenishment separately, multiple tanks are installed accordingly. It is also possible to install a supply pipe and a solenoid valve for each.

20は汲み出し機構で、一端がめつき槽1内に連通する
汲み出し管21と、この汲み出し管21に介装され、前
記電導度検知器4の制御装置13からの信号Bにより所
定時間作動してめつき槽1中のめつき液2を所定量吸い
上げる制御ポンプ22からなり、電導度検知器4からの
信号Bによつてポンプ22が所定時間作動し、めつき槽
1から所定量のめつき液2が排出されるようになつてい
る。
Reference numeral 20 denotes a pumping mechanism, which has a pumping pipe 21 whose one end communicates with the inside of the plating tank 1, and which is interposed in the pumping pipe 21 and is operated for a predetermined period of time by a signal B from the control device 13 of the conductivity detector 4. It consists of a control pump 22 that sucks up a predetermined amount of plating liquid 2 from the plating tank 1. The pump 22 is operated for a predetermined period of time in response to the signal B from the conductivity detector 4, and the pump 22 sucks up a predetermined amount of plating liquid from the plating tank 1. 2 is now being discharged.

更に、23は汲み出し消費薬品用補給剤補給機構で、補
給剤タンク24と、一端がこのタンク24に連結してい
る補給剤供給管25と、及びこの供給管25に介装され
ている電磁バルブ26とからなり、この電磁バルブ26
が電導度検知器4の制御装置13からの信号Bを受け、
前記ポンプ22の作動が停止した後所定時間開き、前記
めつき液2の汲み出しに応じて所定量の汲み出し消費薬
品用補給剤がめつき槽1内に供給されるようになつてい
る。 (なお、この補給機構23の場合においても、補
給剤の種類等に応じ、複数個のタンクを設置しそれぞれ
に供給管、電磁バルブを配設することもできる。)次に
、上記構成の装置を用いて無電解ニツケルめつきの制御
を行なう方法につき説明する。
Furthermore, 23 is a replenishment replenishment mechanism for pumped consumable chemicals, which includes a replenishment tank 24, a replenishment supply pipe 25 connected to this tank 24 at one end, and an electromagnetic valve interposed in this supply pipe 25. 26, this electromagnetic valve 26
receives the signal B from the control device 13 of the conductivity detector 4,
After the pump 22 stops operating, it is opened for a predetermined period of time, and a predetermined amount of replenisher for the pumped consumable chemicals is supplied into the plating tank 1 in response to the pumping of the plating liquid 2. (In the case of this replenishment mechanism 23 as well, it is also possible to install a plurality of tanks and install supply pipes and electromagnetic valves in each tank depending on the type of replenishment agent, etc.) Next, the apparatus with the above configuration We will explain how to control electroless nickel plating using this method.

