JP6712415B2 - Developer management device - Google Patents

Developer management device Download PDF

Info

Publication number
JP6712415B2
JP6712415B2 JP2017009836A JP2017009836A JP6712415B2 JP 6712415 B2 JP6712415 B2 JP 6712415B2 JP 2017009836 A JP2017009836 A JP 2017009836A JP 2017009836 A JP2017009836 A JP 2017009836A JP 6712415 B2 JP6712415 B2 JP 6712415B2
Authority
JP
Japan
Prior art keywords
concentration
developer
value
carbon dioxide
developing solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017009836A
Other languages
Japanese (ja)
Other versions
JP2018120899A (en
Inventor
中川 俊元
俊元 中川
Original Assignee
株式会社平間理化研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=62962095&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6712415(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社平間理化研究所 filed Critical 株式会社平間理化研究所
Priority to JP2017009836A priority Critical patent/JP6712415B2/en
Priority to CN201711232620.8A priority patent/CN108345183A/en
Priority to KR1020170161409A priority patent/KR20180087124A/en
Priority to TW106141776A priority patent/TW201827947A/en
Publication of JP2018120899A publication Critical patent/JP2018120899A/en
Application granted granted Critical
Publication of JP6712415B2 publication Critical patent/JP6712415B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/002Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor using materials containing microcapsules; Preparing or processing such materials, e.g. by pressure; Devices or apparatus specially designed therefor
    • G03F7/0022Devices or apparatus
    • G03F7/0025Devices or apparatus characterised by means for coating the developer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/3042Imagewise removal using liquid means from printing plates transported horizontally through the processing stations
    • G03F7/3071Process control means, e.g. for replenishing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • G03F7/322Aqueous alkaline compositions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Coating Apparatus (AREA)

Description

本発明は、現像液管理装置に関し、特に、半導体や液晶パネルにおける回路基板の現像工程等でフォトレジスト膜を現像するために繰り返し使用される、アルカリ性を示す現像液管理装置に関する。 The present invention relates to a developer management device, and more particularly to a developer management device exhibiting alkalinity that is repeatedly used for developing a photoresist film in a development process of a circuit board in a semiconductor or a liquid crystal panel.

半導体や液晶パネル等における微細配線加工を実現するフォトリソグラフィーの現像工程には、基板の上に製膜されたフォトレジストを溶解する薬液として、アルカリ性を示す現像液(以下、「アルカリ性現像液」という。)が用いられている。 In the development process of photolithography that realizes fine wiring processing in semiconductors, liquid crystal panels, etc., as a chemical solution that dissolves the photoresist formed on the substrate, a developing solution showing alkalinity (hereinafter, referred to as “alkaline developing solution”). .) is used.

半導体や液晶パネル基板の製造工程では、近年、ウェハやガラス基板の大型化と配線加工の微細化及び高集積化が進められてきた。このような状況下、大型基板の配線加工の微細化及び高集積化を実現すべく、アルカリ性現像液の主要成分の濃度をより一層高精度に測定して現像液を維持管理することが必要となってきている。 2. Description of the Related Art In recent years, in the manufacturing process of semiconductors and liquid crystal panel substrates, the size of wafers and glass substrates and the miniaturization and high integration of wiring processing have been advanced. Under such circumstances, it is necessary to measure the concentrations of the main components of the alkaline developer with even higher accuracy and maintain the developer in order to realize finer wiring processing and higher integration of large-sized boards. It has become to.

従来のアルカリ性現像液の成分濃度の測定は、アルカリ性現像液のアルカリ成分の濃度(以下、「アルカリ成分濃度」という。)と導電率との間に良好な直線関係が得られることを利用したものであった(例えば、特許文献1)。 The conventional measurement of the component concentration of an alkaline developer utilizes the fact that a good linear relationship can be obtained between the concentration of the alkaline component of the alkaline developer (hereinafter referred to as “alkali component concentration”) and the conductivity. (For example, Patent Document 1).

しかしながら、近年、現像処理により、アルカリ性現像液が空気に触れる機会が増え、アルカリ性現像液が空気中の二酸化炭素を吸収するため、アルカリ性現像液の二酸化炭素の吸収量が増えている。吸収された二酸化炭素濃度が高くなると、従来法による現像液管理では、所定の線幅加工が維持できないなどの問題が生じている。 However, in recent years, due to the development process, the alkaline developer has more opportunities to come into contact with air, and since the alkaline developer absorbs carbon dioxide in the air, the amount of carbon dioxide absorbed by the alkaline developer is increasing. When the absorbed carbon dioxide concentration becomes high, there is a problem in that the predetermined line width processing cannot be maintained in the conventional developer management.

この問題は、アルカリ性現像液中の現像活性を有するアルカリ成分が、二酸化炭素の吸収により、炭酸塩を生じる反応に消費されるために起こっている。また、アルカリ性現像液中の現像活性を有するアルカリ成分が、フォトレジストの溶解により、フォトレジスト塩を生じる反応によっても消費されるために起こっている。 This problem occurs because the alkaline component having a developing activity in the alkaline developing solution is consumed in the reaction to generate a carbonate by absorbing carbon dioxide. This is also because the alkaline component having a developing activity in the alkaline developing solution is consumed by the reaction of forming a photoresist salt by dissolving the photoresist.

このような問題点に対し、消費されて減少したアルカリ成分を補おうとする現像液管理が種々試みられている。これらの試みは、炭酸塩濃度を測定することにより、炭酸塩を生じる反応に消費されたアルカリ成分を、補充液により補って現像活性を有するアルカリ成分の濃度を一定化しようとするものである。フォトレジストの溶解により消費されたアルカリ成分についても同様である。これらは、炭酸塩やフォトレジスト塩となったアルカリ成分は、現像活性を失って失活している、との観点に立つものである(例えば、特許文献2)。 To solve such problems, various attempts have been made to manage the developing solution so as to compensate the consumed and reduced alkaline component. In these attempts, the concentration of the alkaline component having a developing activity is made constant by measuring the carbonate concentration to supplement the alkaline component consumed in the reaction for producing the carbonate with a replenishing solution. The same applies to the alkaline component consumed by the dissolution of the photoresist. These are based on the viewpoint that the alkaline component which has become a carbonate or a photoresist salt loses the developing activity and is deactivated (for example, Patent Document 2).

特許第2561578号公報Japanese Patent No. 2561578 特開2008−283162号公報JP, 2008-283162, A

しかしながら、このような種々の現像液管理の試みによっても、依然として、満足のいく現像液管理を実現することが難しかった。 However, it is still difficult to realize satisfactory developer control even by such various attempts of developer control.

本発明者が、現像液管理について鋭意研究したところ、炭酸塩やレジスト塩も現像液中で一部が遊離して現像作用に寄与すること、および、失活すると思われていたこれらの成分からの現像作用への寄与をも併せて考慮した現像液管理が現像液の導電率値を管理することによって実現できること、さらに、このような導電率の管理値は吸収二酸化炭素濃度及び溶解フォトレジスト濃度により様々に異なっていること、の知見を得た。 The present inventor has conducted diligent research on developing solution management. As a result, carbonates and resist salts are partially released in the developing solution to contribute to the developing action, and from these components which are considered to be deactivated. The developer management that also considers the contribution of the developer to the developing action can be realized by controlling the conductivity value of the developer, and further, such conductivity control value is the absorbed carbon dioxide concentration and the dissolved photoresist concentration. It was found that there are various differences.

これは、炭酸塩やフォトレジスト塩となったアルカリ成分は失活したのではなく、一部が遊離して現像作用に寄与すること、そして、現像活性を有するアルカリ成分や炭酸塩及びレジスト塩から遊離して現像作用に寄与する成分がいずれも導電率に作用すること、に基づくものと思われる。すなわち、現像作用を有する成分の総体が、現像液の導電率値により管理することにより最適に管理されることを、発明者が見出し、本発明に至った。 This is because the alkali component that has become a carbonate or photoresist salt is not deactivated, but a part of it is released and contributes to the developing action. It is believed that this is based on the fact that all the components that are released and contribute to the developing action act on the conductivity. That is, the present inventors have found that the total amount of components having a developing action is optimally controlled by controlling the conductivity value of the developer, and the present invention has been completed.

本発明は、上記の課題を解決すべくなされたもので、フォトレジストに対して所定の現像性能を達成することができる現像液管理装置を提供することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a developing solution management apparatus capable of achieving a predetermined developing performance for a photoresist.

前記目的を達成するために、本発明の現像液管理装置は、繰り返し使用される、アルカリ性を示す現像液の溶解フォトレジスト濃度及び吸収二酸化炭素濃度を指標として特定される濃度領域ごとに所定の現像性能となることが予め確認された前記現像液の導電率値を有する導電率データが格納されているデータ記憶部と、前記現像液の溶解フォトレジスト濃度の測定値及び吸収二酸化炭素濃度の測定値により特定される濃度領域の前記データ記憶部に格納された前記導電率値を制御目標値として、前記現像液の導電率が前記制御目標値となるように、前記現像液に補給される補充液を送液する管路に設けられた制御弁に制御信号を発する制御部と、を備えた制御手段と、前記現像液の導電率値、アルカリ成分濃度値、溶解フォトレジスト濃度値及び吸収二酸化炭素濃度値のうち少なくとも導電率値及びアルカリ成分濃度値のうちのいずれか一方を表示する表示手段と、を備える。 In order to achieve the above-mentioned object, the developing solution management apparatus of the present invention has a predetermined development for each concentration region specified repeatedly by using dissolved photoresist concentration and absorbed carbon dioxide concentration of a developer exhibiting alkalinity as an index. A data storage unit in which conductivity data having the conductivity value of the developer, which has been confirmed in advance as performance, is stored, and a measured value of the dissolved photoresist concentration of the developer and a measured value of the absorbed carbon dioxide concentration. A replenisher solution replenished to the developing solution so that the conductivity of the developing solution becomes the control target value, with the conductivity value stored in the data storage section of the concentration region specified by A control unit for issuing a control signal to a control valve provided in a conduit for feeding the liquid, conductivity value of the developer, alkali component concentration value, dissolved photoresist concentration value and absorbed carbon dioxide. A display unit for displaying at least one of the conductivity value and the alkali component concentration value among the concentration values.

本発明の現像液管理装置は前記表示手段に表示される表示対象を切り替える表示切替手段、をさらに備えることが好ましい。 It is preferable that the developing solution management apparatus of the present invention further includes display switching means for switching a display target displayed on the display means.

本発明の現像液管理装置は、繰り返し使用される、アルカリ性を示す現像液の溶解フォトレジスト濃度及び吸収二酸化炭素濃度を指標として特定される濃度領域ごとに所定の現像性能となることが予め確認された前記現像液の導電率値を有する導電率データが格納されているデータ記憶部と、前記現像液の溶解フォトレジスト濃度の測定値及び吸収二酸化炭素濃度の測定値により特定される濃度領域の前記データ記憶部に格納された前記導電率値を制御目標値として、前記現像液の導電率が前記制御目標値となるように、前記現像液に補給される補充液を送液する管路に設けられた制御弁に制御信号を発する制御部と、を備えた制御手段と、前記現像液の導電率値、アルカリ成分濃度値、溶解フォトレジスト濃度値及び吸収二酸化炭素濃度値のうち少なくとも導電率値及びアルカリ成分濃度値のうちのいずれか一方を、測定時刻又は測定開始からの経過時間を指標にしてグラフ表示する表示手段と、を備える。 It is confirmed in advance that the developer management device of the present invention has a predetermined developing performance for each concentration range specified repeatedly by using the dissolved photoresist concentration and the absorbed carbon dioxide concentration of a developer exhibiting alkalinity as an index. And a data storage unit in which conductivity data having a conductivity value of the developer is stored, and a concentration region specified by the measured value of the dissolved photoresist concentration of the developer and the measured value of the absorbed carbon dioxide concentration. The conductivity value stored in the data storage unit is used as a control target value, and is provided in a conduit for feeding a replenisher solution to the developer so that the conductivity of the developer becomes the control target value. At least a conductivity value of the developer, a conductivity value of the developer, an alkali component concentration value, a dissolved photoresist concentration value, and an absorbed carbon dioxide concentration value. And a display unit for displaying one of the alkaline component concentration values as a graph using the measurement time or the elapsed time from the start of the measurement as an index.

本発明の現像液管理装置は前記表示手段に表示される表示対象を切り替える表示切替手段、をさらに備えることが好ましい。 It is preferable that the developing solution management apparatus of the present invention further includes display switching means for switching a display target displayed on the display means.

本発明の現像液管理装置によれば、現像液がどのような溶解フォトレジスト濃度及び吸収二酸化炭素濃度となろうとも、現像液中の現像作用に活性を有する成分が一定に維持されるので、所望の現像性能を維持でき、所望の線幅及び残膜厚を維持できる現像処理を実現できる。また、各種データ、及びグラフを表示することができる。 According to the developer management apparatus of the present invention, no matter what the dissolved photoresist concentration and absorbed carbon dioxide concentration of the developer is, the components active in the developing action in the developer are kept constant, A desired development performance can be maintained, and a development process capable of maintaining a desired line width and remaining film thickness can be realized. Also, various data and graphs can be displayed.

本発明の現像液管理装置の好ましい態様によれば、前記現像液の溶解フォトレジスト濃度と相関のある前記現像液の特性値と前記現像液の吸収二酸化炭素濃度と相関のある前記現像液の特性値とを含む前記現像液の複数の特性値を測定する複数の測定装置、をさらに備え、前記制御手段が、さらに、前記複数の測定装置により測定された前記現像液の複数の特性値から、多変量解析法により、前記現像液の溶解フォトレジスト濃度の測定値及び吸収二酸化炭素濃度の測定値を算出する演算部、を備える。 According to a preferred aspect of the developing solution management apparatus of the present invention, the characteristic value of the developing solution correlated with the dissolved photoresist concentration of the developing solution and the characteristic of the developing solution correlated with the absorbed carbon dioxide concentration of the developing solution. Further comprising a plurality of measuring devices for measuring a plurality of characteristic values of the developing solution including a value, the control means, further, from a plurality of characteristic values of the developing solution measured by the plurality of measuring devices, An arithmetic unit for calculating a measured value of the dissolved photoresist concentration of the developer and a measured value of the absorbed carbon dioxide concentration by a multivariate analysis method.

本発明の現像液管理装置の好ましい態様によれば、前記現像液の溶解フォトレジスト濃度と相関のある前記現像液の特性値と前記現像液の吸収二酸化炭素濃度と相関のある前記現像液の特性値とを含む前記現像液の複数の特性値を測定する複数の測定装置と、前記複数の測定装置により測定された前記現像液の複数の特性値から、多変量解析法を用いて、前記現像液の溶解フォトレジスト濃度の測定値及び吸収二酸化炭素濃度の測定値を算出する演算手段と、をさらに備える。 According to a preferred aspect of the developing solution management apparatus of the present invention, the characteristic value of the developing solution correlated with the dissolved photoresist concentration of the developing solution and the characteristic of the developing solution correlated with the absorbed carbon dioxide concentration of the developing solution. A plurality of measuring devices for measuring a plurality of characteristic values of the developing solution including a value and a plurality of characteristic values of the developing solution measured by the plurality of measuring devices, using a multivariate analysis method, the developing And a calculation means for calculating the measured value of the dissolved photoresist concentration of the liquid and the measured value of the absorbed carbon dioxide concentration.

本発明の現像液管理装置の好ましい態様によれば、密度計を備え、前記制御手段が、さらに、前記現像液の吸収二酸化炭素濃度と密度との間の対応関係に基づいて前記密度計により測定された前記現像液の密度値から前記現像液の吸収二酸化炭素濃度値を算出する演算部、を備える。 According to a preferred aspect of the developer management apparatus of the present invention, a density meter is provided, and the control means further measures with the density meter based on the correspondence relationship between the absorbed carbon dioxide concentration of the developer and the density. An arithmetic unit for calculating an absorbed carbon dioxide concentration value of the developing solution from the density value of the developed solution.

本発明の現像液管理装置の好ましい態様によれば、密度計と、前記現像液の吸収二酸化炭素濃度と密度との間の対応関係に基づいて前記密度計により測定された前記現像液の密度値から前記現像液の吸収二酸化炭素濃度値を算出する演算手段と、をさらに備える。 According to a preferred embodiment of the developer management apparatus of the present invention, the density value of the developer measured by the density meter based on the correspondence between the density meter and the absorbed carbon dioxide concentration and density of the developer. And a calculating means for calculating the absorbed carbon dioxide concentration value of the developer.

本発明の現像液管理装置によれば、繰り返し使用される、アルカリ性を示す現像液の溶解フォトレジスト濃度と相関のある吸光度及び吸収二酸化炭素濃度を指標として特定される濃度領域ごとに所定の現像性能となることが予め確認された前記現像液のアルカリ成分濃度値を有するアルカリ成分濃度データが格納されているデータ記憶部と、前記現像液の吸光度及び吸収二酸化炭素濃度の測定値により特定される濃度領域の前記データ記憶部に格納された前記アルカリ成分濃度値を制御目標値として、前記現像液のアルカリ成分濃度が前記制御目標値となるように前記現像液に補給される補充液を送液する管路に設けられた制御弁に制御信号を発する制御部と、を備えた制御手段と、前記現像液のアルカリ成分濃度値、溶解フォトレジスト濃度と相関のある吸光度値、及び、吸収二酸化炭素濃度値のうち少なくとも前記アルカリ成分濃度値を表示する表示手段と、を備える。 According to the developer management apparatus of the present invention, the predetermined development performance is repeatedly used for each concentration region specified by the absorbance and the absorbed carbon dioxide concentration, which are correlated with the dissolved photoresist concentration of the alkaline developer. A data storage unit in which alkaline component concentration data having an alkaline component concentration value of the developer which has been confirmed to be stored is stored, and a concentration specified by the measured value of the absorbance and absorbed carbon dioxide concentration of the developer. Using the alkali component concentration value stored in the area data storage unit as a control target value, a replenisher solution to be replenished to the developer solution is fed so that the alkali component concentration of the developer solution reaches the control target value. A control unit that includes a control unit that issues a control signal to a control valve provided in the pipeline, an alkali component concentration value of the developer, an absorbance value that is correlated with the dissolved photoresist concentration, and an absorbed carbon dioxide concentration. Display means for displaying at least the alkali component concentration value among the values.