まず、無電解ニツケルめつきは、被めつき物に対し所定
の前処理を行なつた後、これを所定温度、例えば90℃
に加熱してあるめつき槽1内のめつき液2中に浸漬する
ことによつて行なう。一方、このようなめつきの実施と
共に、ポンプ5を作動させてめつき槽1内のめつき液2
の一部をパイプ6内に導入し、濃度検知器3及び電導度
検知器4に導いてめつき液2の濃度(第2図の濃度検知
器3に従つた場合はニツケルイオン濃度)及びめつき液
2の電導度をそれぞれ測定する。そして、めつきの進行
によりめつき槽1内のめつき液2の濃度、特にニツケル
イオン濃度、還元剤(例えば次亜リン酸ソーダ)の濃度
が低下し、また次亜リン酸塩を還元剤とする無電解ニツ
ケルめつき液の場合にはめつき液2の?が低下してくる
が、このような濃度変化が生じ、例えば第2図に示す濃
度検知器3を用いた場合であれば分光光度計8により測
定されたニツケルイオン濃度が所定の濃度設定値以下に
低下すると、この検知器3の制御装置9から信号Aが発
せられ、この信号Aが消耗薬品用補給剤補給機構16の
電磁バルブ19に与えられてバルブ19が所定時間開く
。これによりタンク17内の補給剤にの補給剤は、主と
してめつきにより消耗されるニツケル塩、還元剤、それ
にml調整剤からなり、更に必要に応じて少量の錯化剤
、安定剤、光沢剤等が添加される。なお、一般にはニツ
ケル塩、還元剤、州調整剤はそれぞれ別個に隔離して収
容しておくことが好ましい。この場合、錯化剤、安定剤
、光沢剤等は上記三者のうち互に反応し合わない成分と
混合しておくことが好ましい。)の所定量がめつき槽1
内のめつき液2に加えられ、めつきで消耗したニツゲル
イオン、還元剤等が補給され、まためつき液2の?が調
整される。このような補給剤の補給により、めつき液2
の濃度はほぼ一定化され、従つてめつき速度(析出速度
)がほぼ一定に保持される。
First, in electroless nickel plating, the object to be plated is subjected to a predetermined pretreatment and then heated to a predetermined temperature, for example, 90°C.
This is done by immersing the plate in a plating solution 2 in a plating tank 1 which has been heated to . On the other hand, while carrying out such plating, the pump 5 is operated to drain the plating liquid 2 in the plating tank 1.
A part of the plating solution is introduced into the pipe 6 and guided to the concentration detector 3 and conductivity detector 4 to measure the concentration of the plating solution 2 (the nickel ion concentration if the concentration detector 3 in Fig. 2 is followed) and the target value. The electrical conductivity of the soaking liquid 2 is measured. As the plating progresses, the concentration of the plating solution 2 in the plating tank 1, especially the nickel ion concentration and the concentration of the reducing agent (for example, sodium hypophosphite) decreases, and the hypophosphite is used as the reducing agent. In the case of electroless nickel plating solution, use plating solution 2. However, such a concentration change occurs, and for example, if the concentration detector 3 shown in FIG. When the temperature decreases to 1, the control device 9 of the detector 3 issues a signal A, which is applied to the electromagnetic valve 19 of the consumable chemical replenishment mechanism 16, which opens the valve 19 for a predetermined period of time. As a result, the replenishment agent in the tank 17 mainly consists of the nickel salt consumed by plating, the reducing agent, and the ml adjuster, and if necessary, a small amount of the complexing agent, stabilizer, and brightening agent. etc. are added. In general, it is preferable that the nickel salt, reducing agent, and conditioner be stored separately. In this case, it is preferable that the complexing agent, stabilizer, brightener, etc. be mixed with components that do not react with each other among the above three components. ) for a predetermined amount of plating tank 1
It is added to the plating solution 2 inside to replenish the Nitsugel ions, reducing agent, etc. that were consumed during plating, and then replenish the plating solution 2. is adjusted. By replenishing the replenisher like this, the plating solution 2
The concentration of is kept almost constant, and therefore the plating rate (deposition rate) is kept almost constant.

また、めつき液2中に反応生成物が蓄積してくると、め
つき液2の電導度が高くなり、第3図に示す電導度検知
器4によりめつき液2の電導度が測定された結果、その
測定値が所定電導度設定値以上に増大した場合、制御装
置13より信号Bが,発せられると共に、この信号Bが
汲み出し機構20のポンプ22に与えられ、ポンプ22
が所定時間作動し、めつき槽1内のめつき液2が所定量
汲み出し管21を通つて排出される。
Further, as reaction products accumulate in the plating solution 2, the conductivity of the plating solution 2 increases, and the conductivity of the plating solution 2 is measured by the conductivity detector 4 shown in FIG. As a result, if the measured value increases to a predetermined conductivity setting value or more, the control device 13 issues a signal B, and this signal B is given to the pump 22 of the pumping mechanism 20.
is operated for a predetermined period of time, and a predetermined amount of the plating liquid 2 in the plating tank 1 is discharged through the pumping pipe 21.