本発明の現像液管理装置によれば、繰り返し使用される、アルカリ性を示す現像液の溶解フォトレジスト濃度と相関のある吸光度及び吸収二酸化炭素濃度を指標として特定される濃度領域ごとに所定の現像性能となることが予め確認された前記現像液のアルカリ成分濃度値を有するアルカリ成分濃度データが格納されているデータ記憶部と、前記現像液の吸光度及び吸収二酸化炭素濃度の測定値により特定される濃度領域の前記データ記憶部に格納された前記アルカリ成分濃度値を制御目標値として、前記現像液のアルカリ成分濃度が前記制御目標値となるように前記現像液に補給される補充液を送液する管路に設けられた制御弁に制御信号を発する制御部と、を備えた制御手段と、前記現像液のアルカリ成分濃度値、溶解フォトレジスト濃度と相関のある吸光度値、及び、吸収二酸化炭素濃度値のうち少なくとも前記アルカリ成分濃度値を、測定時間又は測定開始からの経過時間を指標としてグラフ表示する表示手段と、を備える。 According to the developer management apparatus of the present invention, the predetermined development performance is repeatedly used for each concentration region specified by the absorbance and the absorbed carbon dioxide concentration, which are correlated with the dissolved photoresist concentration of the alkaline developer. A data storage unit in which alkaline component concentration data having an alkaline component concentration value of the developer which has been confirmed to be stored is stored, and a concentration specified by the measured value of the absorbance and absorbed carbon dioxide concentration of the developer. Using the alkali component concentration value stored in the area data storage unit as a control target value, a replenisher solution to be replenished to the developer solution is fed so that the alkali component concentration of the developer solution reaches the control target value. A control unit that includes a control unit that issues a control signal to a control valve provided in the pipeline, an alkali component concentration value of the developer, an absorbance value that is correlated with the dissolved photoresist concentration, and an absorbed carbon dioxide concentration. At least the alkaline component concentration value among the values is displayed as a graph using the measurement time or the elapsed time from the start of measurement as an index.

本発明の現像液管理装置によれば、前記表示手段に表示される表示対象を切り替える表示切替手段、をさらに備えることが好ましい。 According to the developing solution management apparatus of the present invention, it is preferable that the developer management apparatus further includes a display switching unit that switches a display target displayed on the display unit.

本発明によれば、現像液がどのような溶解フォトレジスト濃度及び吸収二酸化炭素濃度となろうとも、現像液中の現像作用に活性を有する成分が一定に維持されるので、所望の現像性能を維持でき、所望の線幅及び残膜厚を維持できる現像処理を実現できる。また、各種データ、及びグラフを表示することができる。 According to the present invention, no matter what the concentration of dissolved photoresist and the concentration of absorbed carbon dioxide in the developer, the components active in the developing action in the developer are maintained constant, so that the desired developing performance can be obtained. A development process that can maintain the desired line width and residual film thickness can be realized. Also, various data and graphs can be displayed.

第一実施形態の現像液管理装置を説明するための現像工程の模式図である。It is a schematic diagram of the developing process for explaining the developing solution management apparatus of the first embodiment. 第二実施形態の現像液管理装置を説明するための現像工程の模式図である。It is a schematic diagram of the developing process for explaining the developing solution management apparatus of the second embodiment. 第三実施形態の現像液管理装置を説明するための現像工程の模式図である。It is a schematic diagram of the developing process for explaining the developing solution management apparatus of the third embodiment. 第四実施形態の現像液管理装置を説明するための現像工程の模式図である。It is a schematic diagram of the developing process for explaining the developing solution management apparatus of the fourth embodiment. 現像液の吸収二酸化炭素濃度と密度との関係を示すグラフである。6 is a graph showing the relationship between the absorbed carbon dioxide concentration of a developer and the density. 第五実施形態の現像液管理装置を説明するための現像工程の模式図である。It is a schematic diagram of the developing process for explaining the developing solution management apparatus of the fifth embodiment. 第六実施形態の現像液管理装置を説明するための現像工程の模式図である。It is a schematic diagram of the developing process for explaining the developing solution management apparatus of the sixth embodiment.

以下、適宜図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。ただし、これらの実施の形態に記載されている装置等の形状、大きさ、寸法比、その相対配置などは、とくに特定的な記載がない限り、本発明の範囲を図示されているもののみに限定するものではない。単なる説明例として、模式的に図示しているに過ぎない。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings as appropriate. However, the shapes, sizes, dimensional ratios, relative arrangements, etc. of the devices and the like described in these embodiments are limited to those shown in the scope of the present invention unless otherwise specified. It is not limited. It is only schematically shown as an example of explanation.

また、以下の説明では、現像液の具体例として、半導体や液晶パネル基板の製造工程で主に使われる2.38%テトラメチルアンモニウムハイドロオキサイド水溶液(以下、テトラメチルアンモニウムハイドロオキサイドをTMAHという。)を、適宜用いて説明する。ただし、本発明が適用される現像液はこれに限定されるものではない。本発明の現像液の管理方法や装置が適用できる他の現像液の例として、水酸化カリウム、水酸化ナトリウム、リン酸ナトリウム、ケイ酸ナトリウムなどの無機化合物の水溶液や、トリメチルモノエタノールアンモニウムハイドロオキサイド(コリン)などの有機化合物の水溶液を挙げることができる。 Further, in the following description, as a specific example of the developer, a 2.38% tetramethylammonium hydroxide aqueous solution (hereinafter, tetramethylammonium hydroxide is referred to as TMAH) mainly used in the manufacturing process of semiconductors and liquid crystal panel substrates. Will be described as appropriate. However, the developer to which the present invention is applied is not limited to this. Examples of other developing solutions to which the developing solution management method and apparatus of the present invention can be applied include aqueous solutions of inorganic compounds such as potassium hydroxide, sodium hydroxide, sodium phosphate, and sodium silicate, and trimethylmonoethanol ammonium hydroxide. Examples thereof include aqueous solutions of organic compounds such as (choline).

以下の説明では、アルカリ成分濃度、溶解フォトレジスト濃度、吸収二酸化炭素濃度などの成分濃度は、重量百分率濃度(wt%)による濃度である。「溶解フォトレジスト濃度」とは、溶解したフォトレジストをフォトレジストの量として換算した場合の濃度をいい、「吸収二酸化炭素濃度」とは、吸収された二酸化炭素を二酸化炭素の量として換算した場合の濃度をいうものとする。 In the following description, the concentration of components such as the concentration of alkali components, the concentration of dissolved photoresist, the concentration of absorbed carbon dioxide, etc. is the concentration by weight percentage (wt %). "Dissolved photoresist concentration" means the concentration when the dissolved photoresist is converted as the amount of photoresist, and "absorbed carbon dioxide concentration" is when the absorbed carbon dioxide is converted as the amount of carbon dioxide. It means the concentration of.

現像処理プロセスでは、現像液が露光処理後のフォトレジスト膜の不要部分を溶かすことにより、現像が行われる。現像液に溶解したフォトレジストは、現像液のアルカリ成分との間にフォトレジスト塩を生じる。このため、現像液を適切に管理していなければ、現像処理が進行するにつれて、現像液は現像活性を有するアルカリ成分が消費されて劣化し、現像性能が悪化していく。同時に、現像液中には溶解したフォトレジストがアルカリ成分とのフォトレジスト塩として蓄積されていく。 In the development process, development is performed by the developer dissolving unnecessary portions of the photoresist film after the exposure process. The photoresist dissolved in the developing solution forms a photoresist salt with the alkaline component of the developing solution. For this reason, unless the developer is properly managed, as the development process proceeds, the alkaline component having a developing activity is consumed and deteriorates, and the developing performance deteriorates. At the same time, the dissolved photoresist is accumulated in the developer as a photoresist salt with an alkaline component.

現像液に溶解したフォトレジストは、現像液中で界面活性作用を示す。このため、現像液に溶解したフォトレジストは、現像処理に供されるフォトレジスト膜の現像液に対するぬれ性を高め、現像液とフォトレジスト膜とのなじみを良くする。したがって、適度にフォトレジストを含む現像液では、現像液がフォトレジスト膜の微細な凹部内にもよく行き渡るようになり、微細な凹凸を有するフォトレジスト膜の現像処理を良好に実施できる。 The photoresist dissolved in the developing solution exhibits a surface-active effect in the developing solution. Therefore, the photoresist dissolved in the developing solution enhances the wettability of the photoresist film to be subjected to the developing treatment with respect to the developing solution, and improves the compatibility between the developing solution and the photoresist film. Therefore, with a developer containing an appropriate amount of photoresist, the developer is well distributed in the fine recesses of the photoresist film, and the photoresist film having fine irregularities can be well developed.

また、近年の現像処理では、基板が大型化したことに伴い、大量の現像液が繰り返し使用されるようになったため、現像液が空気に曝される機会が増えている。ところが、アルカリ性現像液は、空気に曝されると空気中の二酸化炭素を吸収する。吸収された二酸化炭素は、現像液のアルカリ成分との間に炭酸塩を生じる。このため、現像液を適切に管理していなければ、現像液は現像活性を有するアルカリ成分が吸収された二酸化炭素により消費され減少する。同時に、現像液中には吸収された二酸化炭素がアルカリ成分との炭酸塩として蓄積されていく。 Further, in recent development processing, a large amount of developing solution has been repeatedly used with the increase in the size of the substrate, so that the developing solution is increasingly exposed to air. However, the alkaline developer absorbs carbon dioxide in the air when exposed to the air. The absorbed carbon dioxide forms a carbonate with the alkaline component of the developer. For this reason, unless the developer is properly managed, the developer is consumed by the carbon dioxide in which the alkaline component having the developing activity is absorbed and decreases. At the same time, the absorbed carbon dioxide accumulates in the developer as a carbonate with the alkaline component.

しかしながら、現像液中の炭酸塩は、現像液中でアルカリ性を示すため、現像作用を有している。 However, the carbonate in the developer has a developing action because it exhibits alkalinity in the developer.

このように、現像液に溶解されたフォトレジストや吸収された二酸化炭素が、現像処理の現像活性を失活させるとする従来の認識とは異なり、実際には現像液の現像性能に寄与している。そのため、溶解フォトレジストや吸収二酸化炭素を完全に排除するような現像液管理をするのではなく、現像液中に溶解フォトレジストや吸収二酸化炭素を溶存することを許容しつつ、これらを最適な濃度に維持管理する現像液管理が必要である。 Thus, unlike the conventional recognition that the photoresist dissolved in the developing solution and the absorbed carbon dioxide deactivate the developing activity of the developing process, actually, it contributes to the developing performance of the developing solution. There is. Therefore, instead of managing the developing solution to completely eliminate dissolved photoresist and absorbed carbon dioxide, allow the dissolved photoresist and absorbed carbon dioxide to be dissolved in the developing solution, while maintaining the optimum concentration of these. It is necessary to manage the developer to maintain it.

また、現像液中に生じたフォトレジスト塩や炭酸塩は、その一部が解離して、フォトレジストイオンや炭酸イオン、炭酸水素イオンなど、多様な遊離イオンを生じる。そして、これらの遊離イオンは、現像液の導電率に様々な寄与率で影響を及ぼしている。 Further, a part of the photoresist salt or carbonate generated in the developing solution is dissociated to generate various free ions such as photoresist ion, carbonate ion, hydrogen carbonate ion. Then, these free ions influence the conductivity of the developer with various contribution rates.

これらの点につき、本発明者が、現像液管理について鋭意研究したところ、炭酸塩やレジスト塩も現像液中で一部が遊離して現像作用に寄与すること、および、失活すると思われていたこれらの成分からの現像作用への寄与をも併せて考慮した現像液管理が現像液の導電率値を管理することによって実現できること、さらに、このような導電率の管理値は吸収二酸化炭素濃度及び溶解フォトレジスト濃度により様々に異なっていること、の知見を得た。 With respect to these points, the present inventor has diligently studied the management of the developing solution, and it is considered that carbonate and resist salt are partially released in the developing solution to contribute to the developing action, and deactivate. In addition, it is possible to realize a developer control that also considers the contribution of these components to the developing action by controlling the conductivity value of the developer, and further, such a control value of the conductivity is the absorbed carbon dioxide concentration. And, it was found that there are various differences depending on the concentration of the dissolved photoresist.

そこで発明者は、現像液としてTMAH水溶液の管理を行う場合を想定して、溶解フォトレジスト濃度、吸収二酸化炭素濃度を様々に変化させて、フォトレジストに対する所望の現像性能と、現像液の導電率値との関係を求めた。 Therefore, assuming that the TMAH aqueous solution is managed as the developing solution, the inventor changes the dissolved photoresist concentration and the absorbed carbon dioxide concentration variously to obtain a desired developing performance for the photoresist and the conductivity of the developing solution. The relationship with the value was calculated.

吸収二酸化炭素濃度を0.0〜1.3(wt%)の間で変化させ、溶解フォトレジスト濃度を0.0〜0.40(wt%)(0.0〜1.3(abs)相当)の間で変化させたTMAH水溶液の現像液のサンプルを調製した。発明者は、これらのサンプルについて、現像液の導電率、吸収二酸化炭素濃度、および、溶解フォトレジスト濃度を測定し、現像性能、導電率、吸収二酸化炭素濃度、および、溶解フォトレジスト濃度成分との相関を確かめる実験を行った。吸収二酸化炭素濃度を一つの項目とし縦又は横に配列し、溶解フォトレジスト濃度を他の項目とし、横又は縦に配列したマトリックス(組み合わせ表)を作成した。吸収二酸化炭素濃度と溶解フォトレジスト濃度との組み合わせ毎に、フォトレジストに対する所望の現像性能を満足する、現像液の導電率を求め、各欄に記入し、マトリックスを完成させた。 The absorbed carbon dioxide concentration is changed between 0.0 and 1.3 (wt%), and the dissolved photoresist concentration is 0.0 to 0.40 (wt%) (equivalent to 0.0 to 1.3 (abs)). Samples of the developing solution of the TMAH aqueous solution which was changed between the above steps were prepared. The inventors measured the conductivity of the developer, the absorbed carbon dioxide concentration, and the dissolved photoresist concentration for these samples, and evaluated the development performance, the conductivity, the absorbed carbon dioxide concentration, and the dissolved photoresist concentration component. An experiment was conducted to confirm the correlation. A matrix (combination table) was prepared in which the absorbed carbon dioxide concentration was set as one item and arranged vertically or horizontally and the dissolved photoresist concentration was set as another item and horizontally or vertically arranged. For each combination of the absorbed carbon dioxide concentration and the dissolved photoresist concentration, the conductivity of the developer that satisfies the desired developing performance for the photoresist was determined, filled in each column, and the matrix was completed.

ここで、所定の現像性能とは、現像工程で実現しようとしている線幅や残膜厚が実現されるときの現像液の現像性能を意味する。 Here, the predetermined developing performance means the developing performance of the developing solution when the line width and the remaining film thickness that are to be realized in the developing process are realized.

代表的な各サンプルの吸収二酸化炭素濃度、溶解フォトレジスト濃度、および、導電率の測定結果を例示する。吸収二酸化炭素濃度が0.0(wt%)で、溶解フォトレジスト濃度が0.0(wt%)(0.0(abs)相当)である場合(いわゆる新液)、所定の現像性能を発揮できる現像液の導電率は54.58(mS/cm)であった。 The measurement results of the absorbed carbon dioxide concentration, the dissolved photoresist concentration, and the conductivity of each representative sample are illustrated. When the absorbed carbon dioxide concentration is 0.0 (wt%) and the dissolved photoresist concentration is 0.0 (wt%) (equivalent to 0.0 (abs)) (so-called new solution), the predetermined development performance is exhibited. The conductivity of the resulting developer was 54.58 (mS/cm).

吸収二酸化炭素濃度が0.0(wt%)で、溶解フォトレジスト濃度が0.25(wt%)(0.8abs相当)である場合、所定の現像性能を発揮できる現像液の導電率は54.55(mS/cm)であり、溶解フォトレジスト濃度が0.40(wt%)(1.3abs相当)である場合、現像液の導電率は54.53(mS/cm)であった。 When the absorbed carbon dioxide concentration is 0.0 (wt%) and the dissolved photoresist concentration is 0.25 (wt%) (equivalent to 0.8 abs), the conductivity of the developer capable of exhibiting the predetermined developing performance is 54. When the dissolved photoresist concentration was 0.55 (mS/cm) and the dissolved photoresist concentration was 0.40 (wt%) (equivalent to 1.3 abs), the conductivity of the developer was 54.53 (mS/cm).