にの排出液は廃液処理装置に送るのが望ましく、副生
物の除去を行なつた後、有効成分を再利用しても良い。
)。ポンプ22の作動が停止すると、汲み出し消費薬品
補給剤補給機構23の電磁バルブ26が所定時間開き、
タンク24の補給剤にの補給剤は前記汲み出しにより失
なわれた成分を補給するもので、主として錯化剤であり
、通常めつき液2の建浴時の組成と同じ組成のもの、も
しくはその濃縮液、又はめつきにより殆んど消耗するこ
とのない錯化剤を主体とするものからなる。なお、補給
すべき成分が例えば金属塩と還元剤のように互に反応す
るおそれのあるものの場合、これらは別々に隔離して収
容しておくことが好ましい。)がめつき槽1内のめつき
液2に供給される。従つて、このようなめつき液2の汲
み出し、及び汲み出しに対応する補給剤の補給により、
めつき液2中の反応生成物の蓄積が防止され、反応生成
物量がほぼ一定にコントロールされる。このため、反応
生成物の蓄積によるめつき速度の低下が防止され、長期
間に亘り連続使用してもめつき液2が絶えず更新された
状態となるので、長期の使用にかかわらずめつき速度が
ほぼ一定に保持され、めつき被膜の性状(例えば次亜リ
ン酸塩を還元剤とする場合であればNi−P合金組成、
或いはめつき被膜の硬度など)もぼぼ一定に保たれる。
この点につき更に詳述すると、長時間に亘りめつきを行
なつていると、めつき液2中に反応生成物(主に還元剤
の分解生成物及びめつき反応の中和塩と考えられる)が
蓄積し、この反応生成物がめつき速度等に影響を与え、
上述したようにめつきによる消耗成分を補給してもめつ
き速度を低下させることになると共に、場合によりめつ
き被膜の性状を変化させる原因ともなるが、本発明者ら
の検討によれば、このような反応生成物の蓄積、換言す
れば液の老化はめつき液2の電導度変化により確実に検
知し得、上述したようにめつき液2の電導度が所定電導
度設定値以上になつた場合、めつき液2の一部を排出し
、かつ電導度検知器4に呼応した補給(主として汲み出
しにより失なわれる成分の補給)を行なうことにより、
めつき液2中の反応生成物量をほぼ一定に保持し、めつ
き液2の寿命をほぼ半永久的に、少なくとも従来法に比
較して格段に液寿命を伸ばすことができたものであり、
しかもこのような長期連続使用の間において、めつき速
度、めつき被膜の性状等をほぼ一定に保持し得たもので
ある。
It is desirable to send the waste liquid to a waste liquid treatment device, and after removing by-products, the active ingredient may be reused.
). When the pump 22 stops operating, the electromagnetic valve 26 of the pumped consumable drug replenishment mechanism 23 opens for a predetermined period of time.
The replenisher in the tank 24 is used to replenish the components lost due to the pumping out, and is mainly a complexing agent, usually having the same composition as the plating solution 2 at the time of preparation, or a complexing agent. It mainly consists of a concentrate or a complexing agent that is hardly consumed by plating. Note that if the components to be replenished are likely to react with each other, such as a metal salt and a reducing agent, it is preferable to separate and store these components. ) is supplied to the plating liquid 2 in the plating tank 1. Therefore, by pumping out the plating liquid 2 and replenishing the replenishment agent corresponding to the pumping out,
Accumulation of reaction products in the plating solution 2 is prevented, and the amount of reaction products is controlled to be approximately constant. This prevents the plating speed from decreasing due to the accumulation of reaction products, and the plating solution 2 is constantly refreshed even after long-term continuous use, so the plating speed remains constant even after long-term use. The properties of the plating film (for example, if hypophosphite is used as the reducing agent, the Ni-P alloy composition,
Also, the hardness of the plating film, etc.) is also kept more or less constant.
To explain this point in more detail, if plating is carried out for a long time, reaction products (mainly considered to be decomposition products of the reducing agent and neutralized salts of the plating reaction) may be present in the plating solution 2. ) accumulates, and this reaction product affects plating speed, etc.
As mentioned above, replenishing the components consumed by plating will reduce the plating speed and may also cause changes in the properties of the plating film, but according to the studies of the present inventors, this Accumulation of such reaction products, in other words aging of the solution, can be reliably detected by changes in the electrical conductivity of the plating solution 2, and as described above, the electrical conductivity of the plating solution 2 has exceeded the predetermined electrical conductivity setting value. In this case, by discharging a part of the plating liquid 2 and replenishing it in response to the conductivity detector 4 (mainly replenishing the components lost due to pumping out),
The amount of reaction products in the plating solution 2 can be maintained almost constant, the life of the plating solution 2 can be made almost semi-permanent, and the life of the solution can be significantly extended, at least compared to conventional methods.
Furthermore, during such long-term continuous use, the plating speed, properties of the plating film, etc. could be maintained almost constant.

また、上述しためつき方法によれば、めつき液2が簡単
かつ確実に自動制御、自動管理され、電気めつきに比較
して従来管理の面倒であつた無電解めつきが非常に.容
易に管理され得る。
Furthermore, according to the above-mentioned plating method, the plating solution 2 is easily and reliably automatically controlled and managed, and electroless plating, which has conventionally been troublesome to manage, is much easier than electroless plating. Can be easily managed.