また、溶解フォトレジスト濃度が0.0(wt%)(0.0(abs)相当)で、吸収二酸化炭素濃度が0.6(wt%)である場合、現像液の導電率は54.60(mS/cm)であり、吸収二酸化炭素濃度が1.3(wt%)である場合、現像液の導電率は54.75(mS/cm)であった。 When the dissolved photoresist concentration is 0.0 (wt%) (corresponding to 0.0 (abs)) and the absorbed carbon dioxide concentration is 0.6 (wt%), the conductivity of the developer is 54.60. (MS/cm) and the absorbed carbon dioxide concentration was 1.3 (wt %), the conductivity of the developer was 54.75 (mS/cm).

また、吸収二酸化炭素濃度が0.6(wt%)で、溶解フォトレジスト濃度が0.22(wt%)(0.7abs相当)である場合、現像液の導電率は54.60(mS/cm)であり、溶解フォトレジスト濃度が0.40(wt%)(1.3abs相当)である場合、現像液の導電率は54.58(mS/cm)であった。 When the absorbed carbon dioxide concentration is 0.6 (wt%) and the dissolved photoresist concentration is 0.22 (wt%) (corresponding to 0.7 abs), the conductivity of the developer is 54.60 (mS/mS/ cm) and the dissolved photoresist concentration was 0.40 (wt %) (corresponding to 1.3 abs), the conductivity of the developing solution was 54.58 (mS/cm).

また、吸収二酸化炭素濃度が1.3(wt%)で、溶解フォトレジスト濃度が0.22(wt%)(0.7abs相当)である場合、現像液の導電率は54.75(mS/cm)であり、溶解フォトレジスト濃度が0.40(wt%)(1.3abs相当)である場合、現像液の導電率は54.75(mS/cm)であった。 When the absorbed carbon dioxide concentration is 1.3 (wt%) and the dissolved photoresist concentration is 0.22 (wt%) (corresponding to 0.7 abs), the conductivity of the developer is 54.75 (mS/mS/m). cm) and the dissolved photoresist concentration was 0.40 (wt %) (corresponding to 1.3 abs), the conductivity of the developer was 54.75 (mS/cm).

なお、上述の実験においては、ある濃度領域において、吸収二酸化炭素濃度が大きくなると、導電率の管理値が大きくなる傾向にあり、溶解フォトレジスト濃度が大きくなると、導電率の管理値が小さくなる傾向が見られた。 In the experiment described above, in a certain concentration range, when the absorbed carbon dioxide concentration increases, the control value of the conductivity tends to increase, and when the dissolved photoresist concentration increases, the control value of the conductivity tends to decrease. It was observed.

上述の実験では、各サンプルの現像液の導電率は導電率計により測定した値を用いた。吸収二酸化炭素濃度は滴定分析法によりを測定した値を用いた。溶解フォトレジスト濃度は重量調製値を用いた。滴定は、塩酸を滴定試薬とする中和滴定である。滴定装置として、三菱化学アナリテック社製の自動滴定装置GT−200を使用した。 In the above experiment, the conductivity of the developer of each sample was a value measured by a conductivity meter. As the absorbed carbon dioxide concentration, the value measured by the titration analysis method was used. The dissolved photoresist concentration used was a weight adjusted value. The titration is a neutralization titration using hydrochloric acid as a titration reagent. As a titrator, an automatic titrator GT-200 manufactured by Mitsubishi Chemical Analytech Co. was used.

なお、上述の導電率、吸収二酸化炭素濃度、及び溶解フォトレジスト濃度は、導電率、吸収二酸化炭素濃度、及び溶解フォトレジスト濃度と現像性能との関係性を見出すためであり、各数値に限定されない。 The conductivity, the absorbed carbon dioxide concentration, and the dissolved photoresist concentration are for finding the relationship between the conductivity, the absorbed carbon dioxide concentration, and the dissolved photoresist concentration and the developing performance, and are not limited to each numerical value. ..

上述したように、現像性能を発揮できる導電率は、吸収二酸化炭素濃度及び溶解フォトレジスト濃度により様々に異なっていることが理解できる。このように、現像液の管理において、吸収二酸化炭素、及び溶解フォトレジストを含む現像液では、導電率を管理値とし、さらに吸収二酸化炭素濃度、及び溶解フォトレジスト濃度を測定し、各測定結果に基づいて導電率の管理値を異ならせることにより、所定の現像性能を発揮させることができる。 As described above, it can be understood that the conductivity capable of exerting the developing performance varies variously depending on the absorbed carbon dioxide concentration and the dissolved photoresist concentration. Thus, in the management of the developer, in the developer containing the absorbed carbon dioxide and the dissolved photoresist, the conductivity is used as the control value, and the absorbed carbon dioxide concentration and the dissolved photoresist concentration are measured, and each measurement result is Based on the difference in the control value of the electric conductivity, a predetermined developing performance can be exhibited.

つまり、現像液の溶解フォトレジスト濃度、及び吸収二酸化炭素濃度を指標として特定される濃度領域ごとに、所定の現像性能となることが予め確認された現像液の導電率値を有する導電率データ(マトリックス)を記憶し、導電率データ(マトリックス)を利用することで、所定の現像性能を発揮させることができる、現像液の管理が可能となる。 In other words, the conductivity data having the conductivity value of the developer, which has been confirmed in advance to have the predetermined developing performance, for each concentration region specified by using the dissolved photoresist concentration of the developer and the absorbed carbon dioxide concentration as an index ( By storing the matrix) and using the conductivity data (matrix), it is possible to manage the developer capable of exhibiting a predetermined developing performance.

また、発明者が、現像液管理について鋭意研究したところ、炭酸塩やレジスト塩も現像液中で一部が遊離して現像作用に寄与すること、および、失活すると思われていたこれらの成分からの現像作用への寄与をも併せて考慮した現像液管理が現像液のアルカリ成分濃度値を管理することによって実現できること、さらに、このようなアルカリ成分濃度の管理値は吸収二酸化炭素濃度及び溶解フォトレジスト濃度と相関関係のある吸光度により様々に異なっていること、の知見を得た。 In addition, when the inventor diligently studied the management of the developing solution, it was considered that carbonate and resist salt were partially released in the developing solution to contribute to the developing action, and that these components were considered to be deactivated. The developer management that also considers the contribution to the developing action from the developer can be realized by controlling the alkali component concentration value of the developer. It was found that there are various differences depending on the absorbance that is correlated with the photoresist concentration.

そこで発明者は、現像液としてTMAH水溶液の管理を行う場合を想定して、アルカリ性を示す現像液の導電率に基づいて測定されるアルカリ成分濃度と、現像液の溶解フォトレジスト濃度と相関関係のある吸光度と、現像液の吸収二酸化炭素濃度を様々に変化させて、フォトレジストに対する所望の現像性能と、現像液のアルカリ成分濃度との関係を求めた。 Therefore, assuming that a TMAH aqueous solution is managed as the developing solution, the inventor has a correlation between the concentration of the alkaline component measured based on the conductivity of the developing solution exhibiting alkalinity and the concentration of the dissolved photoresist of the developing solution. By varying the absorbance and the absorbed carbon dioxide concentration of the developer variously, the relationship between the desired developing performance for the photoresist and the concentration of the alkaline component of the developer was obtained.

吸収二酸化炭素濃度を0.0〜1.3(wt%)の間で変化させ、溶解フォトレジスト濃度と相関関係のある吸光度を0.0〜1.3(abs)の間で変化させたTMAH水溶液の現像液のサンプルを調製した。発明者は、これらのサンプルについて、現像液のアルカリ成分濃度、吸収二酸化炭素濃度、および、吸光度を測定し、現像性能、アルカリ成分濃度、吸収二酸化炭素濃度、および、吸光度との相関を確かめる実験を行った。吸収二酸化炭素濃度を一つの項目とし縦又は横に配列し、吸光度を他の項目とし、横又は縦に配列したマトリックス(組み合わせ表)を作成した。吸収二酸化炭素濃度と吸光度との組み合わせ毎に、フォトレジストに対する所望の現像性能を満足する、現像液のアルカリ成分濃度を求め、各欄に記入し、マトリックスを完成させた。 Absorbed carbon dioxide concentration was changed between 0.0 and 1.3 (wt %), and absorbance that correlates with dissolved photoresist concentration was changed between 0.0 and 1.3 (abs). An aqueous developer solution sample was prepared. The inventors measured the alkali component concentration, the absorbed carbon dioxide concentration, and the absorbance of the developer for these samples, and conducted an experiment to confirm the correlation with the development performance, the alkali component concentration, the absorbed carbon dioxide concentration, and the absorbance. went. A matrix (combination table) was prepared in which the absorbed carbon dioxide concentration was set as one item and arranged vertically or horizontally, and the absorbance was set as another item and horizontally or vertically arranged. For each combination of the absorbed carbon dioxide concentration and the absorbance, the concentration of the alkaline component of the developing solution that satisfies the desired developing performance for the photoresist was determined, entered in each column, and the matrix was completed.

ここで、所定の現像性能とは、現像工程で実現しようとしている線幅や残膜厚が実現されるときの現像液の現像性能を意味する。 Here, the predetermined developing performance means the developing performance of the developing solution when the line width and the remaining film thickness that are to be realized in the developing process are realized.

代表的な各サンプルの吸収二酸化炭素濃度、吸光度、および、アルカリ成分濃度の測定結果を例示する。吸収二酸化炭素濃度が0.0(wt%)で、吸光度が0.0(abs)である場合(いわゆる新液)、所定の現像性能を発揮できる現像液のアルカリ成分濃度は2.380(wt%)であった。 The measurement results of the absorption carbon dioxide concentration, the absorbance, and the alkali component concentration of each representative sample are illustrated. When the absorbed carbon dioxide concentration is 0.0 (wt%) and the absorbance is 0.0 (abs) (so-called new liquid), the alkaline component concentration of the developer capable of exhibiting a predetermined developing performance is 2.380 (wt). %)Met.

吸収二酸化炭素濃度が0.0(wt%)で、吸光度が0.8absである場合、所定の現像性能を発揮できる現像液のアルカリ成分濃度は2.379(wt%)であり、吸光度が1.3absである場合、現像液のアルカリ成分濃度は2.378(wt%)であった。 When the absorbed carbon dioxide concentration is 0.0 (wt%) and the absorbance is 0.8 abs, the alkaline component concentration of the developer capable of exhibiting the predetermined developing performance is 2.379 (wt%) and the absorbance is 1 In the case of 0.3 abs, the alkaline component concentration of the developing solution was 2.378 (wt %).

また、吸光度が0.0(abs)で、吸収二酸化炭素濃度が0.6(wt%)である場合、現像液のアルカリ成分濃度は2.381(wt%)であり、吸収二酸化炭素濃度が1.3(wt%)である場合、現像液のアルカリ成分濃度は2.388(wt%)であった。 When the absorbance is 0.0 (abs) and the absorbed carbon dioxide concentration is 0.6 (wt %), the alkaline component concentration of the developer is 2.381 (wt %) and the absorbed carbon dioxide concentration is When it was 1.3 (wt %), the alkaline component concentration of the developer was 2.388 (wt %).

また、吸収二酸化炭素濃度が0.6(wt%)で、吸光度が0.7absである場合、現像液のアルカリ成分濃度は2.381(wt%)であり、吸光度が1.3absである場合、現像液のアルカリ成分濃度は2.380(wt%)であった。 When the absorbed carbon dioxide concentration is 0.6 (wt%) and the absorbance is 0.7 abs, the alkaline component concentration of the developer is 2.381 (wt%) and the absorbance is 1.3 abs. The concentration of the alkaline component of the developing solution was 2.380 (wt %).

また、吸収二酸化炭素濃度が1.3(wt%)で、吸光度が0.7absである場合、現像液のアルカリ成分濃度は2.388(wt%)であり、吸光度が1.3absである場合、現像液のアルカリ成分濃度は2.388(wt%)であった。 When the absorbed carbon dioxide concentration is 1.3 (wt%) and the absorbance is 0.7 abs, the alkaline component concentration of the developer is 2.388 (wt%) and the absorbance is 1.3 abs. The concentration of the alkaline component in the developing solution was 2.388 (wt %).

なお、上述の実験においては、ある濃度領域において、吸収二酸化炭素濃度が大きくなると、アルカリ成分濃度の管理値が大きくなる傾向にあり、吸光度が大きくなると、アルカリ成分濃度の管理値が小さくなる傾向が見られた。 In the above experiment, in a certain concentration range, when the absorbed carbon dioxide concentration is increased, the control value of the alkali component concentration tends to increase, and when the absorbance increases, the control value of the alkali component concentration tends to decrease. I was seen.

上述の実験では、各サンプルの現像液のアルカリ成分濃度は、導電率計で導電率を測定することにより求めることができる。具体的には、TMAH水溶液の新液(現像前のTMAH水溶液)のアルカリ成分濃度と導電率値との相関関係(例えば直線関係)を予め検量線として作成しておく。この検量線に基づいて、導電率値からアルカリ成分濃度を求めることができる。 In the above experiment, the concentration of the alkaline component in the developer of each sample can be determined by measuring the conductivity with a conductivity meter. Specifically, a correlation (for example, a linear relationship) between the concentration of the alkali component of the new solution of the TMAH aqueous solution (TMAH aqueous solution before development) and the conductivity value is created as a calibration curve in advance. Based on this calibration curve, the alkali component concentration can be obtained from the conductivity value.

吸収二酸化炭素濃度は滴定分析法によりを測定した値を用いた。滴定は、塩酸を滴定試薬とする中和滴定である。滴定装置として、三菱化学アナリテック社製の自動滴定装置GT−200を使用した。吸光度の測定には吸光光度計を用いた。 As the absorbed carbon dioxide concentration, the value measured by the titration analysis method was used. The titration is a neutralization titration using hydrochloric acid as a titration reagent. As a titrator, an automatic titrator GT-200 manufactured by Mitsubishi Chemical Analytech Co. was used. An absorptiometer was used for measuring the absorbance.

なお、上述のアルカリ成分濃度、吸収二酸化炭素濃度、及び吸光度は、アルカリ成分濃度、吸収二酸化炭素濃度、及び吸光度と現像性能との関係性を見出すためであり、各数値に限定されない。 The above-mentioned alkali component concentration, absorbed carbon dioxide concentration, and absorbance are for finding the relationship between the alkali component concentration, absorbed carbon dioxide concentration, and absorbance and the developing performance, and are not limited to each numerical value.

上述したように、現像性能を発揮できるアルカリ成分濃度は、吸収二酸化炭素濃度、及び吸光度により様々に異なっていることが理解できる。このように、現像液の管理において、吸収二酸化炭素、及び溶解フォトレジストを含む現像液では、アルカリ成分濃度を現像液の管理値とし、さらに吸収二酸化炭素濃度、及び吸光度を測定し、各測定結果に基づいてアルカリ成分濃度の管理値を異ならせることにより、所定の現像性能を発揮させることができる。 As described above, it can be understood that the concentration of the alkaline component capable of exhibiting the developing performance varies depending on the concentration of absorbed carbon dioxide and the absorbance. Thus, in the management of the developer, in the developer containing the absorbed carbon dioxide and the dissolved photoresist, the alkali component concentration is used as the control value of the developer, and further the absorbed carbon dioxide concentration and the absorbance are measured, and the respective measurement results are obtained. By varying the control value of the concentration of the alkali component based on the above, a predetermined developing performance can be exhibited.

つまり、現像液の吸光度、及び吸収二酸化炭素濃度を指標として特定される濃度領域ごとに、所定の現像性能となることが予め確認された現像液のアルカリ成分濃度値を有するアルカリ成分濃度データ(マトリックス)を記憶し、アルカリ成分濃度データ(マトリックス)を利用することで、所定の現像性能を発揮させることができる。 That is, the alkali component concentration data (matrix concentration data) having the alkali component concentration value of the developer which has been confirmed in advance to have a predetermined developing performance for each concentration region specified using the absorbance of the developer and the absorbed carbon dioxide concentration as an index. ) Is stored and the alkaline component concentration data (matrix) is used, a predetermined developing performance can be exhibited.

次に、具体的な実施例について、図面を参照しながら説明する。 Next, specific examples will be described with reference to the drawings.

〔第一実施形態〕
図1は、本実施形態の現像液管理装置Dの説明をするための現像工程の模式図である。本発明の現像液管理装置Dが、現像工程設備A、補充液貯留部B、循環攪拌機構Cなどとともに図示されている。
[First embodiment]
FIG. 1 is a schematic diagram of a developing process for explaining the developing solution management apparatus D of this embodiment. A developing solution management device D of the present invention is illustrated together with a developing process facility A, a replenisher storage part B, a circulation stirring mechanism C, and the like.

まず、現像工程設備Aについて簡単に説明する。 First, the developing process equipment A will be briefly described.

現像工程設備Aは、主に、現像液貯留槽61、オーバーフロー槽62、現像室フード64、ローラーコンベア65、現像液シャワーノズル67などからなる。現像液貯留槽61には現像液が貯留されている。現像液は、補充液が補充されて組成管理される。現像液貯留槽61は、液面計63とオーバーフロー槽62とを備え、補充液を補給することによる液量の増加を管理している。現像液貯留槽61と現像液シャワーノズル67とは、現像液管路80により接続されている。現像液貯留槽61内に貯留された現像液が現像液管路80に設けられた循環ポンプ72によりフィルター73を介して現像液シャワーノズル67に送液される。ローラーコンベア65は、現像液貯留槽61の上方に備えられ、フォトレジスト膜の製膜された基板66を搬送する。現像液は現像液シャワーノズル67から滴下される。ローラーコンベア65により搬送される基板66は滴下される現像液の中を通過することで現像液に浸される。その後、現像液は、現像液貯留槽61に回収され、再び貯留される。このように、現像液は、現像工程で循環して繰り返し使用される。なお、小型のガラス基板における現像室内は、窒素ガスを充満させるなどにより、空気中の二酸化炭素を吸収しないような処理が施される場合もある。なお、劣化した現像液は廃液ポンプ71を作動することにより廃液(ドレン)される。 The developing process facility A mainly includes a developing solution storage tank 61, an overflow tank 62, a developing chamber hood 64, a roller conveyor 65, a developing solution shower nozzle 67, and the like. The developer is stored in the developer storage tank 61. The developer is replenished with a replenisher to control the composition. The developing solution storage tank 61 includes a liquid level gauge 63 and an overflow tank 62, and manages an increase in the amount of liquid due to replenishment of the replenisher. The developing solution storage tank 61 and the developing solution shower nozzle 67 are connected by a developing solution conduit 80. The developer stored in the developer storage tank 61 is sent to the developer shower nozzle 67 via the filter 73 by the circulation pump 72 provided in the developer conduit 80. The roller conveyor 65 is provided above the developer storage tank 61 and conveys the substrate 66 on which the photoresist film is formed. The developing solution is dropped from the developing solution shower nozzle 67. The substrate 66 conveyed by the roller conveyor 65 is immersed in the developing solution by passing through the dropped developing solution. Then, the developer is collected in the developer storage tank 61 and stored again. Thus, the developing solution is circulated and repeatedly used in the developing process. Incidentally, the developing chamber of a small glass substrate may be subjected to a treatment so as not to absorb carbon dioxide in the air, for example, by filling it with nitrogen gas. The deteriorated developer is drained by operating the waste pump 71.

循環攪拌機構Cについて説明する。循環攪拌機構Cは、主として、現像液貯留槽61内に貯留された現像液を循環し、攪拌するためのものである。 The circulation stirring mechanism C will be described. The circulation stirring mechanism C is mainly for circulating and stirring the developer stored in the developer storage tank 61.

現像液貯留槽61の底部と現像液貯留槽61の側部とは、途中に循環ポンプ74とフィルター75とが設けられた循環管路85により接続されている。循環ポンプ74を作動させると、現像液貯留槽61に貯留された現像液は、循環管路85を介して循環する。現像液は、循環管路85を介して現像液貯留槽61の側部から現像液貯留槽61に戻され、貯留された現像液を攪拌する。 The bottom portion of the developing solution storage tank 61 and the side portion of the developing solution storage tank 61 are connected by a circulation line 85 in which a circulation pump 74 and a filter 75 are provided. When the circulation pump 74 is operated, the developer stored in the developer storage tank 61 circulates via the circulation pipe line 85. The developing solution is returned from the side portion of the developing solution storage tank 61 to the developing solution storage tank 61 through the circulation pipe line 85, and the stored developing solution is stirred.

また、合流管路84を介して循環管路85に補充液が流入した場合、この流入した補充液は、循環管路85内において循環する現像液と混合されながら、現像液貯留槽61内に供給される。 Further, when the replenisher solution flows into the circulation line 85 via the confluence line 84, the inflowing replenisher solution is mixed with the developing solution circulating in the circulation line 85, and enters the developing solution storage tank 61. Supplied.

次に、本実施形態の現像液管理装置Dについて説明する。本実施形態の現像液管理装置Dは、アルカリ性を示す現像液の溶解フォトレジスト濃度及び吸収二酸化炭素濃度を指標として特定される濃度領域ごとに所定の現像性能となることが予め確認された現像液の導電率値を有する導電率データを用いて、現像液の溶解フォトレジスト濃度の測定値、及び吸収二酸化炭素濃度の測定値により特定される濃度領域の導電率を制御目標値として、現像液の導電率が制御目標値となるように現像液に補充液を補給する方式の現像液管理装置である。 Next, the developing solution management apparatus D of this embodiment will be described. The developing solution management device D of the present embodiment is a developing solution that has been confirmed in advance to have a predetermined developing performance for each concentration region specified by using the dissolved photoresist concentration and the absorbed carbon dioxide concentration of the developer exhibiting alkalinity as an index. Using the conductivity data having the conductivity value of, the measured value of the dissolved photoresist concentration of the developer, and the conductivity of the concentration region specified by the measured value of the absorbed carbon dioxide concentration as the control target value, This is a developing solution management device of a type in which a replenishing solution is replenished to the developing solution so that the conductivity becomes a control target value.

現像液管理装置Dは、測定部1と、制御手段21とを備えている。現像液管理装置Dはサンプリング配管15及び出口側配管16により現像液貯留槽61と接続されている。 The developing solution management device D includes a measuring unit 1 and a control unit 21. The developing solution management device D is connected to the developing solution storage tank 61 by a sampling pipe 15 and an outlet side pipe 16.

測定部1は、サンプリングポンプ14と、導電率計11、及び溶解フォトレジスト濃度を測定する第1濃度測定手段12、及び吸収二酸化炭素濃度を測定するための第2濃度測定手段13を、備えている。導電率計11、第1濃度測定手段12、及び第2濃度測定手段13は、サンプリングポンプ14の後段に直列に接続される。測定部1は、さらに、測定精度を高めるために、サンプリングした現像液を所定の温度に安定させる温度調節手段(図示せず)を備えていることが望ましい。この際、温度調節手段は、測定手段の直前に設けられていることが好ましい。サンプリング配管15は、現像液管理装置Dの測定部1のサンプリングポンプ14に接続されており、出口側配管16は、測定手段末端の配管と接続されている。 The measuring unit 1 includes a sampling pump 14, a conductivity meter 11, a first concentration measuring unit 12 for measuring a dissolved photoresist concentration, and a second concentration measuring unit 13 for measuring an absorbed carbon dioxide concentration. There is. The conductivity meter 11, the first concentration measuring means 12, and the second concentration measuring means 13 are connected in series after the sampling pump 14. It is desirable that the measuring unit 1 further includes a temperature adjusting unit (not shown) that stabilizes the sampled developer at a predetermined temperature in order to improve the measurement accuracy. At this time, it is preferable that the temperature adjusting means is provided immediately before the measuring means. The sampling pipe 15 is connected to the sampling pump 14 of the measuring section 1 of the developer management device D, and the outlet pipe 16 is connected to the pipe at the end of the measuring means.

また、図1では、導電率計11、第1濃度測定手段12、及び第2濃度測定手段13が、直列に接続された態様を図示したが、導電率計11、第1濃度測定手段12、及び第2濃度測定手段13の接続はこれに限定されない。並列接続でもよいし、それぞれが独立に送液経路を備えて測定するのでもよい。導電率計11、第1濃度測定手段12、及び第2濃度測定手段13の順番についても、特にその先後を問わない。各測定手段の特徴に応じて適宜最適な順番で測定すればよい。 Further, in FIG. 1, the conductivity meter 11, the first concentration measuring means 12, and the second concentration measuring means 13 are shown connected in series, but the conductivity meter 11, the first concentration measuring means 12, The connection of the second concentration measuring means 13 is not limited to this. They may be connected in parallel, or each may be independently provided with a liquid feeding path for measurement. The order of the conductivity meter 11, the first concentration measuring means 12, and the second concentration measuring means 13 is not particularly limited. The measurement may be performed in an optimal order according to the characteristics of each measuring means.

制御手段21は、データ記憶部23と制御部31とを備えている。データ記憶部23には、アルカリ性を示す現像液の溶解フォトレジスト濃度及び吸収二酸化炭素濃度を指標として特定される濃度領域ごとに所定の現像性能となることが予め確認された、使用する現像液の導電率値を有する導電率データが格納されている。 The control unit 21 includes a data storage unit 23 and a control unit 31. In the data storage unit 23, it is confirmed in advance that a predetermined developing performance is obtained in each concentration region specified by using the dissolved photoresist concentration and the absorbed carbon dioxide concentration of the developer exhibiting alkalinity as an index. Stored is electrical conductivity data having electrical conductivity values.

制御手段21は、測定部1の導電率計11、第1濃度測定手段12、及び第2濃度測定手段13と信号線により接続されている。測定部1で測定された導電率値、溶解フォトレジスト濃度値、及び、吸収二酸化炭素濃度値が制御手段21へと送られる。 The control unit 21 is connected to the conductivity meter 11, the first concentration measuring unit 12, and the second concentration measuring unit 13 of the measuring unit 1 by a signal line. The conductivity value, the dissolved photoresist concentration value, and the absorbed carbon dioxide concentration value measured by the measuring unit 1 are sent to the control means 21.

制御手段21の制御部31は、現像液に補充液を送液する管路に設けられた制御弁41〜43と、信号線により接続されている。図1では、制御弁41〜43は、現像液管理装置Dの内部部品として図示したが、制御弁41〜43は、本実施形態の現像液管理装置Dの部品として必須のものというわけではない。制御部31は、制御弁41〜43の動作を制御して、現像液に補充液を補給できるように、制御弁41〜43と連絡していればよい。制御弁41〜43は、現像液管理装置Dの外に存在するのでもよい。 The control unit 31 of the control unit 21 is connected by signal lines to the control valves 41 to 43 provided in the conduits that feed the replenisher to the developer. In FIG. 1, the control valves 41 to 43 are shown as internal parts of the developing solution management device D, but the control valves 41 to 43 are not essential as parts of the developing solution management device D of the present embodiment. .. The control unit 31 may communicate with the control valves 41 to 43 so as to control the operations of the control valves 41 to 43 and replenish the developer with the replenisher. The control valves 41 to 43 may be provided outside the developer management device D.

実施形態の現像液管理装置Dは、さらに表示手段22を備えている。表示手段22は、現像液の導電率値、アルカリ成分濃度値、溶解フォトレジスト濃度値及び吸収二酸化炭素濃度値のうち少なくとも導電率値及びアルカリ成分濃度値のうちのいずれか一方を表示することができる。 The developer management device D of the embodiment further includes a display unit 22. The display unit 22 may display at least one of the conductivity value, the alkali component concentration value, the dissolved photoresist concentration value, and the absorbed carbon dioxide concentration value of the developer. it can.

表示手段22は、現像液管理装置Dに電気的に接続されたディスプレーモニターでもよいし、現像液管理装置Dに組み込まれたタッチパネル型コンピュータでもよい。タッチパネル型コンピュータの場合、制御手段と表示手段(制御部およびデータ記憶部)とが一体的に構成される。 The display unit 22 may be a display monitor electrically connected to the developing solution management device D, or a touch panel type computer incorporated in the developing solution management device D. In the case of a touch panel computer, the control means and the display means (control section and data storage section) are integrally configured.

続いて、本実施形態の現像液管理装置Dの動作について説明する。 Next, the operation of the developing solution management device D of this embodiment will be described.

現像液貯留槽61からサンプリングされた現像液は、測定部1内に送液され、温度調節される。現像液は、その後、導電率計11、第1濃度測定手段12、及び第2濃度測定手段13に送液され、導電率、溶解フォトレジスト濃度、及び吸収二酸化炭素濃度が測定される。各測定データは制御手段21に送られる。 The developing solution sampled from the developing solution storage tank 61 is fed into the measuring section 1 and its temperature is adjusted. The developing solution is then sent to the conductivity meter 11, the first concentration measuring unit 12, and the second concentration measuring unit 13, and the conductivity, the dissolved photoresist concentration, and the absorbed carbon dioxide concentration are measured. Each measurement data is sent to the control means 21.

制御部31には、現像液の溶解フォトレジスト濃度及び吸収二酸化炭素濃度を指標として特定される濃度領域ごとに所定の現像性能となることが予め確認された現像液の導電率値を有する導電率データの導電率値に対応する、導電率の管理値が設定されている。制御部31は、測定部1から受け取った測定データにより、以下のように制御を行う。 The control unit 31 has a conductivity having a conductivity value of the developer which has been confirmed in advance to have a predetermined developing performance for each concentration region specified by using the dissolved photoresist concentration and the absorbed carbon dioxide concentration of the developer as indexes. A conductivity control value corresponding to the conductivity value of the data is set. The control unit 31 controls according to the measurement data received from the measurement unit 1 as follows.

制御部31は、測定部1から受け取った溶解フォトレジスト濃度と吸収二酸化炭素濃度とに基づいて、データ記憶部23に記憶されている導電率データのうち、測定された溶解フォトレジスト濃度及び測定された吸収二酸化炭素濃度により特定される濃度領域の導電率値を求める。求めた導電率値を現像液の導電率の制御目標値として設定する。 Based on the dissolved photoresist concentration and the absorbed carbon dioxide concentration received from the measurement unit 1, the control unit 31 determines the measured dissolved photoresist concentration and the measured dissolved photoresist concentration in the conductivity data stored in the data storage unit 23. Then, the conductivity value in the concentration region specified by the absorbed carbon dioxide concentration is obtained. The obtained conductivity value is set as a control target value for the conductivity of the developer.

制御部31は、測定部1から受け取った測定された導電率と、制御目標値として設定された導電率とを比較し、比較結果に応じて次のような管理を行う。すなわち、制御目標値として設定された導電率が、測定された導電率と同じ場合、基本的に現像液に補充液を加えない。また、制御目標値として設定された導電率が、測定された導電率より大きい場合、現像液に導電率を上げるように作用をする補充液を補給すればよい。また、制御目標値として設定された導電率が、測定された導電率より小さい場合、現像液に導電率を下げるように作用をする補充液を補給すればよい。 The control unit 31 compares the measured conductivity received from the measurement unit 1 with the conductivity set as the control target value, and performs the following management according to the comparison result. That is, if the conductivity set as the control target value is the same as the measured conductivity, basically no replenisher is added to the developer. If the conductivity set as the control target value is higher than the measured conductivity, the developer may be replenished with a replenisher that acts to increase the conductivity. When the conductivity set as the control target value is smaller than the measured conductivity, the developer may be replenished with a replenisher that acts to reduce the conductivity.

ここで、現像液に補給される補充液としては、例えば、現像液の原液や新液、純水などがある。 Here, the replenisher to be replenished with the developer includes, for example, a stock solution of the developer, a new solution, and pure water.

補充液は、補充液貯留部Cの補充液貯留槽91、92に貯留されている。補充液貯留槽91、92は、バルブ46、47を備えた窒素ガス用管路86が接続されており、この管路を介して供給される窒素ガスにより加圧されている。また、補充液貯留槽91、92にはそれぞれに補充液用管路81、82が接続され、通常開いた状態のバルブ44、45を介して補充液が送液される。補充液用管路81、82及び純水用管路83には制御弁41〜43が備えられており、制御弁41〜43は制御部31により開閉制御される。制御弁が動作することにより、補充液貯留槽91、92に貯留されていた補充液が圧送され、また、純水が送液される。その後、補充液は合流管路84を経て、循環攪拌機構Dと合流し、現像液貯留槽61に補給され攪拌される。 The replenisher is stored in the replenisher reservoirs 91 and 92 of the replenisher reservoir C. The replenisher storage tanks 91 and 92 are connected to a nitrogen gas pipeline 86 having valves 46 and 47, and are pressurized by nitrogen gas supplied through the pipelines. The replenisher reservoirs 91 and 92 are connected to replenisher conduits 81 and 82, respectively, and the replenisher is delivered via the valves 44 and 45 that are normally open. Control valves 41 to 43 are provided in the replenisher liquid conduits 81 and 82 and the pure water conduit 83, and the control valves 41 to 43 are controlled to be opened and closed by the controller 31. By operating the control valve, the replenisher liquid stored in the replenisher liquid storage tanks 91 and 92 is pressure-fed, and pure water is also fed. After that, the replenisher is merged with the circulation stirring mechanism D through the merging pipe line 84, and is replenished and stirred in the developer storage tank 61.

補給により補充液貯留槽91、92内に貯留された補充液が減少すると、その内圧が下がって供給量が不安定となるため、補充液の減少に応じてバルブ46、47を適宜開いて窒素ガスを供給し、補充液貯留槽91、92の内圧が保たれるように維持される。補充液貯留槽91、92が空になったときは、バルブ44、45を閉じて、補充液を満たした新しい補充液貯留槽と交換するか、または、別途調達した補充液を空になった補充液貯留槽に再び充填する。 When the amount of the replenisher stored in the replenisher reservoirs 91, 92 decreases due to the replenishment, the internal pressure decreases and the supply amount becomes unstable. Therefore, the valves 46, 47 are appropriately opened according to the decrease of the replenisher to open the nitrogen gas. A gas is supplied to maintain the internal pressure of the replenisher storage tanks 91 and 92. When the replenisher tanks 91 and 92 are empty, the valves 44 and 45 are closed to replace the replenisher tank with a new replenisher tank filled with replenisher, or the replenisher tank procured separately is emptied. Refill the replenisher reservoir.

制御弁41〜43の制御は、例えば、次のように行われる。制御弁の開時に流れる流量が調整されていれば、制御弁を開けている時間を管理することにより、補給すべき液量の補充液を補給することができる。制御部31は、測定部1から受け取った測定された導電率と、制御目標値として設定された導電率に基づいて、補給すべき液量の補充液が流れるように、所定時間制御弁を開けるように制御弁に制御信号を発する。 The control of the control valves 41 to 43 is performed as follows, for example. If the flow rate flowing when the control valve is opened is adjusted, it is possible to replenish the replenisher liquid of the amount to be replenished by managing the time when the control valve is opened. The control unit 31 opens the control valve for a predetermined time so that the replenishment liquid of the amount to be replenished flows based on the measured conductivity received from the measurement unit 1 and the conductivity set as the control target value. To issue a control signal to the control valve.

制御の方式は、制御量を目標値に合わせる制御に用いられる各種の制御方法を採用し得る。特に、比例制御(P制御)、積分制御(I制御)、微分制御(D制御)、及び、これらを組み合わせた制御(PI制御など)が好ましい。より好ましくは、PID制御が適している。 As a control method, various control methods used for controlling the control amount to a target value can be adopted. In particular, proportional control (P control), integral control (I control), differential control (D control), and control (PI control etc.) combining these are preferable. More preferably, PID control is suitable.