更にまた、上述したようにめつき液2の濃度が補給によ
り常時ほぼ一定値に保持されるので、めつきの進行によ
るニツケル濃度の減少に基づく析出速度の低下を補償す
るためめつき前のニツケル濃度を高くしておくような操
作は必要とせず、めつき液2のニツケル濃度を低くする
ことができると共に、めつき液の更新は前記汲み出し機
構20により自動的に少しづつ行なわれるため、廃水、
廃液処理の負担が激減する。なお、上記実施例において
はめつき液2中のニツケルイオン量の測定法として上述
したような直接めつき液の吸光度を測定する方法を採用
したが、これに限られることはなく、めつき液にEDT
A等の適当な試薬、試示薬を加えて所定の色に発色させ
、その発色の程度によりニツケルイオン量を測定する方
法も採用することができる。
Furthermore, as mentioned above, since the concentration of the plating solution 2 is always maintained at a nearly constant value by replenishment, the nickel concentration before plating is adjusted to compensate for the decrease in the precipitation rate due to the decrease in the nickel concentration due to the progress of plating. The nickel concentration of the plating solution 2 can be lowered without requiring any operations to keep the nickel concentration high, and since the plating solution is automatically renewed little by little by the pumping mechanism 20, wastewater,
The burden of waste liquid treatment is drastically reduced. In the above example, the method of directly measuring the absorbance of the plating solution as described above was adopted as a method for measuring the amount of nickel ions in the plating solution 2, but the method is not limited to this. E.D.T.
It is also possible to adopt a method in which a suitable reagent or test agent such as A is added to develop a predetermined color, and the amount of nickel ions is measured based on the degree of color development.

しかしこの場合、濃度測定後のめつき液は、第2図に示
すようにバイパス管7からパイプ6に戻す″ことはでき
ず、廃棄のため別途に廃液処理設備に送ることが必要で
ある。なおまた、このようにめつき液の吸光度を測定す
る以外に他の適宜な濃度検知法、例えば電位差測定法な
どが採用可能である。しかしながら、上述しためつき液
の吸光度を直接する測定する方法が装置が複雑化せず、
かつ測定しためつき液をめつき槽1内に戻すことができ
る等の点から最も有利である。また、阻を測定すること
によりめつき液の濃度を検知することも可能である。更
に、上述したニツケルイオン濃度の測定と阻測定を組合
せ、めつき液の阻はこの…測定値により自動制御する等
の方法も採用できる。更に、上記実施例では濃度検知、
電導度検知機構をバイパス管に組入れたが、このような
バイパス管を設けず、直接循環パイプに組入れるように
してもよく、また濃度検知を行なつた後、電導度検知を
行なうようにしたが、勿論これに限られることはなく、
その順序を逆にし、或いはそれぞれ別個独立の回路で検
知するようにしてもよく、また上述したように検知器を
めつき槽外に設置し、これにめつき液を循環させるよう
にしたが、めつき槽内に濃度或いは電導度検知機構を設
けることもできる。
However, in this case, the plating solution after concentration measurement cannot be returned from the bypass pipe 7 to the pipe 6 as shown in FIG. 2, and must be separately sent to a waste solution treatment facility for disposal. Furthermore, in addition to measuring the absorbance of the plating solution in this way, other appropriate concentration detection methods, such as potentiometric measurement, can be adopted. However, the above-mentioned method of directly measuring the absorbance of the plating solution However, the equipment does not become complicated,
This method is most advantageous in that the measured plating solution can be returned to the plating tank 1. It is also possible to detect the concentration of the plating solution by measuring the concentration. Furthermore, it is also possible to adopt a method in which the measurement of the nickel ion concentration and the concentration measurement described above are combined, and the concentration of the plating solution is automatically controlled based on the measured value. Furthermore, in the above embodiment, concentration detection,
Although the conductivity detection mechanism is incorporated into the bypass pipe, it is also possible to directly incorporate the conductivity detection mechanism into the circulation pipe without providing such a bypass pipe, and conductivity detection may be performed after concentration detection. , of course, it is not limited to this,
The order may be reversed or the detection may be performed using separate circuits.Also, as described above, the detector may be installed outside the plating tank and the plating solution may be circulated through it. A concentration or conductivity detection mechanism may also be provided within the plating tank.

なおまた、汲み出し機構として第1図に2点鎖線で示し
たようにオーバーフカ一管27をめつき槽1に設け、電
導度検知器4からの信号Bを補給機構23に伝えて汲み
出し薬品用補給剤をめつき槽1内のめつき液2に供給し
、補給剤の添加によるめつき液2の増量分を前記オーバ
ーフロー管28から排出することにより、めつき液2を
汲み出す等の構成とすることもできる。
Furthermore, as a pumping mechanism, an overflow tube 27 is provided in the plating tank 1 as shown by the two-dot chain line in FIG. A configuration in which a replenisher is supplied to the plating solution 2 in the plating tank 1, and the increased amount of the plating solution 2 due to the addition of the replenisher is discharged from the overflow pipe 28, thereby pumping out the plating solution 2. It is also possible to do this.