以上により、本実施形態に係る現像液管理装置Dによれば、現像液がどのような溶解フォトレジスト濃度及び吸収二酸化炭素濃度となろうとも、現像液中の導電率で、現像液を管理することにより、現像作用に活性を有する成分が維持されるので、所望の現像性能を維持でき、所望の線幅及び残膜厚を維持できる現像処理を実現できる。 As described above, according to the developing solution management device D according to the present embodiment, the developing solution is managed by the conductivity of the developing solution regardless of the dissolved photoresist concentration and the absorbed carbon dioxide concentration of the developing solution. As a result, the component having an activity in the developing action is maintained, so that the desired developing performance can be maintained, and the developing process capable of maintaining the desired line width and residual film thickness can be realized.

また、本実施形態に係る現像液管理装置Dによれば、現像性能が予め確認された現像液の導電率値の導電率データを使用して制御目標管理値とすることで、現像液の溶解フォトレジスト濃度が0.0〜0.40(wt%)(0.0〜1.3(abs)相当)であり、かつ吸収二酸化炭素濃度が0.0〜1.3(wt%)であっても、所望の現像活性を有する現像液として使用することができる。すなわち、本実施形態に係る現像液管理装置Dによれば、現像液の溶解フォトレジスト濃度が0.25(wt%)以上(0.8(abs)相当)、かつ吸収二酸化炭素濃度が0.6(wt%)以上であっても、現像液を廃液することなく使用でき、現像液の廃液量を減らすことが可能となる。 Further, according to the developing solution management device D according to the present embodiment, the dissolution of the developing solution is performed by using the conductivity data of the conductivity value of the developing solution whose developing performance is confirmed in advance as the control target management value. The photoresist concentration is 0.0 to 0.40 (wt%) (equivalent to 0.0 to 1.3 (abs)), and the absorbed carbon dioxide concentration is 0.0 to 1.3 (wt%). However, it can be used as a developer having a desired developing activity. That is, according to the developing solution management apparatus D of the present embodiment, the dissolved photoresist concentration of the developing solution is 0.25 (wt%) or more (corresponding to 0.8 (abs)), and the absorbed carbon dioxide concentration is 0. Even if it is 6 (wt%) or more, the developer can be used without being wasted, and the amount of the developer waste can be reduced.

上述において、現像液の導電率、吸収二酸化炭素濃度、及び溶解フォトレスト濃度と、導電率データを用いた例を説明した。これに限定されることなく、現像液のアルカリ成分濃度、吸収二酸化炭素濃度、及び吸光度と、アルカリ成分濃度データを用いて、現像液を管理することができる。 In the above, an example using the conductivity, the absorbed carbon dioxide concentration, the dissolved photoresist concentration, and the conductivity data of the developer has been described. Without being limited to this, the developer can be managed using the alkali component concentration, the absorbed carbon dioxide concentration, and the absorbance of the developer and the alkali component concentration data.

〔第二実施形態〕
図2は、本実施形態の現像液管理装置Dの説明をするための現像工程の模式図である。本発明の現像液管理装置Dが、現像工程設備A、補充液貯留部B、循環攪拌機構Cなどとともに図示されている。なお、第一実施形態の構成と同様の構成には同一符号を付して説明を省略する場合がある。
[Second embodiment]
FIG. 2 is a schematic diagram of a developing process for explaining the developing solution management apparatus D of this embodiment. A developing solution management device D of the present invention is illustrated together with a developing process facility A, a replenisher storage part B, a circulation stirring mechanism C, and the like. The same components as those of the first embodiment may be designated by the same reference numerals and the description thereof may be omitted.

現像液管理装置Dの測定部1は、導電率計11、現像液の溶解フォトレジスト濃度と相関のある現像液の特性値と、現像液の吸収二酸化炭素濃度と相関のある現像液の特性値とを測定する複数の測定装置を備えている。例えば、溶解フォトレジスト濃度と相関のある現像液の特性値を測定する第1特性値測定手段12Aとして、例えばλ=560nmにおける吸光度を測定する吸光光度計を備えている。吸収二酸化炭素濃度と相関のある現像液の特性値を測定する第2特性値測定手段13Aとして、現像液の密度を測定する密度計を備えている。 The measuring unit 1 of the developing solution management device D includes a conductivity meter 11, a characteristic value of the developing solution correlated with the dissolved photoresist concentration of the developing solution, and a characteristic value of the developing solution correlated with the absorbed carbon dioxide concentration of the developing solution. It has a plurality of measuring devices for measuring and. For example, an absorptiometer for measuring the absorbance at λ=560 nm is provided as the first characteristic value measuring means 12A for measuring the characteristic value of the developer having a correlation with the dissolved photoresist concentration. As the second characteristic value measuring means 13A for measuring the characteristic value of the developing solution having a correlation with the absorbed carbon dioxide concentration, a density meter for measuring the density of the developing solution is provided.

ここで、「相関のある」現像液の特性値とは、その特性値がその成分濃度と関係があり、その成分濃度の変化に応じて特性値が変わるような関係にあることをいう。例えば、現像液の成分濃度のうち少なくとも成分濃度Aと相関のある現像液の特性値aとは、特性値aが成分濃度を変数とする関数により求められるときに、変数の一つに少なくとも成分濃度Aを含むことをいう。特性値aが成分濃度Aのみの関数であってもよいが、通常は、成分濃度Aのほかに、成分濃度BやCなどを変数とする多変数関数となっているときに、多変量解析法(例えば、重回帰分析法)を用いる意義が大きい。 Here, the "correlated" characteristic value of the developer means that the characteristic value is related to the component concentration, and the characteristic value is changed according to the change of the component concentration. For example, among the component concentrations of the developer, the characteristic value a of the developer having a correlation with at least the component concentration A is at least one of the variables when the characteristic value a is obtained by a function having the component concentration as a variable. It is meant to include the concentration A. The characteristic value a may be a function of only the component concentration A, but normally, when the characteristic value a is a multivariable function having the component concentrations A, B, and C as variables, the multivariate analysis is performed. The significance of using the method (for example, multiple regression analysis method) is significant.

制御手段21は、データ記憶部23、制御部31、及び演算部32を備えている。演算部32は、測定部1で測定された現像液の複数の特性値から、多変量解析により、現像液の溶解フォトレジスト濃度の測定値及び吸収二酸化炭素濃度の測定値を算出する。 The control unit 21 includes a data storage unit 23, a control unit 31, and a calculation unit 32. The calculation unit 32 calculates the measured value of the dissolved photoresist concentration and the measured value of the absorbed carbon dioxide concentration of the developer by multivariate analysis from the plurality of characteristic values of the developer measured by the measurement unit 1.

本実施形態では、現像液貯留槽61からサンプリングされた現像液は、測定部1内に送液され、温度調節される。現像液は、その後、導電率計11、第1特性値測定手段12A吸、及び第2特性値測定手段13Aに送液され、導電率、吸光度、及び密度が測定される。各測定データは制御手段21に送られる。 In the present embodiment, the developing solution sampled from the developing solution storage tank 61 is fed into the measuring section 1 and the temperature thereof is adjusted. The developer is then sent to the conductivity meter 11, the first characteristic value measuring means 12A and the second characteristic value measuring means 13A, and the conductivity, the absorbance and the density are measured. Each measurement data is sent to the control means 21.

演算部32は、測定部1で測定された吸光度、及び密度から多変量解析により、現像液の溶解フォトレジスト濃度の測定値及び吸収二酸化炭素濃度の測定値を算出する。この際、導電率、吸光度、及び密度から多変量解析により溶解フォトレジスト濃度の測定値及び吸収二酸化炭素濃度の測定値を算出することもできる。 The calculation unit 32 calculates the measured value of the dissolved photoresist concentration of the developer and the measured value of the absorbed carbon dioxide concentration by multivariate analysis from the absorbance and the density measured by the measuring unit 1. At this time, the measured value of the dissolved photoresist concentration and the measured value of the absorbed carbon dioxide concentration can be calculated from the conductivity, the absorbance, and the density by multivariate analysis.

制御部31は、演算部32で算出された溶解フォトレジスト濃度と吸収二酸化炭素濃度とに基づいて、データ記憶部23に記憶されている導電率データのうち、測定された溶解フォトレジスト濃度及び測定された吸収二酸化炭素濃度により特定される濃度領域の導電率値を求める。求めた導電率値を現像液の導電率の制御目標値として設定する。 Based on the dissolved photoresist concentration and the absorbed carbon dioxide concentration calculated by the calculation unit 32, the control unit 31 measures the measured dissolved photoresist concentration and the measured dissolved photoresist concentration in the conductivity data stored in the data storage unit 23. The conductivity value in the concentration region specified by the absorbed carbon dioxide concentration is calculated. The obtained conductivity value is set as a control target value for the conductivity of the developer.

その他の構成、動作などは、第一実施形態と同様であるので、省略する。 Other configurations, operations, etc. are similar to those of the first embodiment, and will be omitted.

次に、現像液の複数の特性値から、溶解フォトレジスト濃度の測定値及び吸収二酸化炭素濃度を、多変量解析により算出する手法について説明する。 Next, a method of calculating the measured value of the dissolved photoresist concentration and the absorbed carbon dioxide concentration from a plurality of characteristic values of the developing solution by multivariate analysis will be described.

発明者は、演算手法に多変量解析法(例えば、重回帰分析法)を用いれば、従来法を用いた場合より、精度よく現像液の各成分の濃度を算出できること、及び、従来困難であった吸収二酸化炭素濃度が測定できること、を見出した。多変量解析法(例えば、重回帰分析法)により算出した現像液の成分濃度(溶解フォトレジスト濃度、及び吸収二酸化炭素濃度)を用いれば、予め現像性の確認された溶解フォトレジスト濃度、及び吸収二酸化炭素濃度と導電率値を有する導電率データから、目的の導電率値を容易に得ることが可能となる。 The inventor can use the multivariate analysis method (for example, the multiple regression analysis method) as the calculation method to calculate the concentration of each component of the developer more accurately than in the case of using the conventional method. It was also found that the absorbed carbon dioxide concentration can be measured. If the developer component concentrations (dissolved photoresist concentration and absorbed carbon dioxide concentration) calculated by a multivariate analysis method (for example, multiple regression analysis method) are used, the dissolved photoresist concentration and absorption of which developability has been confirmed in advance It is possible to easily obtain the target conductivity value from the conductivity data having the carbon dioxide concentration and the conductivity value.

2.38%TMAH水溶液の管理を行う場合を想定して、アルカリ成分濃度、溶解フォトレジスト濃度、吸収二酸化炭素濃度を様々に変化させたTMAH水溶液を模擬現像液サンプルとして調製した。発明者は、これらの模擬現像液サンプルについて測定した各種特性値から、重回帰分析法によりその成分濃度を求める実験を行った。以下に、重回帰分析法による一般的な演算手法を説明し、そのあと、発明者の行った実験に基づいて、重回帰分析法を用いた現像液の成分濃度の演算手法について説明する。 Assuming the case of controlling a 2.38% TMAH aqueous solution, TMAH aqueous solutions having various concentrations of alkali components, dissolved photoresist concentrations, and absorbed carbon dioxide concentrations were prepared as simulated developer samples. The inventor conducted an experiment to determine the component concentration of each of the simulated developer solutions by multiple regression analysis from various characteristic values measured. Hereinafter, a general calculation method by the multiple regression analysis method will be described, and then a calculation method of the component concentration of the developer using the multiple regression analysis method will be described based on an experiment conducted by the inventor.

重回帰分析は校正と予測の二段階からなる。n成分系の重回帰分析において、校正標準溶液をm個用意したとする。i番目の溶液中に存在するj番目の成分の濃度をCijと表す。ここで、i=1〜m、j=1〜nである。m個の標準溶液について、それぞれ、p個の特性値(例えば、ある波長における吸光度とか導電率などの特性値)Aik(k=1〜p)を測定する。濃度データと特性データは、それぞれ、まとめて行列の形(C,A)に表すことができる。 Multiple regression analysis consists of two steps, calibration and prediction. It is assumed that m calibration standard solutions are prepared in the n-component multiple regression analysis. The concentration of the j-th component existing in the i-th solution is represented by C ij . Here, i=1 to m and j=1 to n. For each of the m standard solutions, p characteristic values (for example, characteristic values such as absorbance at a certain wavelength or conductivity) A ik (k=1 to p) are measured. The concentration data and the characteristic data can be collectively expressed in a matrix form (C, A).

Figure 0006712415
Figure 0006712415

これらの行列を関係づける行列を校正行列といい、ここでは記号S(Skj;k=1〜p、j=1〜n)で表す。 A matrix that relates these matrices is called a calibration matrix, and is represented by a symbol S (S kj ; k=1 to p, j=1 to n) here.

Figure 0006712415
Figure 0006712415

既知のCとA(Aの内容は、同質の測定値のみならず異質の測定値が混在しても構わない。例えば、導電率と吸光度と密度。)からSを行列演算により算出するのが校正段階である。この時、p>=n、且つ、m>=npでなければならない。Sの各要素は全て未知数であるから、m>npであることが望ましく、その場合は次のように最小二乗演算を行う。 It is possible to calculate S from a known C and A (the content of A is not limited to the same measurement value but different measurement values may be mixed. For example, conductivity, absorbance, and density) by matrix calculation. It is a calibration stage. At this time, p>=n and m>=np must be satisfied. Since each element of S is an unknown number, it is desirable that m>np. In that case, the least squares operation is performed as follows.

Figure 0006712415
Figure 0006712415

ここで、上付きのTは転置行列を、上付きの−1は逆行列を意味する。 Here, the superscript T means a transposed matrix, and the superscript -1 means an inverse matrix.

濃度未知の試料液についてp個の特性値を測定し、それらをAu(Au;k=1〜p)とすれば、それにSを乗じて求めるべき濃度Cu(Cu;j=1〜n)を得ることができる。 If p characteristic values are measured with respect to a sample solution of unknown concentration and these are Au(Au k ; k=1 to p), the concentration Cu(Cu j ; j=1 to n to be obtained by multiplying S by it is obtained. ) Can be obtained.

Figure 0006712415
Figure 0006712415

これが予測段階である。 This is the prediction stage.

発明者は、使用済みのアルカリ性現像液(2.38%TMAH水溶液)を、アルカリ成分、溶解フォトレジスト、吸収二酸化炭素の3成分からなる多成分系(n=3)とみなして、当該現像液の特性値として3つの特性値(p=3)、すなわち、現像液の導電率値、特定波長における吸光度値、及び、密度値から、上記重回帰分析法により各成分濃度を算出する実験を行った。発明者は、2.38%TMAH水溶液を現像液の基本組成として、アルカリ成分濃度(TMAH濃度)、溶解フォトレジスト濃度、吸収二酸化炭素濃度を様々に変化させた11個の校正標準溶液を調製した(m=11で、p>=nかつm>npを満たす)。 The inventor considers the used alkaline developer (2.38% TMAH aqueous solution) as a multi-component system (n=3) consisting of three components of an alkali component, a dissolved photoresist, and absorbed carbon dioxide, and considers the developer. From the three characteristic values (p=3), that is, the conductivity value of the developer, the absorbance value at a specific wavelength, and the density value, an experiment for calculating the concentration of each component by the above multiple regression analysis method was performed. It was The inventor prepared eleven calibration standard solutions in which the concentration of alkali components (TMAH concentration), the concentration of dissolved photoresist, and the concentration of absorbed carbon dioxide were variously changed using a 2.38% TMAH aqueous solution as a basic composition of the developer. (When m=11, p>=n and m>np are satisfied).

実験は、11個の校正標準溶液について、導電率値、波長λ=560nmにおける吸光度値、及び、密度値を現像液の特性値として測定し、各成分濃度を線形重回帰分析(Multiple Linear Regression − Inverse Least Squares;MLR−ILS)により演算した。 In the experiment, the conductivity value, the absorbance value at the wavelength λ=560 nm, and the density value of the 11 calibration standard solutions were measured as the characteristic values of the developer, and the concentration of each component was analyzed by the multiple linear regression analysis (Multiple Linear Regression − Inverse Least Squares; MLR-ILS).

測定は、校正標準溶液を25.0℃に温度調整して、行った。温度調整は、25℃付近に温度管理された恒温水槽に校正標準溶液の入ったボトルを長時間浸しておき、ここからサンプリングして、さらに測定直前に温度コントローラにて再度25.0℃にする、という方式である。導電率計は自社製の導電率計を採用した。白金黒処理を施した自社製の導電率フローセルを用いて測定した。導電率計には、別途校正作業により確認された導電率フローセルのセル定数が入力されている。吸光光度計も自社製のものを採用した。波長λ=560nmの光源部と測光部とガラスフローセルとを備える吸光光度計である。密度測定には、U字管フローセルを励振して測定される固有振動数から密度を求める固有振動法を採用した密度計を用いた。測定された導電率値、吸光度値、密度値の単位は、それぞれ、mS/cm、Abs.(Absorbance)、g/cmである。 The measurement was performed by adjusting the temperature of the calibration standard solution to 25.0°C. To adjust the temperature, immerse the bottle containing the calibration standard solution in a constant temperature water bath whose temperature is controlled at around 25°C for a long time, sample it from here, and bring it back to 25.0°C again with a temperature controller immediately before measurement. , Is the method. As the conductivity meter, we used a self-made conductivity meter. It was measured using an in-house manufactured conductivity flow cell that had been subjected to platinum black treatment. The cell constant of the conductivity flow cell, which is separately confirmed by the calibration work, is input to the conductivity meter. The absorptiometer also used a self-made one. It is an absorptiometer including a light source unit having a wavelength λ=560 nm, a photometric unit, and a glass flow cell. For the density measurement, a density meter that employs a natural vibration method that obtains the density from the natural frequency measured by exciting a U-shaped flow cell is used. The units of the measured conductivity value, absorbance value and density value are mS/cm and Abs. (Absorbance), g/cm 3 .