更に、上記実施例は無電解ニツケルめつきの制御につき
説明したが、無電解コバルトめつき、無電解コバルトー
ニツケル合金めつき等も同様に制御し得、その他の構成
についても本発明の要旨を逸脱しない範囲で種々変更し
て差支えない。以上説明したように、本発明によれば、
無電解めつき液の濃度を自動的に検知することにより、
めつきによる消耗量を検知し、それに応じてめつ,きに
よる消耗成分を自動的に補給すると共に、無電解めつき
液の電導度を自動的に検知することにより、めつき液の
老化度を検知し、それに応じてめつき液の一部の汲み出
しとこの汲み出しによる消耗成分を自動的に補給するこ
とができ、これに〈より液の更新が自動的に少量づつ行
なわれるため液の建てかえの必要が殆んどなくなり、少
なくとも従来に比較にて液寿躇を著しく伸ばすことがで
きる。
Furthermore, although the above embodiment describes the control of electroless nickel plating, electroless cobalt plating, electroless cobalt-nickel alloy plating, etc. can be similarly controlled, and other configurations may depart from the gist of the present invention. You may make various changes as long as you do not. As explained above, according to the present invention,
By automatically detecting the concentration of electroless plating solution,
By detecting the amount of consumption due to plating and automatically replenishing the consumable components due to plating and plating accordingly, by automatically detecting the conductivity of the electroless plating solution, the degree of aging of the plating solution can be adjusted. It is possible to detect this and automatically pump out a portion of the plating solution and replenish the consumable components caused by this pumping out. There is almost no need for changing, and the longevity of the liquid can be significantly extended, at least compared to conventional methods.

かつ、めつき液中の金属分、還元剤等がほぼ一定濃度で
保持される上、めつきによる反応生成物量が限度内に維
持されるため、析出速度や析出被膜の物性等がほぼ一定
化され、安定性の高い浴条件を長期維持することができ
ると共に、従来とほぼ同一析出速度を保持しつつ従来よ
りも低い金属濃度でめつき液を管理することもでき、廃
液、廃水処理の点からも有利である。以下、実施例を示
す。
In addition, the metal content, reducing agent, etc. in the plating solution are maintained at a nearly constant concentration, and the amount of reaction products caused by plating is maintained within limits, so the deposition rate and physical properties of the deposited film are almost constant. This makes it possible to maintain highly stable bath conditions for a long period of time, and also to manage the plating solution at a lower metal concentration than before while maintaining almost the same deposition rate as before, which improves waste liquid and wastewater treatment. It is also advantageous. Examples are shown below.

の無電解ニツケルめつき1001を90℃に加温し、第
1図〜第3図に示すような制御装置を使用し、自動的か
つ連続的にニツケルイオン濃度(670nmの光の透過
率を測定することにより行なつた)及び電導度を測定し
つつめつきを行なつた。
Electroless nickel plated 1001 was heated to 90°C, and the nickel ion concentration (670 nm light transmittance) was automatically and continuously measured using a control device as shown in Figures 1 to 3. (The conductivity was measured by the following methods) and the conductivity was measured.

この場合、ニツケルイオンの設定値を4gハとし、めつ
き液のニツケルイオン濃度がこれ以下になつた場合、信
号Aを発して消耗薬品用補給剤として下記組成の補給液
], 2,3をそれぞれ1回につき400m1(Ni2
+0.2gハ相当)添加した。 (なお、これら補給液
], 2,3はそれぞれ補給管、電磁バルブを備えた3
個のタンクに収容し、信号Aが発せられた場合、各電磁
バルブが同時に所定時間開いて同量の補給液をめつき槽
内に同時に供給できるようにした。)また、電導度設定
値を50m′C5/Cmとし、めつき液の電導度がこれ
以上になつた場合、信号Bを発して1回当り51のめつ
き液を汲み出した後、汲み出し消費薬品用補給剤として
下記組成の補給液(4)51を添加するようにした(本
発明法)。また比較のため、電導度測定を行なわず、従
つて液の汲み出し及び補給液4の補給を行なわない以外
は上記と同様にしてめつきを行なつた(ニツケルイオン
濃度のみを測定し、それに応じて補給液1,2,3のみ
を添加した。
In this case, the set value of nickel ions is 4 g, and when the nickel ion concentration of the plating solution falls below this value, signal A is generated and a replenishment solution with the following composition], 2, 3 is used as a replenishment agent for consumable chemicals. 400m1 (Ni2
+0.2g equivalent) was added. (In addition, these replenishment liquids), 2 and 3 are 3 equipped with a replenishment pipe and a solenoid valve, respectively.
When the signal A is issued, each electromagnetic valve is simultaneously opened for a predetermined period of time so that the same amount of replenishment liquid can be simultaneously supplied into the plating tank. ) Also, if the conductivity setting value is 50m'C5/Cm, and the conductivity of the plating liquid exceeds this value, signal B is generated and 51 plating liquids are pumped out at a time, and then the consumable chemicals are pumped out. Replenishment liquid (4) 51 having the following composition was added as a replenisher (method of the present invention). For comparison, plating was carried out in the same manner as above, except that the conductivity was not measured and therefore the liquid was not pumped out and the replenishing liquid 4 was not replenished (only the nickel ion concentration was measured and the plating was carried out accordingly). Only replenishment liquids 1, 2, and 3 were added.