演算は、11個の校正標準溶液のうち一つを未知試料に見立てて、残り10標準で校正行列を求め、仮定した未知試料の濃度を算出して既知の値(他の正確な分析手法により測定した濃度値や重量調製値)と比べる手法(一個抜き交差確認法;Leave−One−Out法)によるものである。 For the calculation, one of the 11 calibration standard solutions is regarded as an unknown sample, the calibration matrix is calculated with the remaining 10 standards, and the concentration of the assumed unknown sample is calculated to obtain a known value (by another accurate analysis method). It is based on a method of comparing with measured concentration values and weight adjustment values (one-out crossing confirmation method; Leave-One-Out method).

MLR−ILS計算を行った結果を表1に示す。 The results of the MLR-ILS calculation are shown in Table 1.

Figure 0006712415
Figure 0006712415

MLR−ILS計算に当たっては、TMAH水溶液が強アルカリ性で二酸化炭素を吸収して劣化しやすいことに鑑み、演算に用いる濃度行列には、アルカリ成分濃度や吸収二酸化炭素濃度を正確に分析できる滴定分析法により校正標準溶液を別途測定した値を用いた。ただし、溶解フォトレジスト濃度に関しては、重量調製値を用いた。 In the MLR-ILS calculation, in view of the fact that the TMAH aqueous solution is strongly alkaline and absorbs carbon dioxide and is likely to deteriorate, the concentration matrix used for the calculation includes a titration analysis method capable of accurately analyzing the concentration of alkali components and the concentration of absorbed carbon dioxide. The value obtained by separately measuring the calibration standard solution was used. However, regarding the concentration of the dissolved photoresist, the weight adjusted value was used.

滴定は、塩酸を滴定試薬とする中和滴定である。滴定装置として、三菱化学アナリテック社製の自動滴定装置GT−200を使用した。 The titration is a neutralization titration using hydrochloric acid as a titration reagent. As a titrator, an automatic titrator GT-200 manufactured by Mitsubishi Chemical Analytech Co. was used.

以下、表2に、濃度行列を示す。 The concentration matrix is shown in Table 2 below.

Figure 0006712415
Figure 0006712415

このときの校正標準溶液の特性値の測定結果を表3に示す。吸光度の欄は、波長λ=560nmにおける吸光度値(光路長d=10mm)である。 Table 3 shows the measurement results of the characteristic values of the calibration standard solution at this time. The column of absorbance is the absorbance value (optical path length d=10 mm) at the wavelength λ=560 nm.

Figure 0006712415
Figure 0006712415

校正行列を表4に示す。 The calibration matrix is shown in Table 4.

Figure 0006712415
Figure 0006712415

表5に、表2の濃度測定値と表1のMLR−ILS計算値との比較を示す。 Table 5 shows a comparison between the measured concentration values in Table 2 and the calculated MLR-ILS values in Table 1.

Figure 0006712415
Figure 0006712415

表5の通り、重回帰分析法により求められたTMAH濃度、溶解フォトレジスト濃度、吸収二酸化炭素濃度は、いずれも滴定分析により測定したTMAH濃度や吸収二酸化炭素濃度、及び、調整重量から求めた溶解フォトレジスト濃度と、いずれもかなり近似した値となっている。 As shown in Table 5, the TMAH concentration, the dissolved photoresist concentration, and the absorbed carbon dioxide concentration obtained by the multiple regression analysis method are all the TMAH concentration and the absorbed carbon dioxide concentration measured by the titration analysis, and the dissolution obtained from the adjusted weight. The values are very close to the photoresist concentration.

このように、アルカリ性現像液の導電率、特定波長における吸光度、及び、密度を測定して、多変量解析法(例えば、重回帰分析法)を用いることにより、現像液のアルカリ成分濃度、溶解フォトレジスト濃度、及び、吸収二酸化炭素濃度を測定できることが理解される。 In this way, the conductivity of the alkaline developer, the absorbance at a specific wavelength, and the density are measured, and by using a multivariate analysis method (for example, multiple regression analysis method), the alkaline component concentration of the developer, the dissolution photo It is understood that the resist concentration and the absorbed carbon dioxide concentration can be measured.

多変量解析法(例えば、重回帰分析法)は、複数の成分の濃度を演算して求めるのに有効である。現像液の複数の特性値a、b、c、…を測定して、それらの測定値から多変量解析法(例えば、重回帰分析法)により成分濃度A、B、C、…を求めることができる。この際、求めるべき成分濃度につき、少なくともこの成分濃度と相関のある特性値が、少なくともひとつは測定されて演算に用いられることが必要である。 The multivariate analysis method (for example, the multiple regression analysis method) is effective in calculating and obtaining the concentrations of a plurality of components. It is possible to measure a plurality of characteristic values a, b, c,... Of the developer and obtain the component concentrations A, B, C,... From the measured values by a multivariate analysis method (eg, multiple regression analysis method). it can. At this time, for the component concentration to be obtained, at least one characteristic value having a correlation with this component concentration needs to be measured and used in the calculation.

また、成分濃度は、全体に対するその成分の相対量を示す尺度である。繰り返し使用される現像液のような経時的に成分が増減する混合液の成分濃度は、その成分単独で決まらず、通常、他の成分の濃度の関数となる。そのため、現像液の特性値と成分濃度の関係は、平面的なグラフで表示することが困難なことが多い。このような場合には、検量線を用いる演算法などでは、現像液の特性値から成分濃度を算出することができない。 The component concentration is a scale showing the relative amount of the component with respect to the whole. The component concentration of a mixed solution in which the components increase and decrease over time, such as a repeatedly used developer, is not determined by the component alone, but is usually a function of the concentrations of other components. Therefore, it is often difficult to display the relationship between the characteristic value of the developing solution and the component concentration in a planar graph. In such a case, the component concentration cannot be calculated from the characteristic value of the developing solution by a calculation method using a calibration curve or the like.

しかし、多変量解析法(例えば、重回帰分析法)によれば、算出しようとする成分濃度と相関のある複数の特性値の測定値が一組揃えば、これを演算に用いて、成分濃度が一組算出される。従来の知見では一見すると測定困難な成分濃度であっても、特性値を測定することで成分濃度を測定できる、という顕著な効果を、多変量解析法(例えば、重回帰分析法)による成分濃度測定では得ることができる。 However, according to the multivariate analysis method (for example, multiple regression analysis method), if one set of measured values of a plurality of characteristic values correlated with the component concentration to be calculated is prepared, this is used for calculation to calculate the component concentration. Is calculated. Even if it is difficult to measure the component concentration at first glance with conventional knowledge, the remarkable effect that the component concentration can be measured by measuring the characteristic value is obtained by the multivariate analysis method (for example, multiple regression analysis method). It can be obtained by measurement.

以上のとおり、本発明の演算手法によれば、現像液のアルカリ成分濃度、溶解フォトレジスト濃度、及び、吸収二酸化炭素濃度を、現像液の特性値(例えば、導電率、特定波長における吸光度、及び、密度)の測定値に基づいて算出することができる。本発明の演算手法によれば、従来法に比べ、高精度に各成分濃度を算出することができる。 As described above, according to the calculation method of the present invention, the alkaline component concentration of the developing solution, the dissolved photoresist concentration, and the absorbed carbon dioxide concentration, the characteristic value of the developing solution (for example, conductivity, absorbance at a specific wavelength, and , Density) can be calculated based on the measured values. According to the calculation method of the present invention, it is possible to calculate the concentration of each component with higher accuracy than in the conventional method.

また、本発明では多変量解析法(例えば、重回帰分析法)を用いているので、現像液の成分濃度を算出する演算に、現像液の特定の成分濃度と直線関係にない現像液の特性値をも採用することができる。 Further, in the present invention, since the multivariate analysis method (for example, multiple regression analysis method) is used, the characteristic of the developer which is not linearly related to the specific component concentration of the developer is used in the calculation for calculating the component concentration of the developer. Values can also be adopted.

また、本発明によれば、特許文献2の発明では必要な、高精度測定を可能とするための非常に多数のサンプルの準備と予備測定が、必要ない。(前述の実験例のとおり、成分数n=3の現像液であれば、測定する特性値の数p=3として、m>=npを満たすサンプル数p(例えばp=11個のサンプル)を準備して測定すれば、十分である。成分数n=2ならばサンプル数はさらに少なくてよい。)
さらに、本発明は多変量解析法(例えば、重回帰分析法)を用いているので、従来は測定が困難であった現像液の吸収二酸化炭素濃度を、精度よく算出することができる。
Further, according to the present invention, preparation and preliminary measurement of a very large number of samples, which are required in the invention of Patent Document 2, for enabling highly accurate measurement are not necessary. (As in the experimental example described above, if the number of components is n=3, the number of characteristic values to be measured p=3, and the number of samples p satisfying m>=np (for example, p=11 samples) is set. It is sufficient to prepare and measure it. If the number of components n=2, the number of samples may be smaller.)
Furthermore, since the present invention uses a multivariate analysis method (for example, a multiple regression analysis method), it is possible to accurately calculate the absorbed carbon dioxide concentration of the developer, which was difficult to measure in the past.

本実施形態では、現像液の溶解フォトレジスト濃度と相関のある現像液の特性値として、λ=560nmにおける吸光度を例示したが、これに限定されない。他の特定波長における吸光度、すなわち、可視領域、より好ましくは360〜600nmの波長領域、の特定波長、より好ましくは波長λ=480nm、における吸光度を、特性値として利用することもできる。これらの波長域に含まれる特定波長における吸光度は溶解レジスト濃度と比較的良好な対応関係にあるためである。 In the present embodiment, the absorbance at λ=560 nm is exemplified as the characteristic value of the developing solution having a correlation with the dissolved photoresist concentration of the developing solution, but the characteristic value is not limited thereto. It is also possible to use the absorbance at another specific wavelength, that is, the absorbance at a specific wavelength in the visible region, more preferably in the wavelength region of 360 to 600 nm, more preferably at the wavelength λ=480 nm, as the characteristic value. This is because the absorbance at a specific wavelength included in these wavelength ranges has a relatively good correspondence with the dissolved resist concentration.

また、現像液の吸収二酸化炭素濃度と相関のある現像液の特性値として、密度を例示したが、これに限定されない。現像液の溶解フォトレジスト濃度や吸収二酸化炭素濃度と相関のある現像液の特性値として、現像液の導電率と組み合わせて測定する特性値に採用し得る特性値には、例えば、上記特定波長における吸光度や密度の他に、超音波伝播速度、屈折率、滴定終点、pHなどを挙げることができる。 Further, although the density is exemplified as the characteristic value of the developer having a correlation with the absorbed carbon dioxide concentration of the developer, the density is not limited to this. As a characteristic value of the developing solution having a correlation with the dissolved photoresist concentration or absorbed carbon dioxide concentration of the developing solution, a characteristic value that can be adopted as a characteristic value to be measured in combination with the conductivity of the developing solution is, for example, at the specific wavelength. In addition to absorbance and density, ultrasonic wave propagation speed, refractive index, titration end point, pH and the like can be mentioned.

〔第三実施形態〕
図3は、本実施形態の現像液管理装置Dの説明をするための現像工程の模式図である。本発明の現像液管理装置Dが、現像工程設備A、補充液貯留部B、循環攪拌機構Cなどとともに図示されている。なお、第一実施形態、及び第二実施形態の構成と同様の構成には同一符号を付して説明を省略する場合がある。
[Third embodiment]
FIG. 3 is a schematic diagram of a developing process for explaining the developing solution management apparatus D of this embodiment. A developing solution management device D of the present invention is illustrated together with a developing process facility A, a replenisher storage part B, a circulation stirring mechanism C, and the like. The same components as those of the first and second embodiments may be designated by the same reference numerals and the description thereof may be omitted.

本実施形態の現像液管理装置Dは、測定部1と、制御手段21、及び演算手段36を備えている。本実施形態では、第二実施形態とは異なり、制御手段21と、演算を行う演算手段36とが、別体の装置で構成されている。 The developing solution management device D of this embodiment includes a measuring unit 1, a control unit 21, and a calculation unit 36. In the present embodiment, unlike the second embodiment, the control unit 21 and the calculation unit 36 that performs calculation are configured as separate devices.

測定部1は、導電率計11、第1特性値測定手段12A、及び第2特性値測定手段13Aを備えている。演算手段36は、第1特性値測定手段12A、及び第2特性値測定手段13Aにより測定された吸光度、及び密度から多変量解析により、現像液の溶解フォトレジスト濃度の測定値及び吸収二酸化炭素濃度の測定値を算出する。この際、導電率、吸光度、及び密度から多変量解析により溶解フォトレジスト濃度の測定値及び吸収二酸化炭素濃度を算出することができる。 The measuring unit 1 includes a conductivity meter 11, a first characteristic value measuring unit 12A, and a second characteristic value measuring unit 13A. The calculation means 36 uses a multivariate analysis from the absorbance and density measured by the first characteristic value measuring means 12A and the second characteristic value measuring means 13A to measure the dissolved photoresist concentration of the developer and the absorbed carbon dioxide concentration. Calculate the measured value of. At this time, the measured value of the dissolved photoresist concentration and the absorbed carbon dioxide concentration can be calculated from the conductivity, the absorbance, and the density by multivariate analysis.

制御部31は、演算手段で算出された溶解フォトレジスト濃度と吸収二酸化炭素濃度とに基づいて、データ記憶部23に記憶されている導電率データのうち、測定された溶解フォトレジスト濃度及び測定された吸収二酸化炭素濃度により特定される濃度領域の導電率値を求める。求めた導電率値を現像液の導電率の制御目標値として設定する。 Based on the dissolved photoresist concentration and the absorbed carbon dioxide concentration calculated by the calculating means, the control unit 31 determines the measured dissolved photoresist concentration and the measured dissolved photoresist concentration in the conductivity data stored in the data storage unit 23. Then, the conductivity value in the concentration region specified by the absorbed carbon dioxide concentration is obtained. The obtained conductivity value is set as a control target value for the conductivity of the developer.

その他の構成、動作などは、第二実施形態と同様であるので、省略する。 Other configurations and operations are the same as those in the second embodiment, and will not be described.

〔第四実施形態〕
図4は、本実施形態の現像液管理装置Dの説明をするための現像工程の模式図である。本発明の現像液管理装置Dが、現像工程設備A、補充液貯留部B、循環攪拌機構Cなどとともに図示されている。なお、第一実施形態、第二実施形態、及び第三実施形態の構成と同様の構成には同一符号を付して説明を省略する場合がある。
[Fourth Embodiment]
FIG. 4 is a schematic diagram of a developing process for explaining the developing solution management apparatus D of this embodiment. A developing solution management device D of the present invention is illustrated together with a developing process facility A, a replenisher storage part B, a circulation stirring mechanism C, and the like. The same components as those of the first embodiment, the second embodiment, and the third embodiment may be designated by the same reference numerals and the description thereof may be omitted.

本実施形態の測定部1は、導電率計11、第1濃度測定手段12、及び密度計13Bを備える。制御手段21はデータ記憶部23と演算部33とを備える。演算部33は、現像液の吸収二酸化炭素濃度と密度との間の対応関係に基づいて密度計13Bにより測定された現像液の密度から現像液の吸収二酸化炭素濃度を算出する。 The measuring unit 1 of the present embodiment includes a conductivity meter 11, a first concentration measuring unit 12, and a density meter 13B. The control unit 21 includes a data storage unit 23 and a calculation unit 33. The calculation unit 33 calculates the absorbed carbon dioxide concentration of the developing solution from the density of the developing solution measured by the density meter 13B based on the correspondence relationship between the absorbed carbon dioxide concentration of the developing solution and the density.

制御部31は、測定部1で測定された溶解フォトレジスト濃度と、演算部33で算出された吸収二酸化炭素濃度とに基づいて、データ記憶部23に記憶されている導電率データのうち、測定された溶解フォトレジスト濃度及び測定された吸収二酸化炭素濃度により特定される濃度領域の導電率値を求める。求めた導電率値を現像液の導電率の制御目標値として設定する。 Based on the dissolved photoresist concentration measured by the measurement unit 1 and the absorbed carbon dioxide concentration calculated by the calculation unit 33, the control unit 31 measures the conductivity data stored in the data storage unit 23. A conductivity value in a concentration region specified by the dissolved photoresist concentration thus obtained and the measured absorbed carbon dioxide concentration is obtained. The obtained conductivity value is set as a control target value for the conductivity of the developer.

その他の構成、動作などは、第一実施形態と同様であるので、省略する。 Other configurations, operations, etc. are similar to those of the first embodiment, and will be omitted.

現像液の密度値と吸収二酸化炭素濃度値との関係について説明する。発明者は、鋭意研究を続けた結果、次の知見を得た。すなわち、現像液のアルカリ成分濃度や溶解フォトレジスト濃度によらず、現像液の密度値と吸収二酸化炭素濃度値との間には比較的良好な対応関係(直線関係)が得られること、である。また、この対応関係(直線関係)を用いれば密度計により現像液の密度を測定することで従来困難であった吸収二酸化炭素濃度が測定できること、である。 The relationship between the density value of the developer and the absorbed carbon dioxide concentration value will be described. The inventor has obtained the following findings as a result of continuing diligent research. That is, it is possible to obtain a relatively good correspondence (linear relationship) between the density value of the developing solution and the absorbed carbon dioxide concentration value, irrespective of the alkaline component concentration of the developing solution or the dissolved photoresist concentration. .. Further, if this correspondence relationship (linear relationship) is used, it is possible to measure the absorbed carbon dioxide concentration, which has been difficult in the past, by measuring the density of the developer with a densitometer.

発明者は、多変量解析法を用いた現像液の成分濃度の演算に用いた11個の校正標準溶液を模擬現像液サンプルとし、これらについてアルカリ成分濃度(TMAH濃度)、溶解
フォトレジスト濃度、吸収二酸化炭素濃度、および、密度を測定し、成分濃度と密度との相関を確かめる実験を行った。
The inventor uses eleven calibration standard solutions used for the calculation of the component concentrations of the developing solution using the multivariate analysis method as simulated developing solution samples, and about these, alkali component concentration (TMAH concentration), dissolved photoresist concentration, absorption An experiment was carried out to measure the carbon dioxide concentration and the density and confirm the correlation between the component concentration and the density.

以下の表6に、各サンプルの成分濃度と密度の測定結果を示す。表6は、表5の濃度測定値(wt%)と表3の密度(g/cm)とを対比させた表である。 Table 6 below shows the measurement results of the component concentration and density of each sample. Table 6 is a table comparing the measured concentration values (wt %) of Table 5 with the densities (g/cm 3 ) of Table 3.

Figure 0006712415
Figure 0006712415

図5に、表6に示した各サンプルの吸収二酸化炭素濃度と密度とのグラフを示す。このグラフは、吸収二酸化炭素濃度(wt%)を横軸にとり、密度(g/cm)を縦軸にとり、各サンプルの値をプロットしたグラフである。プロットした各点から、最小二乗法により回帰直線を求めた。 FIG. 5 shows a graph of the absorbed carbon dioxide concentration and the density of each sample shown in Table 6. This graph is a graph in which the abscissa represents the absorbed carbon dioxide concentration (wt %) and the ordinate represents the density (g/cm 3 ), and the values of the respective samples are plotted. From each of the plotted points, a regression line was obtained by the method of least squares.

図5から、現像液の吸収二酸化炭素濃度は、アルカリ成分濃度や溶解フォトレジスト濃度が様々であるにも関わらず、現像液の密度との間に良好な直線関係があることが理解できる。この実験結果により、この現像液の吸収二酸化炭素濃度と密度との間の対応関係(直線関係)を用いれば、現像液の密度を測定することにより現像液の吸収二酸化炭素濃度を算出することが可能であることを、発明者は知見したのである。 From FIG. 5, it can be understood that the absorbed carbon dioxide concentration of the developing solution has a good linear relationship with the density of the developing solution in spite of various alkali component concentrations and dissolved photoresist concentrations. From this experimental result, it is possible to calculate the absorbed carbon dioxide concentration of the developing solution by measuring the density of the developing solution by using the correspondence relationship (linear relationship) between the absorbed carbon dioxide concentration of the developing solution and the density. The inventor has found that it is possible.

したがって、アルカリ成分濃度(TMAH濃度)や溶解レジスト濃度にかかわらず、この対応関係(直線関係)により、密度計を用いることにより、現像液の吸収二酸化炭素濃度を測定することができる。 Therefore, regardless of the alkali component concentration (TMAH concentration) and the dissolved resist concentration, the absorbed carbon dioxide concentration of the developing solution can be measured by using the density meter by this correspondence relationship (linear relationship).

演算部33で、現像液の密度と吸収二酸化炭素濃度の関係を利用することで、容易に現像液の吸収二酸化炭素濃度を測定することができる。 By using the relationship between the density of the developing solution and the absorbed carbon dioxide concentration, the calculation unit 33 can easily measure the absorbed carbon dioxide concentration of the developing solution.

〔第五実施形態〕
図6は、本実施形態の現像液管理装置Dの説明をするための現像工程の模式図である。本発明の現像液管理装置Dが、現像工程設備A、補充液貯留部B、循環攪拌機構Cなどとともに図示されている。なお、第一実施形態、及び第二実施形態の構成と同様の構成には同一符号を付して説明を省略する場合がある。
[Fifth Embodiment]
FIG. 6 is a schematic diagram of a developing process for explaining the developing solution management apparatus D of this embodiment. A developing solution management device D of the present invention is illustrated together with a developing process facility A, a replenisher storage part B, a circulation stirring mechanism C, and the like. The same components as those of the first and second embodiments may be designated by the same reference numerals and the description thereof may be omitted.

本実施形態の現像液管理装置Dは、測定部1と、制御手段21、及び演算手段37を備えている。本実施形態では、第四実施形態とは異なり、制御手段21と、演算を行う演算手段37とが、別体の装置で構成されている。本実施形態の測定部1は、導電率計11、第1濃度測定手段12、及び密度計13Bを備える。演算手段37は、現像液の吸収二酸化炭素濃度と密度との間の対応関係に基づいて密度計13Bにより測定された現像液の密度から現像液の吸収二酸化炭素濃度を算出する。 The developing solution management apparatus D of this embodiment includes a measuring unit 1, a control unit 21, and a calculation unit 37. In the present embodiment, unlike the fourth embodiment, the control unit 21 and the calculation unit 37 that performs the calculation are configured as separate devices. The measuring unit 1 of the present embodiment includes a conductivity meter 11, a first concentration measuring unit 12, and a density meter 13B. The calculating means 37 calculates the absorbed carbon dioxide concentration of the developer from the density of the developer measured by the densitometer 13B based on the correspondence relationship between the absorbed carbon dioxide concentration of the developer and the density.

制御部31は、測定部1で測定された溶解フォトレジスト濃度と、演算手段37で算出された吸収二酸化炭素濃度とに基づいて、データ記憶部23に記憶されている導電率データのうち、測定された溶解フォトレジスト濃度及び測定された吸収二酸化炭素濃度により特定される濃度領域の導電率値を求める。求めた導電率値を現像液の導電率の制御目標値として設定する。 Based on the dissolved photoresist concentration measured by the measuring unit 1 and the absorbed carbon dioxide concentration calculated by the calculating unit 37, the control unit 31 measures the conductivity data stored in the data storage unit 23. A conductivity value in a concentration region specified by the dissolved photoresist concentration thus obtained and the measured absorbed carbon dioxide concentration is obtained. The obtained conductivity value is set as a control target value for the conductivity of the developer.

その他の構成、動作などは、第四実施形態と同様であるので、省略する。 The other configurations and operations are the same as those in the fourth embodiment, and will be omitted.

以上のとおり、本実施形態の現像液管理装置Dによれば、現像液がどのような溶解フォトレジスト濃度及び吸収二酸化炭素濃度となろうとも、現像液中の現像作用に活性を有する成分が一定に維持されるので、所望の現像性能を維持でき、所望の線幅及び残膜厚を維持できる現像処理を実現できる。 As described above, according to the developing solution management apparatus D of the present embodiment, no matter what the dissolved photoresist concentration and the absorbed carbon dioxide concentration of the developing solution are, the components active in the developing action in the developing solution are constant. Therefore, it is possible to realize a developing process capable of maintaining desired developing performance and maintaining desired line width and residual film thickness.

次に、本実施形態の現像液管理装置Dの変形例について、説明する。 Next, a modified example of the developing solution management device D of this embodiment will be described.

図1〜4,6では、現像液管理装置Dの測定部1は、制御手段21や演算手段36,37と一体に構成される現像液管理装置Dを描いたが、本実施形態の現像液管理装置Dはこれに限定されない。測定部1を別体の構成とすることもできる。 1 to 4 and 6, the measuring unit 1 of the developing solution management device D depicts the developing solution management device D integrally formed with the control means 21 and the computing means 36 and 37. The management device D is not limited to this. The measuring unit 1 can be configured separately.

測定部1において、それぞれの採用する測定原理に応じて最適な設置方法があるので、例えば、測定部1を現像液管路80にインライン接続したり、現像液貯留槽61に測定プローブを浸漬するように設置したりするのでもよい。導電率計11、第1濃度測定手段12、第1特性値測定手段12A、第2濃度測定手段13、第2特性値測定手段13A、及び密度計13Bの各測定手段がそれぞれ別個に設置されるのでもよい。本実施形態の現像液管理装置Dは、各測定手段が制御手段21や演算手段36,37との測定データのやり取りができるように相互に連絡した態様となっていれば実現可能である。 In the measurement unit 1, there is an optimal installation method depending on the measurement principle adopted, and therefore, for example, the measurement unit 1 is connected in-line to the developer pipeline 80, or the measurement probe is immersed in the developer storage tank 61. It may be installed like this. The conductivity meter 11, the first concentration measuring unit 12, the first characteristic value measuring unit 12A, the second concentration measuring unit 13, the second characteristic value measuring unit 13A, and the density meter 13B are separately installed. May be The developing solution management apparatus D of the present embodiment can be realized as long as each measuring means communicates with the control means 21 and the calculation means 36, 37 so as to exchange measurement data with each other.

各測定手段が採用した測定原理に応じて、試薬添加が必要であれば、各測定手段がそのための配管を備えていてもよいし、廃液が必要であれば、各測定手段がそのための管路を備えていてもよい。各測定手段が直列に接続されていなくても、本実施形態の現像液管理装置Dは実現可能である。 Depending on the measurement principle adopted by each measuring means, if reagent addition is required, each measuring means may be provided with a pipe for it, and if a waste liquid is required, each measuring means has a conduit for that purpose. May be provided. The developing solution management apparatus D of this embodiment can be realized even if the respective measuring means are not connected in series.

図1〜4,6では、現像液に補給される補充液を送液する管路に設けられた制御弁41〜43が現像液管理装置Dの内部部品となるように、現像液管理装置Dが補充液用管路81、82及び純水用管路83と接続された態様を描いたが、本実施形態の現像液管理装置Dはこれに限定されない。現像液管理装置は制御弁41〜43を内部部品として備えていなくてもよく、現像液に補充液を補給するための管路81〜83と接続されていなくてもよい。 In FIGS. 1 to 4 and 6, the developing solution management device D is configured so that the control valves 41 to 43 provided in the pipeline for feeding the replenisher solution to be supplied to the developing solution become internal parts of the developing solution management device D. Is drawn to be connected to the replenisher pipe lines 81 and 82 and the pure water pipe line 83, but the developing solution management apparatus D of the present embodiment is not limited to this. The developing solution management device may not include the control valves 41 to 43 as internal parts, and may not be connected to the pipelines 81 to 83 for supplying the replenishing solution to the developing solution.

本実施形態の現像液管理装置Dにおける制御手段21と、補充液を補給するための管路に設けられた制御弁41〜43とは、制御弁41〜43が現像液管理装置Dの制御手段21により発せられた制御信号を受け取って制御されるように相互に連絡した態様となっていればよい。制御弁が現像液管理装置Dの内部部品となっていなくても、本実施形態の現像液管理装置Dは実現可能である。 The control means 21 in the developing solution management device D of this embodiment and the control valves 41 to 43 provided in the pipeline for replenishing the replenishing solution are the control means of the developing solution management device D. It suffices that the control signals issued by 21 are communicated with each other so as to be controlled. Even if the control valve is not an internal component of the developing solution management apparatus D, the developing solution management apparatus D of this embodiment can be realized.

〔第六実施形態〕
図7は、本実施形態の現像液管理装置Dの説明をするための模式図である。本実施形態の現像液管理装置Dは、第一実施形態と同様の構成を有している。なお、第一実施形態から第五実施形態の構成と同様の構成には同一符号を付して説明を省略する場合がある。
[Sixth embodiment]
FIG. 7 is a schematic diagram for explaining the developing solution management apparatus D of this embodiment. The developer management device D of this embodiment has the same configuration as that of the first embodiment. The same components as those of the first to fifth embodiments may be designated by the same reference numerals and the description thereof may be omitted.

第六実施形態の表示手段22は、図7に示されるように、現像液の導電率値、アルカリ成分濃度値、溶解フォトレジスト濃度値及び吸収二酸化炭素濃度値のうち少なくとも導電率値及びアルカリ成分濃度値のうちのいずれか一方を、測定時刻又は測定開始からの経過時間を指標にしてグラフ表示することができる。 As shown in FIG. 7, the display means 22 of the sixth embodiment uses at least the conductivity value and the alkali component of the developer conductivity value, the alkali component concentration value, the dissolved photoresist concentration value and the absorbed carbon dioxide concentration value. Either one of the concentration values can be displayed as a graph using the measurement time or the elapsed time from the start of measurement as an index.

また、本実施形態においては、表示手段22は、特性値、及び成分濃度のグラフ表示の切替を、表示手段22の画面上に設定された表示切替手段である切替ボタンBTにより行うことができる。 Further, in the present embodiment, the display unit 22 can switch the graph display of the characteristic value and the component concentration by the switching button BT which is the display switching unit set on the screen of the display unit 22.

第二実施形態から第五実施形態においても、第六実施形態の表示手段22を適用することができる。本発明の現像液管理装置は、上記のような各種の変形例が許容されるにもかかわらず、現像液の溶解フォトレジスト濃度及び吸収二酸化炭素濃度を指標として特定される濃度領域ごとに所定の現像性能となることが予め確認された前記現像液の導電率値を有する導電率データを備え、現像液の溶解フォトレジスト濃度の測定値及び吸収二酸化炭素濃度の測定値により特定される濃度領域の導電率データの導電率値を制御目標値として、現像液の導電率が前記制御目標値となるように前記現像液に補給される補充液を送液する。 The display means 22 of the sixth embodiment can also be applied to the second to fifth embodiments. The developing solution management apparatus of the present invention, although various modifications as described above are allowed, a predetermined concentration area specified for each of the dissolved photoresist concentration and absorbed carbon dioxide concentration of the developing solution as an index. Provided with the conductivity data having the conductivity value of the developer previously confirmed to be the development performance, the concentration region of the concentration range specified by the measured value of the dissolved photoresist concentration of the developer and the measured value of the absorbed carbon dioxide concentration. Using the conductivity value of the conductivity data as a control target value, a replenisher solution to be replenished to the developer is fed so that the conductivity of the developer becomes the control target value.

以上のとおり、本発明の現像液の管理方法、及び現像液管理装置によれば、現像液がどのような溶解フォトレジスト濃度及び吸収二酸化炭素濃度となろうとも、現像液中の現像作用に活性を有する成分が一定に維持されるので、所望の現像性能を維持でき、所望の線幅及び残膜厚を維持できる現像処理を実現できる。 As described above, according to the developing solution management method and the developing solution management apparatus of the present invention, no matter what the dissolved photoresist concentration and absorbed carbon dioxide concentration of the developing solution may be, it is active in the developing action in the developing solution. Since the component having a is maintained constant, it is possible to realize a development process capable of maintaining a desired developing performance and a desired line width and residual film thickness.

現像液管理装置の好ましい態様として、溶解フォトレジスト濃度、吸収二酸化炭素濃度を多変量解析法により算出するため、溶解フォトレジスト濃度、吸収二酸化炭素濃度を精度良く求めることができる。これらの溶解フォトレジスト濃度、及び吸収二酸化炭素濃度に基づいて導電率データから目標となる導電率値を求めることができる。 As a preferred embodiment of the developer management apparatus, the dissolved photoresist concentration and the absorbed carbon dioxide concentration are calculated by the multivariate analysis method, so that the dissolved photoresist concentration and the absorbed carbon dioxide concentration can be accurately obtained. A target conductivity value can be obtained from the conductivity data based on the dissolved photoresist concentration and the absorbed carbon dioxide concentration.

さらに、現像液管理装置の好ましい態様として、現像液の吸収二酸化炭素濃度と密度との間の対応関係に基づいて密度計により測定された現像液の密度から現像液の吸収二酸化炭素濃度を算出する。これにより、より簡便に現像液の吸収二酸化炭素濃度を求めることができる。この吸収二酸化炭素濃度、及び別途と求められた溶解フォトレジスト濃度に基づいて、導電率データから目標となる導電率値を求めることができる。 Further, as a preferred embodiment of the developer management device, the absorbed carbon dioxide concentration of the developer is calculated from the density of the developer measured by a density meter based on the correspondence relationship between the absorbed carbon dioxide concentration of the developer and the density. .. Thereby, the absorbed carbon dioxide concentration of the developer can be obtained more easily. Based on this absorbed carbon dioxide concentration and the separately determined dissolved photoresist concentration, a target conductivity value can be calculated from the conductivity data.