:比較法)。所定ターン数(なお、1ターンとは、連続
的にめつきを行なつた場合、めつき液11に対してニツ
ケルイオンが4g消耗した場合をいう。)毎に析出速度
、Ni−P合金組成を調べ、第1表に示す結果を得た。
なお、第4図に前記組成の無電解ニツケルめつき液のタ
ーン数と電導度(ミリモー)との関係を示す(測定温度
25℃)。
: comparative law). Deposition rate and Ni-P alloy composition are determined every predetermined number of turns (one turn means when 4g of nickel ions are consumed per plating solution 11 when plating is performed continuously). was investigated, and the results shown in Table 1 were obtained.
Incidentally, FIG. 4 shows the relationship between the number of turns and the electrical conductivity (millimo) of the electroless nickel plating solution having the above composition (measurement temperature: 25° C.).

第4図の結果により、めつき液の電導度は無電解ニツケ
ルめつき液のターン数、即ちめつき液の老化度が増加す
ると直線的に増加し、従つて電導度の測定によりめつき
液の老化度を確実に検知し得ることが認められる。
According to the results shown in Figure 4, the electrical conductivity of the plating solution increases linearly as the number of turns of the electroless nickel plating solution increases, that is, the degree of aging of the plating solution. It is recognized that the degree of aging can be reliably detected.

〔実施例 2〕 下記組成 〜第3図に示すような制御装置を使用し、自動的かつ連
続的にコバルトイオン濃度及び電導度を測定しつつめつ
きを行なつた。
[Example 2] Using a control device as shown in the composition shown in FIG. 3, plating was carried out while automatically and continuously measuring the cobalt ion concentration and conductivity.

この場合、コバルトイオンの設定値を4g/1とし、め
つき液のコバルトイオン濃度がこれ以下になつた場合、
信号Aを発して消耗薬品用補給剤として下記組成の補給
液5,6,7をそれぞれ1回につき2m1/1添加した
。 (なお、これら補給液5,6,7はそれぞれ補給管
、電磁バルブを備えた3個のタンクに収容し、信号Aが
発せられた場合、各電磁バルブが同時に所定時間開いて
同量の補給液をめつき槽内に同時に供給できるようにし
た。)また、電導度設定値を35m0/Cmとし、めつ
き液の電導度がこれ以上になつた場合、信号Bを発して
1回当り10〜50m1/1のめつき液を汲み出した後
、汲み出し消費薬品用補給剤として下記組成の補給液8
を汲み出し量と同量添加するようにした(本発明法)。
また比較のため、電導度測定を行なわず、従つて液の汲
み出し及び補給液8の補給を行なわない以外は上記と同
様にしてめつきを行なつた(コバルトイオン濃度のみを
測定し、それに応じて補給液5,6,7のみを添加した
In this case, the cobalt ion setting value is 4g/1, and if the cobalt ion concentration of the plating solution falls below this value,
Signal A was issued, and replenishment solutions 5, 6, and 7 having the following compositions were added at 2 ml/l each time as replenishers for consumable chemicals. (These replenishment liquids 5, 6, and 7 are stored in three tanks each equipped with a replenishment pipe and a solenoid valve, and when signal A is issued, each solenoid valve opens at the same time for a predetermined period of time to replenish the same amount.) In addition, the conductivity setting value is set to 35 m0/Cm, and when the conductivity of the plating liquid exceeds this value, signal B is generated and 10 m0/Cm is output per time. After pumping out ~50m1/1 of the plating solution, use replenishment solution 8 with the following composition as a replenishment agent for the pumped out consumable chemicals.
was added in the same amount as the amount pumped out (method of the present invention).
For comparison, plating was carried out in the same manner as above, except that the conductivity was not measured and therefore the liquid was not pumped out and the replenishing liquid 8 was not replenished (only the cobalt ion concentration was measured and the plating was carried out accordingly). Only replenishment liquids 5, 6, and 7 were added.

:比較法)。所定ターン数(なお、1ターンとは、連続
的にめつきを行なつた場合、めつき液11に対してコバ
ルトイオンが4g消耗した場合をいう。)毎に析出速度
、CO−P合金組成を調べ、第2表に示す結果を得た。
: comparative law). Deposition rate and CO-P alloy composition are determined every predetermined number of turns (one turn means when 4g of cobalt ions are consumed per plating solution 11 when plating is performed continuously). was investigated, and the results shown in Table 2 were obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すプロツタ図、第2図は
本発明の濃度検知器の一例を示すプロツク図、第3図は
本発明の電導度検知器の一例を示すプロツク図、第4図
は無電解ニツケルめつきのターン数と電導度との関係を
示すグラフである。 1・・・・・・めつき槽、2・・・・・・めつき液、3
・・・・・・濃度検知器、4・・・・・・電導度検知器
、5・・・・・・ポンプ、6・・・・・・循環パイプ、
16・・・・・・消耗薬品用補給剤補給機構、20・・
・・・・汲み出し機構、23・・・・・・汲み出し消費
薬品用補給剤補給機構、A,B・・・・・・信号。
FIG. 1 is a plot diagram showing an example of the present invention, FIG. 2 is a plot diagram showing an example of the concentration detector of the present invention, and FIG. 3 is a plot diagram showing an example of the conductivity detector of the present invention. FIG. 4 is a graph showing the relationship between the number of turns in electroless nickel plating and the electrical conductivity. 1...Plating tank, 2...Plating liquid, 3
... Concentration detector, 4 ... Conductivity detector, 5 ... Pump, 6 ... Circulation pipe,
16... Replenishment mechanism for consumable chemicals, 20...
... Pumping mechanism, 23... Pumping out replenishment mechanism for consumable chemicals, A, B... Signal.

Claims (1)

【特許請求の範囲】 1 無電解めつき液の濃度を連続的もしくは間欠的に測
定し、その測定値がめつきによる消耗により所定の濃度
設定値以下になつたことを検知した場合、めつきによる
消耗分に対応する補給剤を自動的に補給し、かつ前記め
つき液の電導度を連続的もしくは間欠的に測定し、その
測定値が所定電導度設定値以上になつたことを検知した
場合、前記めつき液の一部を自動的に汲み出すと共に、
その汲み出しにより失なわれる成分に対応する補給剤を
自動的に補給することを特徴とする無電解めつき制御方
法。 2 無電解めつき液が無電解ニッケルめつき液、無電解
コバルトめつき液、又は無電解ニッケル−コバルト合金
めつき液である特許請求の範囲第1項記載の方法。 3 無電解めつき液の濃度を自動的に測定しかつその測
定値が所定濃度設定値以下になつた場合に信号を発する
濃度検知器と、前記めつき液の電導度を自動的に測定し
かつその測定値が所定電導度設定値以上になつた場合に
信号を発する電導度検知器と、前記濃度検知器からの信
号によりめつきによる消耗分に対応する補給剤を自動的
に補給する消耗薬品用補給剤補給機構と、及び前記電導
度検知器からの信号により作動し、前記めつき液の一部
を自動的に汲み出すと共にこの汲み出しにより失なわれ
る成分に対応する補給剤を自動的に補給する汲み出し機
構及び汲み出し消費薬品用補給剤補給機構とを具備して
なることを特徴とする無電解めつき液制御装置。
[Claims] 1. If the concentration of the electroless plating solution is measured continuously or intermittently and it is detected that the measured value has fallen below a predetermined concentration setting value due to consumption due to plating, When the replenisher corresponding to the consumed amount is automatically replenished, and the conductivity of the plating liquid is measured continuously or intermittently, and it is detected that the measured value exceeds a predetermined conductivity setting value. , automatically pumping out a portion of the plating solution, and
An electroless plating control method characterized by automatically replenishing a replenisher corresponding to the component lost due to pumping. 2. The method according to claim 1, wherein the electroless plating solution is an electroless nickel plating solution, an electroless cobalt plating solution, or an electroless nickel-cobalt alloy plating solution. 3. A concentration detector that automatically measures the concentration of the electroless plating solution and issues a signal when the measured value falls below a predetermined concentration setting value, and a concentration detector that automatically measures the electrical conductivity of the plating solution. and a conductivity detector that issues a signal when the measured value exceeds a predetermined conductivity setting value, and a consumable device that automatically replenishes a replenisher corresponding to the amount of consumable material due to plating based on the signal from the concentration detector. The chemical replenishment replenishment mechanism is activated by a signal from the conductivity detector, and automatically pumps out a portion of the plating solution, and automatically dispenses a replenishment agent corresponding to the components lost due to this pumping out. 1. An electroless plating liquid control device comprising: a pumping mechanism for replenishing the liquid, and a pumping mechanism for replenishing consumable chemicals.
JP16733379A 1979-11-14 1979-12-22 Electroless plating control method and device Expired JPS5952952B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP16733379A JPS5952952B2 (en) 1979-12-22 1979-12-22 Electroless plating control method and device
US06/204,046 US4353933A (en) 1979-11-14 1980-11-04 Method for controlling electroless plating bath
GB8036232A GB2064827B (en) 1979-11-14 1980-11-12 Method and apparatus for controlling electroless plating bath
FR8024166A FR2469466B1 (en) 1979-11-14 1980-11-13 METHOD AND APPARATUS FOR CONTROLLING BATHS USED FOR NON-ELECTROLYTIC COATINGS
DE19803043066 DE3043066A1 (en) 1979-11-14 1980-11-14 METHOD AND DEVICE FOR CONTROLLING A BATH FOR ELECTRIC PLATING
US06/352,549 US4406248A (en) 1979-11-14 1982-02-26 Apparatus for controlling electroless plating bath
US06/352,550 US4406249A (en) 1979-11-14 1982-02-26 Apparatus for controlling electroless plating bath
SG169/84A SG16984G (en) 1979-11-14 1984-02-25 Method and apparatus for controlling electroless plating bath
HK64/85A HK6485A (en) 1979-11-14 1985-01-24 Method and apparatus for controlling electroless plating bath
MY497/85A MY8500497A (en) 1979-11-14 1985-12-30 Method and apparatus for controlling electroless plating bath

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16733379A JPS5952952B2 (en) 1979-12-22 1979-12-22 Electroless plating control method and device

Publications (2)

Publication Number Publication Date
JPS5690967A JPS5690967A (en) 1981-07-23
JPS5952952B2 true JPS5952952B2 (en) 1984-12-22

Family

ID=15847785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16733379A Expired JPS5952952B2 (en) 1979-11-14 1979-12-22 Electroless plating control method and device

Country Status (1)

Country Link
JP (1) JPS5952952B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008280603A (en) * 2007-05-14 2008-11-20 Canon Inc Management method and management device for electroless plating liquid
CN103255398A (en) * 2013-05-24 2013-08-21 无锡市崇安区科技创业服务中心 Chemical nickel plating monitoring and detection system

Also Published As

Publication number Publication date
JPS5690967A (en) 1981-07-23

Similar Documents

Publication Publication Date Title
JPS6016517B2 (en) Electroless plating control method
US4353933A (en) Method for controlling electroless plating bath
KR101248213B1 (en) Etchant managing device
JP3177338B2 (en) Method and apparatus for holding an electroless plating solution
PT946121E (en) DETERMINATION PROCEDURE FOR THE ADDICTION OF A DETERGENT TO A LAKE WASHING MACHINE
KR20120063473A (en) Monitoring of electroplating additives
JPS61199069A (en) Method for automatically controlling plating solution
JPS5952952B2 (en) Electroless plating control method and device
US3806393A (en) Apparatus for etching copper and copper alloys
US4406249A (en) Apparatus for controlling electroless plating bath
JPS5952700B2 (en) Electroless plating control method and device
JP6712415B2 (en) Developer management device
JPS5952953B2 (en) Electroless plating control method and device
JP3843224B2 (en) Method for measuring sulfuric acid concentration in plating solution
JPS591679A (en) Controlling and administering method of etching solution
JPS5848700A (en) Controlling method for concentration of metallic ions in electrolytic bath
TW201827948A (en) Developing solution management apparatus comprising a control means and an alarm means
JP3468102B2 (en) Ozone aqueous solution measuring device
JPH0119070Y2 (en)
TW201828334A (en) Concentration monitoring apparatus for developing solution and developing solution management apparatus capable of accurately calculating concentration of each component and maintaining and managing developing performance in optimal state
KR20180087126A (en) Developing apparatus
JP3834701B2 (en) Method for measuring dissolved amount of metal ion and method for controlling concentration of plating bath using insoluble anode
TW201828333A (en) Apparatus for measuring component concentration in developing solution and developing solution management apparatus capable of accurately computing concentration of each component of alkaline developing solution and maintaining and managing developing performance in optimal state
JPH0364483A (en) Method for measuring and adjusting concentration of plating solution and concentration adjusting device
KR20000000227U (en) Sulfuric acid concentration automatic control device of electrolytic chromium solution