A…現像工程設備、B…補充液貯留部、C…循環攪拌機構、D…現像液管理装置
1…測定部
11…導電率計、12…第1濃度測定手段、12A…第1特性値測定手段、13…第2濃度測定手段、13A…第2特性値測定手段、13B…密度計
14…サンプリングポンプ、15…サンプリング配管、16…出口側配管
21…制御手段(例えばコンピュータ)、22・・・表示手段
23…データ記憶部、
31…制御部、32,33…演算部、36,37…演算手段
41〜43…制御弁、44、45、46、47…バルブ
61…現像液貯留槽、62…オーバーフロー槽、63…液面計、64…現像室フード、65…ローラーコンベア、66…基板、67…現像液シャワーノズル
71…廃液ポンプ、72、74…循環ポンプ、73、75…フィルター
80…現像液管路、81、82…補充液(現像原液及び/又は新液)用管路、83…純水用管路、84…合流管路、85…循環管路、86…窒素ガス用管路
91、92…補充液(現像原液及び/又は新液)貯留槽
A... Development process equipment, B... Replenisher storage part, C... Circulating stirring mechanism, D... Developer management device 1... Measuring part 11... Conductivity meter, 12... First concentration measuring means, 12A... First characteristic value measurement Means, 13... Second concentration measuring means, 13A... Second characteristic value measuring means, 13B... Density meter 14... Sampling pump, 15... Sampling pipe, 16... Exit side pipe 21... Control means (for example, computer), 22... Display means 23... data storage unit,
31... Control part, 32, 33... Calculation part, 36, 37... Calculation means 41-43... Control valve, 44, 45, 46, 47... Valve 61... Developer storage tank, 62... Overflow tank, 63... Liquid level Total, 64... Developing chamber hood, 65... Roller conveyor, 66... Substrate, 67... Developer shower nozzle 71... Waste liquid pump, 72, 74... Circulation pump, 73, 75... Filter 80... Developer solution line, 81, 82 ... Replenisher (development stock solution and/or new solution) pipeline, 83... Pure water pipeline, 84... Combined pipeline, 85... Circulation pipeline, 86... Nitrogen gas pipelines 91, 92... Replenisher ( Stock solution for development and/or new solution)

Claims (11)

繰り返し使用される、アルカリ性を示す現像液の溶解フォトレジスト濃度及び吸収二酸化炭素濃度を指標として、前記溶解フォトレジスト濃度と前記吸収二酸化炭素濃度との組み合わせ毎に特定される濃度領域ごとに所定の現像性能となることが予め確認された前記現像液の導電率値を有する導電率データが格納されているデータ記憶部と、
前記現像液の溶解フォトレジスト濃度の測定値及び吸収二酸化炭素濃度の測定値により特定される濃度領域の前記データ記憶部に格納された前記導電率値を制御目標値として、前記現像液の導電率が前記制御目標値となるように、前記現像液に補給される補充液を送液する管路に設けられた制御弁に制御信号を発する制御部と、
を備えた制御手段と、
前記現像液の導電率値、溶解フォトレジスト濃度値及び吸収二酸化炭素濃度値のうち少なくとも導電率値を表示する表示手段と、
を備える現像液管理装置。
Predetermined development for each concentration region specified for each combination of the dissolved photoresist concentration and the absorbed carbon dioxide concentration, using the dissolved photoresist concentration and absorbed carbon dioxide concentration of a developer that is repeatedly used as an index A data storage unit that stores conductivity data having a conductivity value of the developer that has been previously confirmed to be performance;
Conductivity of the developer, with the conductivity value stored in the data storage unit of the concentration region specified by the measured value of the dissolved photoresist concentration of the developer and the measured value of the absorbed carbon dioxide concentration as the control target value. A control section for issuing a control signal to a control valve provided in a conduit for feeding a replenisher solution to be replenished with the developing solution,
With a control means,
Display means for displaying at least conductivity values of the conductivity values of the developer, dissolve the photoresist concentration values and absorption of carbon dioxide concentration values,
A developing solution management device.
前記表示手段に表示される表示対象を切り替える表示切替手段、をさらに備える請求項1に記載の現像液管理装置。 The developer management apparatus according to claim 1, further comprising a display switching unit that switches a display target displayed on the display unit. 繰り返し使用される、アルカリ性を示す現像液の溶解フォトレジスト濃度及び吸収二酸化炭素濃度を指標として、前記溶解フォトレジスト濃度と前記吸収二酸化炭素濃度との組み合わせ毎に特定される濃度領域ごとに所定の現像性能となることが予め確認された前記現像液の導電率値を有する導電率データが格納されているデータ記憶部と、
前記現像液の溶解フォトレジスト濃度の測定値及び吸収二酸化炭素濃度の測定値により特定される濃度領域の前記データ記憶部に格納された前記導電率値を制御目標値として、前記現像液の導電率が前記制御目標値となるように、前記現像液に補給される補充液を送液する管路に設けられた制御弁に制御信号を発する制御部と、
を備えた制御手段と、
前記現像液の導電率値、溶解フォトレジスト濃度値及び吸収二酸化炭素濃度値のうち少なくとも導電率値を、測定時刻又は測定開始からの経過時間を指標にしてグラフ表示する表示手段と、
を備える現像液管理装置。
Predetermined development for each concentration region specified for each combination of the dissolved photoresist concentration and the absorbed carbon dioxide concentration, using the dissolved photoresist concentration and absorbed carbon dioxide concentration of a developer that is repeatedly used as an index A data storage unit that stores conductivity data having a conductivity value of the developer that has been previously confirmed to be performance;
Conductivity of the developer, with the conductivity value stored in the data storage unit of the concentration region specified by the measured value of the dissolved photoresist concentration of the developer and the measured value of the absorbed carbon dioxide concentration as the control target value. A control section for issuing a control signal to a control valve provided in a conduit for feeding a replenisher solution to be replenished with the developing solution,
With a control means,
Conductivity value of the developer, at least conductivity values among dissolve the photoresist concentration values and absorption carbon dioxide concentration values, display means for displaying the graph in the indicator the time elapsed from the measurement time or the measurement start,
A developing solution management device.
前記表示手段に表示される表示対象を切り替える表示切替手段、をさらに備える請求項3に記載の現像液管理装置。 The developer management apparatus according to claim 3, further comprising a display switching unit that switches a display target displayed on the display unit. 前記現像液の溶解フォトレジスト濃度と相関のある前記現像液の特性値と前記現像液の吸収二酸化炭素濃度と相関のある前記現像液の特性値とを含む前記現像液の複数の特性値を測定する複数の測定装置、をさらに備え、
前記制御手段が、さらに、
前記複数の測定装置により測定された前記現像液の複数の特性値から、多変量解析法により、前記現像液の溶解フォトレジスト濃度の測定値及び吸収二酸化炭素濃度の測定値を算出する演算部、
を備える請求項1から4のいずれか一項に記載の現像液管理装置。
Measuring a plurality of characteristic values of the developing solution including a characteristic value of the developing solution correlated with the dissolved photoresist concentration of the developing solution and a characteristic value of the developing solution correlated with the absorbed carbon dioxide concentration of the developing solution. Further comprising a plurality of measuring devices,
The control means further comprises
From a plurality of characteristic values of the developing solution measured by the plurality of measuring devices, by a multivariate analysis method, a calculation unit that calculates a measured value of a dissolved photoresist concentration of the developing solution and a measured value of an absorbed carbon dioxide concentration,
The developer management device according to claim 1, further comprising:
前記現像液の溶解フォトレジスト濃度と相関のある前記現像液の特性値と前記現像液の吸収二酸化炭素濃度と相関のある前記現像液の特性値とを含む前記現像液の複数の特性値を測定する複数の測定装置と、
前記複数の測定装置により測定された前記現像液の複数の特性値から、多変量解析法を用いて、前記現像液の溶解フォトレジスト濃度の測定値及び吸収二酸化炭素濃度の測定値を算出する演算手段と、
をさらに備える請求項1から4のいずれか一項に記載の現像液管理装置。
Measuring a plurality of characteristic values of the developing solution including a characteristic value of the developing solution correlated with the dissolved photoresist concentration of the developing solution and a characteristic value of the developing solution correlated with the absorbed carbon dioxide concentration of the developing solution. Multiple measuring devices,
From a plurality of characteristic values of the developing solution measured by the plurality of measuring devices, using a multivariate analysis method, a calculation for calculating a measured value of dissolved photoresist concentration and a measured value of absorbed carbon dioxide concentration of the developing solution. Means and
The developer management apparatus according to claim 1, further comprising:
密度計を備え、
前記制御手段が、さらに、
前記現像液の吸収二酸化炭素濃度と密度との間の対応関係に基づいて前記密度計により測定された前記現像液の密度値から前記現像液の吸収二酸化炭素濃度値を算出する演算部、
を備える請求項1から4のいずれか一項に記載の現像液管理装置。
Equipped with a density meter,
The control means further comprises
An arithmetic unit that calculates the absorbed carbon dioxide concentration value of the developer from the density value of the developer measured by the densitometer based on the correspondence relationship between the absorbed carbon dioxide concentration of the developer and the density,
The developer management device according to claim 1, further comprising:
密度計と、
前記現像液の吸収二酸化炭素濃度と密度との間の対応関係に基づいて前記密度計により測定された前記現像液の密度値から前記現像液の吸収二酸化炭素濃度値を算出する演算手段と、
をさらに備える請求項1から4のいずれか一項に記載の現像液管理装置。
A densitometer,
Calculation means for calculating the absorbed carbon dioxide concentration value of the developer from the density value of the developer measured by the densitometer based on the correspondence between the absorbed carbon dioxide concentration of the developer and the density,
The developer management apparatus according to claim 1, further comprising:
繰り返し使用される、アルカリ性を示す現像液の溶解フォトレジスト濃度と相関のある吸光度及び吸収二酸化炭素濃度を指標として、前記吸光度と前記吸収二酸化炭素濃度との組み合わせ毎に特定される濃度領域ごとに所定の現像性能となることが予め確認された前記現像液のアルカリ成分濃度値を有するアルカリ成分濃度データが格納されているデータ記憶部と、
前記現像液の吸光度及び吸収二酸化炭素濃度の測定値により特定される濃度領域の前記データ記憶部に格納された前記アルカリ成分濃度値を制御目標値として、前記現像液のアルカリ成分濃度が前記制御目標値となるように前記現像液に補給される補充液を送液する管路に設けられた制御弁に制御信号を発する制御部と、
を備えた制御手段と、
前記現像液のアルカリ成分濃度値、溶解フォトレジスト濃度と相関のある吸光度値、及び、吸収二酸化炭素濃度値のうち少なくとも前記アルカリ成分濃度値を表示する表示手段と、
を備える現像液管理装置。
Repeatedly used, the absorbance and the absorbed carbon dioxide concentration correlated with the dissolved photoresist concentration of the developer exhibiting alkalinity is used as an index , and the concentration is specified for each concentration region specified for each combination of the absorbance and the absorbed carbon dioxide concentration. A data storage unit in which alkaline component concentration data having an alkaline component concentration value of the developer, which has been previously confirmed to be the developing performance of, is stored,
With the alkali component concentration value stored in the data storage unit in the concentration region specified by the measured values of the absorbance and absorbed carbon dioxide concentration of the developer as a control target value, the alkali component concentration of the developer is the control target. A control unit for issuing a control signal to a control valve provided in a pipe line for feeding a replenisher solution to be replenished to the developer so that the value becomes
With a control means,
Alkaline component concentration value of the developer, absorbance value correlated with the dissolved photoresist concentration, and a display means for displaying at least the alkaline component concentration value of the absorbed carbon dioxide concentration value,
A developing solution management device.
繰り返し使用される、アルカリ性を示す現像液の溶解フォトレジスト濃度と相関のある吸光度及び吸収二酸化炭素濃度を指標として、前記吸光度と前記吸収二酸化炭素濃度との組み合わせ毎に特定される濃度領域ごとに所定の現像性能となることが予め確認された前記現像液のアルカリ成分濃度値を有するアルカリ成分濃度データが格納されているデータ記憶部と、
前記現像液の吸光度及び吸収二酸化炭素濃度の測定値により特定される濃度領域の前記データ記憶部に格納された前記アルカリ成分濃度値を制御目標値として、前記現像液のアルカリ成分濃度が前記制御目標値となるように前記現像液に補給される補充液を送液する管路に設けられた制御弁に制御信号を発する制御部と、
を備えた制御手段と、
前記現像液のアルカリ成分濃度値、溶解フォトレジスト濃度と相関のある吸光度値、及び、吸収二酸化炭素濃度値のうち少なくとも前記アルカリ成分濃度値を、測定時間又は測定開始からの経過時間を指標としてグラフ表示する表示手段と、
を備える現像液管理装置。
Repeatedly used, the absorbance and the absorbed carbon dioxide concentration correlated with the dissolved photoresist concentration of the developer exhibiting alkalinity is used as an index , and the concentration is specified for each concentration region specified for each combination of the absorbance and the absorbed carbon dioxide concentration. A data storage unit in which alkaline component concentration data having an alkaline component concentration value of the developer, which has been previously confirmed to be the developing performance of, is stored,
With the alkali component concentration value stored in the data storage unit in the concentration region specified by the measured values of the absorbance and absorbed carbon dioxide concentration of the developer as a control target value, the alkali component concentration of the developer is the control target. A control unit for issuing a control signal to a control valve provided in a pipe line for feeding a replenisher solution to be replenished to the developer so that the value becomes
With a control means,
Alkali component concentration value of the developer, absorbance value correlated with the dissolved photoresist concentration, and at least the alkaline component concentration value of the absorbed carbon dioxide concentration value, a graph with the elapsed time from the measurement time or measurement start as an index Display means for displaying,
A developing solution management device.
前記表示手段に表示される表示対象を切り替える表示切替手段、をさらに備える請求項9又は10に記載の現像液管理装置。
The developer management apparatus according to claim 9, further comprising a display switching unit that switches a display target displayed on the display unit.
JP2017009836A 2017-01-23 2017-01-23 Developer management device Expired - Fee Related JP6712415B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017009836A JP6712415B2 (en) 2017-01-23 2017-01-23 Developer management device
CN201711232620.8A CN108345183A (en) 2017-01-23 2017-11-29 Developer solution managing device
KR1020170161409A KR20180087124A (en) 2017-01-23 2017-11-29 Developing solution management apparatus
TW106141776A TW201827947A (en) 2017-01-23 2017-11-30 Developing solution management apparatus comprising a control means and a display means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017009836A JP6712415B2 (en) 2017-01-23 2017-01-23 Developer management device

Publications (2)

Publication Number Publication Date
JP2018120899A JP2018120899A (en) 2018-08-02
JP6712415B2 true JP6712415B2 (en) 2020-06-24

Family

ID=62962095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017009836A Expired - Fee Related JP6712415B2 (en) 2017-01-23 2017-01-23 Developer management device

Country Status (4)

Country Link
JP (1) JP6712415B2 (en)
KR (1) KR20180087124A (en)
CN (1) CN108345183A (en)
TW (1) TW201827947A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018120897A (en) * 2017-01-23 2018-08-02 株式会社平間理化研究所 Device for monitoring concentration of developer, and developer management device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102262358B1 (en) * 2020-04-08 2021-06-08 주식회사 에이치에스테크놀로지 Developer control system having concentration measurement apparatus and gas supply

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5890708A (en) * 1981-11-25 1983-05-30 Tdk Corp Magnetic core
JPS6228128A (en) * 1985-07-31 1987-02-06 Shimano & Co Ltd Manufacture of oval gear
JPS62186265A (en) * 1986-02-12 1987-08-14 Canon Inc Developing device
JPH067910B2 (en) * 1987-02-10 1994-02-02 日立プラント建設株式会社 Development stock solution diluter
JP2561578B2 (en) 1991-08-07 1996-12-11 株式会社平間理化研究所 Developer management device
JP3686822B2 (en) * 2000-05-19 2005-08-24 東京エレクトロン株式会社 Development processing apparatus and development processing method
JP2004271974A (en) * 2003-03-10 2004-09-30 Fuji Photo Film Co Ltd Method for detecting fatigue degree of developer for photosensitive lithographic printing plate and method for controlling developer
JP4281439B2 (en) * 2003-07-30 2009-06-17 三菱化学エンジニアリング株式会社 Developer supply device
JP4366490B2 (en) * 2003-08-22 2009-11-18 長瀬産業株式会社 Developer supply method and apparatus
JP2005249818A (en) * 2004-03-01 2005-09-15 Nishimura Yasuji Method and apparatus for controlling developer for photoresist
JP4839820B2 (en) * 2005-12-19 2011-12-21 三菱化学エンジニアリング株式会社 Developer supply device
CN103852978B (en) * 2006-11-30 2019-03-22 三菱化学工程株式会社 Concentration regulating method, modulating device and the developer solution of developer solution
JP2011128455A (en) * 2009-12-18 2011-06-30 Nagase & Co Ltd Device for measuring concentration of carbonic acid-based salt, system for controlling alkali developing solution, and method for measuring concentration of carbonic acid-based salt
KR20160010259A (en) * 2014-07-17 2016-01-27 가부시키가이샤 히라마 리카 켄큐쇼 Solid particle recovering and removing apparatus, liquid managing apparatus and etching solution managing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018120897A (en) * 2017-01-23 2018-08-02 株式会社平間理化研究所 Device for monitoring concentration of developer, and developer management device

Also Published As

Publication number Publication date
TW201827947A (en) 2018-08-01
CN108345183A (en) 2018-07-31
JP2018120899A (en) 2018-08-02
KR20180087124A (en) 2018-08-01

Similar Documents

Publication Publication Date Title
JP6721157B2 (en) Method and apparatus for measuring component concentration of developer, and method and apparatus for managing developer
TWI695236B (en) Managing method and apparatus for developing solution
JP6713658B2 (en) Component concentration measuring device for developer, component concentration measuring method, developer controlling device, and developer controlling method
JP6712415B2 (en) Developer management device
JP6624762B2 (en) Method and apparatus for managing developer
KR20180087126A (en) Developing apparatus
JP6736087B2 (en) Developer concentration monitoring device and developer management device
JP2018120900A (en) Developer management device
JP2018120893A (en) Device for measuring component concentration of developer, and developer management device
JP6763608B2 (en) Carbon dioxide concentration display device for developer and developer management device
JP2018120895A (en) Developing device
JP2018120898A (en) Development device
TW201841080A (en) Concentration monitoring apparatus for developing solution and developing solution management apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200518

R150 Certificate of patent or registration of utility model

Ref document number: 6712415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees