JP2018120899A - Developer management device - Google Patents

Developer management device Download PDF

Info

Publication number
JP2018120899A
JP2018120899A JP2017009836A JP2017009836A JP2018120899A JP 2018120899 A JP2018120899 A JP 2018120899A JP 2017009836 A JP2017009836 A JP 2017009836A JP 2017009836 A JP2017009836 A JP 2017009836A JP 2018120899 A JP2018120899 A JP 2018120899A
Authority
JP
Japan
Prior art keywords
developer
concentration
value
carbon dioxide
absorbed carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017009836A
Other languages
Japanese (ja)
Other versions
JP6712415B2 (en
Inventor
中川 俊元
Toshimoto Nakagawa
俊元 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hirama Rika Kenkyusho Ltd
Original Assignee
Hirama Rika Kenkyusho Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=62962095&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2018120899(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hirama Rika Kenkyusho Ltd filed Critical Hirama Rika Kenkyusho Ltd
Priority to JP2017009836A priority Critical patent/JP6712415B2/en
Priority to CN201711232620.8A priority patent/CN108345183A/en
Priority to KR1020170161409A priority patent/KR20180087124A/en
Priority to TW106141776A priority patent/TW201827947A/en
Publication of JP2018120899A publication Critical patent/JP2018120899A/en
Application granted granted Critical
Publication of JP6712415B2 publication Critical patent/JP6712415B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/002Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor using materials containing microcapsules; Preparing or processing such materials, e.g. by pressure; Devices or apparatus specially designed therefor
    • G03F7/0022Devices or apparatus
    • G03F7/0025Devices or apparatus characterised by means for coating the developer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/3042Imagewise removal using liquid means from printing plates transported horizontally through the processing stations
    • G03F7/3071Process control means, e.g. for replenishing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • G03F7/322Aqueous alkaline compositions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Abstract

PROBLEM TO BE SOLVED: To provide a developer management device that can maintain desired developer performance and achieve a development process capable of maintaining a desired line width and a residual film thickness.SOLUTION: A developer management device D includes: control means 21 including a data memory 23 storing conductivity data having conductivity values of a developer that is repeatedly used and shows alkalinity and that is preliminarily confirmed to have predetermined development performances in each concentration region specified by the concentration of a dissolved photoresist and the concentration of absorbed carbon dioxide as indices in the developer, and a control part 31 transmitting a control signal to a control valve disposed in a pipeline where a replenisher for replenishing the developer is fed so as to control the conductivity of the developer to a control target value depending on a measurement value of the concentration of the dissolved photoresist and a measurement value of the concentration of absorbed carbon dioxide in the developer; and display means 22 for displaying at least either a conductivity value or an alkali component concentration value in the conductivity value, alkali component concentration value, dissolved photoresist concentration value and absorbed carbon dioxide concentration value of the developer.SELECTED DRAWING: Figure 1

Description

本発明は、現像液管理装置に関し、特に、半導体や液晶パネルにおける回路基板の現像工程等でフォトレジスト膜を現像するために繰り返し使用される、アルカリ性を示す現像液管理装置に関する。   The present invention relates to a developing solution management apparatus, and more particularly to an alkaline developing solution management apparatus that is repeatedly used to develop a photoresist film in a developing process of a circuit board in a semiconductor or a liquid crystal panel.

半導体や液晶パネル等における微細配線加工を実現するフォトリソグラフィーの現像工程には、基板の上に製膜されたフォトレジストを溶解する薬液として、アルカリ性を示す現像液(以下、「アルカリ性現像液」という。)が用いられている。   In the development process of photolithography that realizes fine wiring processing in a semiconductor, a liquid crystal panel, etc., as a chemical solution that dissolves the photoresist formed on the substrate, an alkaline developer (hereinafter referred to as “alkaline developer”) is used. .) Is used.

半導体や液晶パネル基板の製造工程では、近年、ウェハやガラス基板の大型化と配線加工の微細化及び高集積化が進められてきた。このような状況下、大型基板の配線加工の微細化及び高集積化を実現すべく、アルカリ性現像液の主要成分の濃度をより一層高精度に測定して現像液を維持管理することが必要となってきている。   In the manufacturing process of semiconductors and liquid crystal panel substrates, in recent years, the enlargement of wafers and glass substrates and the miniaturization and high integration of wiring processing have been promoted. Under such circumstances, it is necessary to measure and maintain the developer by measuring the concentration of the main component of the alkaline developer with higher accuracy in order to realize the miniaturization and high integration of the wiring processing of the large substrate. It has become to.

従来のアルカリ性現像液の成分濃度の測定は、アルカリ性現像液のアルカリ成分の濃度(以下、「アルカリ成分濃度」という。)と導電率との間に良好な直線関係が得られることを利用したものであった(例えば、特許文献1)。   The measurement of the conventional alkaline developer component concentration utilizes the fact that a good linear relationship can be obtained between the alkaline component concentration (hereinafter referred to as “alkali component concentration”) and the electrical conductivity of the alkaline developer. (For example, Patent Document 1).

しかしながら、近年、現像処理により、アルカリ性現像液が空気に触れる機会が増え、アルカリ性現像液が空気中の二酸化炭素を吸収するため、アルカリ性現像液の二酸化炭素の吸収量が増えている。吸収された二酸化炭素濃度が高くなると、従来法による現像液管理では、所定の線幅加工が維持できないなどの問題が生じている。   However, in recent years, the development process has increased the chance that the alkaline developer comes into contact with air, and the alkaline developer absorbs carbon dioxide in the air, so the amount of carbon dioxide absorbed by the alkaline developer has increased. When the absorbed carbon dioxide concentration becomes high, there is a problem that the predetermined line width processing cannot be maintained in the conventional developer management.

この問題は、アルカリ性現像液中の現像活性を有するアルカリ成分が、二酸化炭素の吸収により、炭酸塩を生じる反応に消費されるために起こっている。また、アルカリ性現像液中の現像活性を有するアルカリ成分が、フォトレジストの溶解により、フォトレジスト塩を生じる反応によっても消費されるために起こっている。   This problem occurs because an alkaline component having development activity in an alkaline developer is consumed in a reaction that produces carbonate by absorption of carbon dioxide. Further, this occurs because an alkali component having development activity in an alkaline developer is also consumed by a reaction that generates a photoresist salt due to dissolution of the photoresist.

このような問題点に対し、消費されて減少したアルカリ成分を補おうとする現像液管理が種々試みられている。これらの試みは、炭酸塩濃度を測定することにより、炭酸塩を生じる反応に消費されたアルカリ成分を、補充液により補って現像活性を有するアルカリ成分の濃度を一定化しようとするものである。フォトレジストの溶解により消費されたアルカリ成分についても同様である。これらは、炭酸塩やフォトレジスト塩となったアルカリ成分は、現像活性を失って失活している、との観点に立つものである(例えば、特許文献2)。   In order to solve such problems, various attempts have been made to manage the developing solution to compensate for the reduced alkaline component. In these attempts, the concentration of the alkali component having development activity is made constant by compensating for the alkali component consumed in the reaction for producing the carbonate by a replenisher by measuring the carbonate concentration. The same applies to the alkali component consumed by dissolution of the photoresist. These are based on the viewpoint that the alkali component that has become carbonate or photoresist salt loses development activity and is deactivated (for example, Patent Document 2).

特許第2561578号公報Japanese Patent No. 2561578 特開2008−283162号公報JP 2008-283162 A

しかしながら、このような種々の現像液管理の試みによっても、依然として、満足のいく現像液管理を実現することが難しかった。   However, even with such various developer management attempts, it has still been difficult to achieve satisfactory developer management.

本発明者が、現像液管理について鋭意研究したところ、炭酸塩やレジスト塩も現像液中で一部が遊離して現像作用に寄与すること、および、失活すると思われていたこれらの成分からの現像作用への寄与をも併せて考慮した現像液管理が現像液の導電率値を管理することによって実現できること、さらに、このような導電率の管理値は吸収二酸化炭素濃度及び溶解フォトレジスト濃度により様々に異なっていること、の知見を得た。   As a result of intensive research on the management of the developer, the present inventors have found that carbonates and resist salts are partly liberated in the developer and contribute to the developing action, and from these components that were supposed to be deactivated. The developer management that takes into account the contribution to the development action of the developer can be realized by managing the conductivity value of the developer. Furthermore, the conductivity management values include the absorbed carbon dioxide concentration and the dissolved photoresist concentration. I got the knowledge that it is different in various ways.

これは、炭酸塩やフォトレジスト塩となったアルカリ成分は失活したのではなく、一部が遊離して現像作用に寄与すること、そして、現像活性を有するアルカリ成分や炭酸塩及びレジスト塩から遊離して現像作用に寄与する成分がいずれも導電率に作用すること、に基づくものと思われる。すなわち、現像作用を有する成分の総体が、現像液の導電率値により管理することにより最適に管理されることを、発明者が見出し、本発明に至った。   This is because the alkali component that became carbonate or photoresist salt was not deactivated, but partly liberated and contributed to the developing action, and from the alkali component, carbonate and resist salt having development activity It seems that this is based on the fact that any component that liberates and contributes to the developing action acts on the conductivity. That is, the inventor found out that the total of the components having a developing action is optimally managed by controlling the conductivity value of the developer, and the present invention has been achieved.

本発明は、上記の課題を解決すべくなされたもので、フォトレジストに対して所定の現像性能を達成することができる現像液管理装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a developer management apparatus capable of achieving a predetermined development performance for a photoresist.

前記目的を達成するために、本発明の現像液管理装置は、繰り返し使用される、アルカリ性を示す現像液の溶解フォトレジスト濃度及び吸収二酸化炭素濃度を指標として特定される濃度領域ごとに所定の現像性能となることが予め確認された前記現像液の導電率値を有する導電率データが格納されているデータ記憶部と、前記現像液の溶解フォトレジスト濃度の測定値及び吸収二酸化炭素濃度の測定値により特定される濃度領域の前記データ記憶部に格納された前記導電率値を制御目標値として、前記現像液の導電率が前記制御目標値となるように、前記現像液に補給される補充液を送液する管路に設けられた制御弁に制御信号を発する制御部と、を備えた制御手段と、前記現像液の導電率値、アルカリ成分濃度値、溶解フォトレジスト濃度値及び吸収二酸化炭素濃度値のうち少なくとも導電率値及びアルカリ成分濃度値のうちのいずれか一方を表示する表示手段と、を備える。   In order to achieve the above object, the developer management apparatus of the present invention provides a predetermined development for each concentration region that is repeatedly used and is specified using the dissolved photoresist concentration and the absorbed carbon dioxide concentration of the developer exhibiting alkalinity as an index. A data storage unit storing conductivity data having conductivity values of the developer that have been confirmed in advance to be performance, a measured value of dissolved photoresist concentration and a measured value of absorbed carbon dioxide concentration of the developer A replenisher that is replenished to the developer so that the conductivity of the developer becomes the control target value, with the conductivity value stored in the data storage unit in the concentration region specified by A control unit that emits a control signal to a control valve provided in a conduit for supplying the liquid, and a conductivity value, an alkali component concentration value, and a dissolved photoresist concentration of the developer. And a display means for displaying either one of at least conductivity values and alkaline component concentration value of the absorbing carbon dioxide concentration value.

本発明の現像液管理装置は前記表示手段に表示される表示対象を切り替える表示切替手段、をさらに備えることが好ましい。   The developer management apparatus of the present invention preferably further comprises display switching means for switching a display target displayed on the display means.

本発明の現像液管理装置は、繰り返し使用される、アルカリ性を示す現像液の溶解フォトレジスト濃度及び吸収二酸化炭素濃度を指標として特定される濃度領域ごとに所定の現像性能となることが予め確認された前記現像液の導電率値を有する導電率データが格納されているデータ記憶部と、前記現像液の溶解フォトレジスト濃度の測定値及び吸収二酸化炭素濃度の測定値により特定される濃度領域の前記データ記憶部に格納された前記導電率値を制御目標値として、前記現像液の導電率が前記制御目標値となるように、前記現像液に補給される補充液を送液する管路に設けられた制御弁に制御信号を発する制御部と、を備えた制御手段と、前記現像液の導電率値、アルカリ成分濃度値、溶解フォトレジスト濃度値及び吸収二酸化炭素濃度値のうち少なくとも導電率値及びアルカリ成分濃度値のうちのいずれか一方を、測定時刻又は測定開始からの経過時間を指標にしてグラフ表示する表示手段と、を備える。   The developer management apparatus of the present invention has been confirmed in advance to have a predetermined development performance for each concentration region that is repeatedly used and is specified using the dissolved photoresist concentration and absorbed carbon dioxide concentration of the developer exhibiting alkalinity as an index. A data storage unit storing conductivity data having conductivity values of the developer, and the concentration region specified by the measured value of the dissolved photoresist concentration and the measured value of absorbed carbon dioxide concentration of the developer. Provided in a conduit for supplying a replenisher to be replenished to the developer so that the conductivity of the developer becomes the control target value with the conductivity value stored in the data storage unit as the control target value. A control unit that issues a control signal to the control valve, and a conductivity value, an alkali component concentration value, a dissolved photoresist concentration value, and an absorbed carbon dioxide concentration value of the developer. Among one of the at least conductivity values and alkaline component concentration value, comprising display means for displaying the graph in the indicator the time elapsed from the measurement time or the measurement start, the.

本発明の現像液管理装置は前記表示手段に表示される表示対象を切り替える表示切替手段、をさらに備えることが好ましい。   The developer management apparatus of the present invention preferably further comprises display switching means for switching a display target displayed on the display means.

本発明の現像液管理装置によれば、現像液がどのような溶解フォトレジスト濃度及び吸収二酸化炭素濃度となろうとも、現像液中の現像作用に活性を有する成分が一定に維持されるので、所望の現像性能を維持でき、所望の線幅及び残膜厚を維持できる現像処理を実現できる。また、各種データ、及びグラフを表示することができる。   According to the developer management apparatus of the present invention, no matter what dissolved photoresist concentration and absorbed carbon dioxide concentration the developer has, the active component in the developing action in the developer is maintained constant. A desired development performance can be maintained, and a development process capable of maintaining a desired line width and remaining film thickness can be realized. Various data and graphs can be displayed.

本発明の現像液管理装置の好ましい態様によれば、前記現像液の溶解フォトレジスト濃度と相関のある前記現像液の特性値と前記現像液の吸収二酸化炭素濃度と相関のある前記現像液の特性値とを含む前記現像液の複数の特性値を測定する複数の測定装置、をさらに備え、前記制御手段が、さらに、前記複数の測定装置により測定された前記現像液の複数の特性値から、多変量解析法により、前記現像液の溶解フォトレジスト濃度の測定値及び吸収二酸化炭素濃度の測定値を算出する演算部、を備える。   According to a preferred aspect of the developer management apparatus of the present invention, the developer characteristic value correlated with the dissolved photoresist concentration of the developer solution and the developer characteristic correlated with the absorbed carbon dioxide concentration of the developer solution. A plurality of measuring devices that measure a plurality of characteristic values of the developer including a value, and the control unit further includes a plurality of characteristic values of the developer measured by the plurality of measuring devices, An arithmetic unit that calculates a measured value of the dissolved photoresist concentration and a measured value of the absorbed carbon dioxide concentration of the developer by a multivariate analysis method.

本発明の現像液管理装置の好ましい態様によれば、前記現像液の溶解フォトレジスト濃度と相関のある前記現像液の特性値と前記現像液の吸収二酸化炭素濃度と相関のある前記現像液の特性値とを含む前記現像液の複数の特性値を測定する複数の測定装置と、前記複数の測定装置により測定された前記現像液の複数の特性値から、多変量解析法を用いて、前記現像液の溶解フォトレジスト濃度の測定値及び吸収二酸化炭素濃度の測定値を算出する演算手段と、をさらに備える。   According to a preferred aspect of the developer management apparatus of the present invention, the developer characteristic value correlated with the dissolved photoresist concentration of the developer solution and the developer characteristic correlated with the absorbed carbon dioxide concentration of the developer solution. A plurality of measuring devices for measuring a plurality of characteristic values of the developer including a value, and a plurality of characteristic values of the developer measured by the plurality of measuring devices, using a multivariate analysis method. And a calculation means for calculating a measured value of the dissolved photoresist concentration of the liquid and a measured value of the absorbed carbon dioxide concentration.

本発明の現像液管理装置の好ましい態様によれば、密度計を備え、前記制御手段が、さらに、前記現像液の吸収二酸化炭素濃度と密度との間の対応関係に基づいて前記密度計により測定された前記現像液の密度値から前記現像液の吸収二酸化炭素濃度値を算出する演算部、を備える。   According to a preferred aspect of the developer management apparatus of the present invention, a density meter is provided, and the control unit further measures by the density meter based on the correspondence relationship between the absorbed carbon dioxide concentration and the density of the developer. An arithmetic unit that calculates an absorbed carbon dioxide concentration value of the developer from the density value of the developer.

本発明の現像液管理装置の好ましい態様によれば、密度計と、前記現像液の吸収二酸化炭素濃度と密度との間の対応関係に基づいて前記密度計により測定された前記現像液の密度値から前記現像液の吸収二酸化炭素濃度値を算出する演算手段と、をさらに備える。   According to a preferred aspect of the developer management apparatus of the present invention, the density value of the developer measured by the density meter based on the correspondence between the density meter and the absorbed carbon dioxide concentration and density of the developer. And calculating means for calculating an absorbed carbon dioxide concentration value of the developer.

本発明の現像液管理装置によれば、繰り返し使用される、アルカリ性を示す現像液の溶解フォトレジスト濃度と相関のある吸光度及び吸収二酸化炭素濃度を指標として特定される濃度領域ごとに所定の現像性能となることが予め確認された前記現像液のアルカリ成分濃度値を有するアルカリ成分濃度データが格納されているデータ記憶部と、前記現像液の吸光度及び吸収二酸化炭素濃度の測定値により特定される濃度領域の前記データ記憶部に格納された前記アルカリ成分濃度値を制御目標値として、前記現像液のアルカリ成分濃度が前記制御目標値となるように前記現像液に補給される補充液を送液する管路に設けられた制御弁に制御信号を発する制御部と、を備えた制御手段と、前記現像液のアルカリ成分濃度値、溶解フォトレジスト濃度と相関のある吸光度値、及び、吸収二酸化炭素濃度値のうち少なくとも前記アルカリ成分濃度値を表示する表示手段と、を備える。   According to the developer management apparatus of the present invention, predetermined development performance is determined for each concentration region that is repeatedly used, and is specified with the absorbance and the absorbed carbon dioxide concentration being correlated with the dissolved photoresist concentration of the developer exhibiting alkalinity. A data storage unit storing alkali component concentration data having an alkali component concentration value of the developer that has been confirmed in advance, and a concentration specified by measured values of the absorbance and absorbed carbon dioxide concentration of the developer Using the alkali component concentration value stored in the data storage unit in the area as a control target value, the replenisher to be replenished to the developer is sent so that the alkali component concentration of the developer becomes the control target value. A control unit that issues a control signal to a control valve provided in the pipe, and an alkali component concentration value of the developer, a concentration of the dissolved photoresist Absorbance values correlated with, and, and a display means for displaying at least the alkaline component concentration value of the absorbing carbon dioxide concentration value.

本発明の現像液管理装置によれば、繰り返し使用される、アルカリ性を示す現像液の溶解フォトレジスト濃度と相関のある吸光度及び吸収二酸化炭素濃度を指標として特定される濃度領域ごとに所定の現像性能となることが予め確認された前記現像液のアルカリ成分濃度値を有するアルカリ成分濃度データが格納されているデータ記憶部と、前記現像液の吸光度及び吸収二酸化炭素濃度の測定値により特定される濃度領域の前記データ記憶部に格納された前記アルカリ成分濃度値を制御目標値として、前記現像液のアルカリ成分濃度が前記制御目標値となるように前記現像液に補給される補充液を送液する管路に設けられた制御弁に制御信号を発する制御部と、を備えた制御手段と、前記現像液のアルカリ成分濃度値、溶解フォトレジスト濃度と相関のある吸光度値、及び、吸収二酸化炭素濃度値のうち少なくとも前記アルカリ成分濃度値を、測定時間又は測定開始からの経過時間を指標としてグラフ表示する表示手段と、を備える。   According to the developer management apparatus of the present invention, predetermined development performance is determined for each concentration region that is repeatedly used, and is specified with the absorbance and the absorbed carbon dioxide concentration being correlated with the dissolved photoresist concentration of the developer exhibiting alkalinity. A data storage unit storing alkali component concentration data having an alkali component concentration value of the developer that has been confirmed in advance, and a concentration specified by measured values of the absorbance and absorbed carbon dioxide concentration of the developer Using the alkali component concentration value stored in the data storage unit in the area as a control target value, the replenisher to be replenished to the developer is sent so that the alkali component concentration of the developer becomes the control target value. A control unit that issues a control signal to a control valve provided in the pipe, and an alkali component concentration value of the developer, a concentration of the dissolved photoresist Absorbance values correlated with, and, and a display means for displaying graphically at least the alkaline component concentration value, as an index, the elapsed time from the measurement time or the measurement start of the absorption of carbon dioxide concentration value.

本発明の現像液管理装置によれば、前記表示手段に表示される表示対象を切り替える表示切替手段、をさらに備えることが好ましい。   According to the developer management apparatus of the present invention, it is preferable to further include a display switching unit that switches a display target displayed on the display unit.

本発明によれば、現像液がどのような溶解フォトレジスト濃度及び吸収二酸化炭素濃度となろうとも、現像液中の現像作用に活性を有する成分が一定に維持されるので、所望の現像性能を維持でき、所望の線幅及び残膜厚を維持できる現像処理を実現できる。また、各種データ、及びグラフを表示することができる。   According to the present invention, no matter what dissolved photoresist concentration or absorbed carbon dioxide concentration the developer has, the component having activity in the developing action in the developer is kept constant, so that the desired development performance can be obtained. Development processing that can maintain the desired line width and remaining film thickness can be realized. Various data and graphs can be displayed.

第一実施形態の現像液管理装置を説明するための現像工程の模式図である。It is a schematic diagram of the image development process for demonstrating the developing solution management apparatus of 1st embodiment. 第二実施形態の現像液管理装置を説明するための現像工程の模式図である。It is a schematic diagram of the image development process for demonstrating the developing solution management apparatus of 2nd embodiment. 第三実施形態の現像液管理装置を説明するための現像工程の模式図である。It is a schematic diagram of the image development process for demonstrating the developing solution management apparatus of 3rd embodiment. 第四実施形態の現像液管理装置を説明するための現像工程の模式図である。It is a schematic diagram of the image development process for demonstrating the developing solution management apparatus of 4th embodiment. 現像液の吸収二酸化炭素濃度と密度との関係を示すグラフである。It is a graph which shows the relationship between the absorbed carbon dioxide density | concentration of a developing solution, and a density. 第五実施形態の現像液管理装置を説明するための現像工程の模式図である。It is a schematic diagram of the image development process for demonstrating the developing solution management apparatus of 5th embodiment. 第六実施形態の現像液管理装置を説明するための現像工程の模式図である。It is a schematic diagram of the image development process for demonstrating the developing solution management apparatus of 6th embodiment.

以下、適宜図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。ただし、これらの実施の形態に記載されている装置等の形状、大きさ、寸法比、その相対配置などは、とくに特定的な記載がない限り、本発明の範囲を図示されているもののみに限定するものではない。単なる説明例として、模式的に図示しているに過ぎない。   Hereinafter, preferred embodiments of the present invention will be described in detail with appropriate reference to the drawings. However, the shapes, sizes, dimensional ratios, relative arrangements, etc. of the devices described in these embodiments are only those shown within the scope of the present invention unless otherwise specified. It is not limited. It is only schematically shown as an example for explanation.

また、以下の説明では、現像液の具体例として、半導体や液晶パネル基板の製造工程で主に使われる2.38%テトラメチルアンモニウムハイドロオキサイド水溶液(以下、テトラメチルアンモニウムハイドロオキサイドをTMAHという。)を、適宜用いて説明する。ただし、本発明が適用される現像液はこれに限定されるものではない。本発明の現像液の管理方法や装置が適用できる他の現像液の例として、水酸化カリウム、水酸化ナトリウム、リン酸ナトリウム、ケイ酸ナトリウムなどの無機化合物の水溶液や、トリメチルモノエタノールアンモニウムハイドロオキサイド(コリン)などの有機化合物の水溶液を挙げることができる。   In the following description, as a specific example of the developer, a 2.38% tetramethylammonium hydroxide aqueous solution (hereinafter, tetramethylammonium hydroxide is referred to as TMAH) that is mainly used in the manufacturing process of semiconductors and liquid crystal panel substrates. Will be described as appropriate. However, the developer to which the present invention is applied is not limited to this. Examples of other developing solutions to which the developing solution management method and apparatus of the present invention can be applied include aqueous solutions of inorganic compounds such as potassium hydroxide, sodium hydroxide, sodium phosphate, sodium silicate, and trimethylmonoethanol ammonium hydroxide. An aqueous solution of an organic compound such as (choline) can be mentioned.

以下の説明では、アルカリ成分濃度、溶解フォトレジスト濃度、吸収二酸化炭素濃度などの成分濃度は、重量百分率濃度(wt%)による濃度である。「溶解フォトレジスト濃度」とは、溶解したフォトレジストをフォトレジストの量として換算した場合の濃度をいい、「吸収二酸化炭素濃度」とは、吸収された二酸化炭素を二酸化炭素の量として換算した場合の濃度をいうものとする。   In the following description, component concentrations such as alkali component concentration, dissolved photoresist concentration, and absorbed carbon dioxide concentration are concentrations based on weight percentage concentration (wt%). “Dissolved photoresist concentration” refers to the concentration when the dissolved photoresist is converted as the amount of photoresist, and “absorbed carbon dioxide concentration” refers to when the absorbed carbon dioxide is converted as the amount of carbon dioxide. The concentration of

現像処理プロセスでは、現像液が露光処理後のフォトレジスト膜の不要部分を溶かすことにより、現像が行われる。現像液に溶解したフォトレジストは、現像液のアルカリ成分との間にフォトレジスト塩を生じる。このため、現像液を適切に管理していなければ、現像処理が進行するにつれて、現像液は現像活性を有するアルカリ成分が消費されて劣化し、現像性能が悪化していく。同時に、現像液中には溶解したフォトレジストがアルカリ成分とのフォトレジスト塩として蓄積されていく。   In the development process, development is performed by the developer dissolving unnecessary portions of the photoresist film after the exposure process. The photoresist dissolved in the developer generates a photoresist salt with the alkali component of the developer. For this reason, unless the developer is appropriately managed, as the development process proceeds, the developer deteriorates due to consumption of an alkaline component having development activity, and the development performance deteriorates. At the same time, the dissolved photoresist is accumulated in the developer as a photoresist salt with an alkali component.

現像液に溶解したフォトレジストは、現像液中で界面活性作用を示す。このため、現像液に溶解したフォトレジストは、現像処理に供されるフォトレジスト膜の現像液に対するぬれ性を高め、現像液とフォトレジスト膜とのなじみを良くする。したがって、適度にフォトレジストを含む現像液では、現像液がフォトレジスト膜の微細な凹部内にもよく行き渡るようになり、微細な凹凸を有するフォトレジスト膜の現像処理を良好に実施できる。   The photoresist dissolved in the developer exhibits a surface activity in the developer. For this reason, the photoresist dissolved in the developer improves the wettability of the photoresist film subjected to the development process with respect to the developer and improves the familiarity between the developer and the photoresist film. Therefore, with a developer containing a moderate amount of photoresist, the developer spreads well in fine concave portions of the photoresist film, and the development processing of the photoresist film having fine irregularities can be performed satisfactorily.

また、近年の現像処理では、基板が大型化したことに伴い、大量の現像液が繰り返し使用されるようになったため、現像液が空気に曝される機会が増えている。ところが、アルカリ性現像液は、空気に曝されると空気中の二酸化炭素を吸収する。吸収された二酸化炭素は、現像液のアルカリ成分との間に炭酸塩を生じる。このため、現像液を適切に管理していなければ、現像液は現像活性を有するアルカリ成分が吸収された二酸化炭素により消費され減少する。同時に、現像液中には吸収された二酸化炭素がアルカリ成分との炭酸塩として蓄積されていく。   Further, in recent development processing, with the increase in the size of the substrate, a large amount of the developer has been repeatedly used, so that the opportunity for the developer to be exposed to air is increasing. However, alkaline developers absorb carbon dioxide in the air when exposed to air. The absorbed carbon dioxide forms carbonate with the alkali component of the developer. For this reason, if the developer is not properly managed, the developer is consumed and reduced by the carbon dioxide in which the alkali component having development activity is absorbed. At the same time, the absorbed carbon dioxide is accumulated in the developer as a carbonate with an alkali component.

しかしながら、現像液中の炭酸塩は、現像液中でアルカリ性を示すため、現像作用を有している。   However, the carbonate in the developer has a developing action because it shows alkalinity in the developer.

このように、現像液に溶解されたフォトレジストや吸収された二酸化炭素が、現像処理の現像活性を失活させるとする従来の認識とは異なり、実際には現像液の現像性能に寄与している。そのため、溶解フォトレジストや吸収二酸化炭素を完全に排除するような現像液管理をするのではなく、現像液中に溶解フォトレジストや吸収二酸化炭素を溶存することを許容しつつ、これらを最適な濃度に維持管理する現像液管理が必要である。   Thus, unlike the conventional recognition that the photoresist dissolved in the developer and the absorbed carbon dioxide inactivate the development activity of the development process, it actually contributes to the development performance of the developer. Yes. Therefore, instead of managing the developer so as to completely eliminate dissolved photoresist and absorbed carbon dioxide, it is possible to dissolve these dissolved photoresist and absorbed carbon dioxide in the developer while maintaining the optimum concentration. Therefore, it is necessary to manage the developer to maintain the current.

また、現像液中に生じたフォトレジスト塩や炭酸塩は、その一部が解離して、フォトレジストイオンや炭酸イオン、炭酸水素イオンなど、多様な遊離イオンを生じる。そして、これらの遊離イオンは、現像液の導電率に様々な寄与率で影響を及ぼしている。   Further, a part of the photoresist salt or carbonate generated in the developer is dissociated to generate various free ions such as photoresist ion, carbonate ion, hydrogen carbonate ion. These free ions affect the conductivity of the developer with various contributions.

これらの点につき、本発明者が、現像液管理について鋭意研究したところ、炭酸塩やレジスト塩も現像液中で一部が遊離して現像作用に寄与すること、および、失活すると思われていたこれらの成分からの現像作用への寄与をも併せて考慮した現像液管理が現像液の導電率値を管理することによって実現できること、さらに、このような導電率の管理値は吸収二酸化炭素濃度及び溶解フォトレジスト濃度により様々に異なっていること、の知見を得た。   With regard to these points, the present inventor has conducted extensive research on developer management, and it is believed that some of the carbonates and resist salts are liberated in the developer and contribute to the developing action, and are deactivated. In addition, the developer management considering the contribution to the developing action from these components can be realized by managing the conductivity value of the developer. And the fact that it is different depending on the concentration of dissolved photoresist.

そこで発明者は、現像液としてTMAH水溶液の管理を行う場合を想定して、溶解フォトレジスト濃度、吸収二酸化炭素濃度を様々に変化させて、フォトレジストに対する所望の現像性能と、現像液の導電率値との関係を求めた。   Accordingly, the inventor assumes that the TMAH aqueous solution is managed as a developer, and variously changes the dissolved photoresist concentration and the absorbed carbon dioxide concentration to change the desired development performance for the photoresist and the conductivity of the developer. The relationship with the value was obtained.

吸収二酸化炭素濃度を0.0〜1.3(wt%)の間で変化させ、溶解フォトレジスト濃度を0.0〜0.40(wt%)(0.0〜1.3(abs)相当)の間で変化させたTMAH水溶液の現像液のサンプルを調製した。発明者は、これらのサンプルについて、現像液の導電率、吸収二酸化炭素濃度、および、溶解フォトレジスト濃度を測定し、現像性能、導電率、吸収二酸化炭素濃度、および、溶解フォトレジスト濃度成分との相関を確かめる実験を行った。吸収二酸化炭素濃度を一つの項目とし縦又は横に配列し、溶解フォトレジスト濃度を他の項目とし、横又は縦に配列したマトリックス(組み合わせ表)を作成した。吸収二酸化炭素濃度と溶解フォトレジスト濃度との組み合わせ毎に、フォトレジストに対する所望の現像性能を満足する、現像液の導電率を求め、各欄に記入し、マトリックスを完成させた。   The absorbed carbon dioxide concentration is changed between 0.0 and 1.3 (wt%), and the dissolved photoresist concentration is changed to 0.0 to 0.40 (wt%) (equivalent to 0.0 to 1.3 (abs)). The sample of the developer of the aqueous solution of TMAH changed between the above was prepared. The inventor measured the developer conductivity, absorbed carbon dioxide concentration, and dissolved photoresist concentration for these samples to determine the development performance, conductivity, absorbed carbon dioxide concentration, and dissolved photoresist concentration components. An experiment was conducted to confirm the correlation. A matrix (combination table) was created in which the absorbed carbon dioxide concentration was arranged as one item vertically or horizontally, and the dissolved photoresist concentration was taken as another item, and arranged horizontally or vertically. For each combination of absorbed carbon dioxide concentration and dissolved photoresist concentration, the conductivity of the developer that satisfies the desired development performance for the photoresist was determined and entered in each column to complete the matrix.

ここで、所定の現像性能とは、現像工程で実現しようとしている線幅や残膜厚が実現されるときの現像液の現像性能を意味する。   Here, the predetermined development performance means the development performance of the developer when the line width or the remaining film thickness to be realized in the development process is realized.

代表的な各サンプルの吸収二酸化炭素濃度、溶解フォトレジスト濃度、および、導電率の測定結果を例示する。吸収二酸化炭素濃度が0.0(wt%)で、溶解フォトレジスト濃度が0.0(wt%)(0.0(abs)相当)である場合(いわゆる新液)、所定の現像性能を発揮できる現像液の導電率は54.58(mS/cm)であった。   The measurement results of the absorbed carbon dioxide concentration, dissolved photoresist concentration, and conductivity of each representative sample are illustrated. When the absorbed carbon dioxide concentration is 0.0 (wt%) and the dissolved photoresist concentration is 0.0 (wt%) (equivalent to 0.0 (abs)) (so-called new solution), the predetermined development performance is exhibited. The conductivity of the developer which can be produced was 54.58 (mS / cm).

吸収二酸化炭素濃度が0.0(wt%)で、溶解フォトレジスト濃度が0.25(wt%)(0.8abs相当)である場合、所定の現像性能を発揮できる現像液の導電率は54.55(mS/cm)であり、溶解フォトレジスト濃度が0.40(wt%)(1.3abs相当)である場合、現像液の導電率は54.53(mS/cm)であった。   When the absorbed carbon dioxide concentration is 0.0 (wt%) and the dissolved photoresist concentration is 0.25 (wt%) (equivalent to 0.8 abs), the conductivity of the developer capable of exhibiting a predetermined developing performance is 54. When the dissolved photoresist concentration was 0.40 (wt%) (corresponding to 1.3 abs), the developer conductivity was 54.53 (mS / cm).

また、溶解フォトレジスト濃度が0.0(wt%)(0.0(abs)相当)で、吸収二酸化炭素濃度が0.6(wt%)である場合、現像液の導電率は54.60(mS/cm)であり、吸収二酸化炭素濃度が1.3(wt%)である場合、現像液の導電率は54.75(mS/cm)であった。   When the dissolved photoresist concentration is 0.0 (wt%) (equivalent to 0.0 (abs)) and the absorbed carbon dioxide concentration is 0.6 (wt%), the conductivity of the developer is 54.60. When (mS / cm) and the absorbed carbon dioxide concentration was 1.3 (wt%), the conductivity of the developer was 54.75 (mS / cm).

また、吸収二酸化炭素濃度が0.6(wt%)で、溶解フォトレジスト濃度が0.22(wt%)(0.7abs相当)である場合、現像液の導電率は54.60(mS/cm)であり、溶解フォトレジスト濃度が0.40(wt%)(1.3abs相当)である場合、現像液の導電率は54.58(mS/cm)であった。   When the absorbed carbon dioxide concentration is 0.6 (wt%) and the dissolved photoresist concentration is 0.22 (wt%) (equivalent to 0.7 abs), the conductivity of the developer is 54.60 (mS / cm) and the dissolved photoresist concentration was 0.40 (wt%) (equivalent to 1.3 abs), the developer conductivity was 54.58 (mS / cm).

また、吸収二酸化炭素濃度が1.3(wt%)で、溶解フォトレジスト濃度が0.22(wt%)(0.7abs相当)である場合、現像液の導電率は54.75(mS/cm)であり、溶解フォトレジスト濃度が0.40(wt%)(1.3abs相当)である場合、現像液の導電率は54.75(mS/cm)であった。   When the absorbed carbon dioxide concentration is 1.3 (wt%) and the dissolved photoresist concentration is 0.22 (wt%) (equivalent to 0.7 abs), the conductivity of the developer is 54.75 (mS / cm) and the dissolved photoresist concentration was 0.40 (wt%) (equivalent to 1.3 abs), the conductivity of the developer was 54.75 (mS / cm).

なお、上述の実験においては、ある濃度領域において、吸収二酸化炭素濃度が大きくなると、導電率の管理値が大きくなる傾向にあり、溶解フォトレジスト濃度が大きくなると、導電率の管理値が小さくなる傾向が見られた。   In the above-described experiment, the conductivity management value tends to increase as the absorbed carbon dioxide concentration increases in a certain concentration range, and the conductivity management value tends to decrease as the dissolved photoresist concentration increases. It was observed.

上述の実験では、各サンプルの現像液の導電率は導電率計により測定した値を用いた。吸収二酸化炭素濃度は滴定分析法によりを測定した値を用いた。溶解フォトレジスト濃度は重量調製値を用いた。滴定は、塩酸を滴定試薬とする中和滴定である。滴定装置として、三菱化学アナリテック社製の自動滴定装置GT−200を使用した。   In the above-described experiment, the value measured by a conductivity meter was used as the conductivity of the developer of each sample. The value measured by the titration analysis method was used for the absorbed carbon dioxide concentration. The weight adjusted value was used for the dissolved photoresist concentration. Titration is neutralization titration using hydrochloric acid as a titration reagent. As a titration apparatus, an automatic titration apparatus GT-200 manufactured by Mitsubishi Chemical Analytech Co., Ltd. was used.

なお、上述の導電率、吸収二酸化炭素濃度、及び溶解フォトレジスト濃度は、導電率、吸収二酸化炭素濃度、及び溶解フォトレジスト濃度と現像性能との関係性を見出すためであり、各数値に限定されない。   The above-described conductivity, absorbed carbon dioxide concentration, and dissolved photoresist concentration are for finding the relationship between the conductivity, absorbed carbon dioxide concentration, dissolved photoresist concentration, and development performance, and are not limited to each numerical value. .

上述したように、現像性能を発揮できる導電率は、吸収二酸化炭素濃度及び溶解フォトレジスト濃度により様々に異なっていることが理解できる。このように、現像液の管理において、吸収二酸化炭素、及び溶解フォトレジストを含む現像液では、導電率を管理値とし、さらに吸収二酸化炭素濃度、及び溶解フォトレジスト濃度を測定し、各測定結果に基づいて導電率の管理値を異ならせることにより、所定の現像性能を発揮させることができる。   As described above, it can be understood that the conductivity at which the development performance can be exhibited varies depending on the absorbed carbon dioxide concentration and the dissolved photoresist concentration. Thus, in the management of the developer, in the developer containing the absorbed carbon dioxide and the dissolved photoresist, the conductivity is set as the management value, and the absorbed carbon dioxide concentration and the dissolved photoresist concentration are further measured. The predetermined development performance can be exhibited by changing the management value of the conductivity based on this.

つまり、現像液の溶解フォトレジスト濃度、及び吸収二酸化炭素濃度を指標として特定される濃度領域ごとに、所定の現像性能となることが予め確認された現像液の導電率値を有する導電率データ(マトリックス)を記憶し、導電率データ(マトリックス)を利用することで、所定の現像性能を発揮させることができる、現像液の管理が可能となる。   In other words, conductivity data having a conductivity value of the developer that has been confirmed in advance to have a predetermined development performance for each concentration region specified by using the dissolved photoresist concentration of the developer and the absorbed carbon dioxide concentration as an index. By storing the matrix) and using the conductivity data (matrix), it is possible to manage the developer that can exhibit a predetermined development performance.

また、発明者が、現像液管理について鋭意研究したところ、炭酸塩やレジスト塩も現像液中で一部が遊離して現像作用に寄与すること、および、失活すると思われていたこれらの成分からの現像作用への寄与をも併せて考慮した現像液管理が現像液のアルカリ成分濃度値を管理することによって実現できること、さらに、このようなアルカリ成分濃度の管理値は吸収二酸化炭素濃度及び溶解フォトレジスト濃度と相関関係のある吸光度により様々に異なっていること、の知見を得た。   In addition, when the inventor diligently studied the management of the developer, the carbonate and resist salts were partly released in the developer and contributed to the developing action, and these components that were thought to be deactivated The developer management considering the contribution to the developing action from the above can be realized by managing the alkali component concentration value of the developer. Further, the control value of such alkali component concentration is the absorbed carbon dioxide concentration and dissolution We obtained the knowledge that there were various differences depending on the absorbance correlated with the photoresist concentration.

そこで発明者は、現像液としてTMAH水溶液の管理を行う場合を想定して、アルカリ性を示す現像液の導電率に基づいて測定されるアルカリ成分濃度と、現像液の溶解フォトレジスト濃度と相関関係のある吸光度と、現像液の吸収二酸化炭素濃度を様々に変化させて、フォトレジストに対する所望の現像性能と、現像液のアルカリ成分濃度との関係を求めた。   Therefore, the inventor assumed that the TMAH aqueous solution is managed as a developer, and the correlation between the alkali component concentration measured based on the conductivity of the developer exhibiting alkalinity and the dissolved photoresist concentration of the developer. Various changes were made in the absorbance and the absorbed carbon dioxide concentration of the developer, and the relationship between the desired development performance for the photoresist and the alkali component concentration of the developer was determined.

吸収二酸化炭素濃度を0.0〜1.3(wt%)の間で変化させ、溶解フォトレジスト濃度と相関関係のある吸光度を0.0〜1.3(abs)の間で変化させたTMAH水溶液の現像液のサンプルを調製した。発明者は、これらのサンプルについて、現像液のアルカリ成分濃度、吸収二酸化炭素濃度、および、吸光度を測定し、現像性能、アルカリ成分濃度、吸収二酸化炭素濃度、および、吸光度との相関を確かめる実験を行った。吸収二酸化炭素濃度を一つの項目とし縦又は横に配列し、吸光度を他の項目とし、横又は縦に配列したマトリックス(組み合わせ表)を作成した。吸収二酸化炭素濃度と吸光度との組み合わせ毎に、フォトレジストに対する所望の現像性能を満足する、現像液のアルカリ成分濃度を求め、各欄に記入し、マトリックスを完成させた。   TMAH in which the absorbed carbon dioxide concentration was changed between 0.0 and 1.3 (wt%), and the absorbance correlated with the dissolved photoresist concentration was changed between 0.0 and 1.3 (abs). An aqueous developer sample was prepared. The inventor measured the alkali component concentration, absorbed carbon dioxide concentration, and absorbance of these samples, and conducted an experiment to confirm the correlation with the development performance, alkali component concentration, absorbed carbon dioxide concentration, and absorbance. went. A matrix (combination table) was prepared in which the absorbed carbon dioxide concentration was arranged as one item vertically or horizontally, and the absorbance was set as another item, and arranged horizontally or vertically. For each combination of absorbed carbon dioxide concentration and absorbance, the alkali component concentration of the developer that satisfies the desired development performance for the photoresist was determined and entered in each column to complete the matrix.

ここで、所定の現像性能とは、現像工程で実現しようとしている線幅や残膜厚が実現されるときの現像液の現像性能を意味する。   Here, the predetermined development performance means the development performance of the developer when the line width or the remaining film thickness to be realized in the development process is realized.

代表的な各サンプルの吸収二酸化炭素濃度、吸光度、および、アルカリ成分濃度の測定結果を例示する。吸収二酸化炭素濃度が0.0(wt%)で、吸光度が0.0(abs)である場合(いわゆる新液)、所定の現像性能を発揮できる現像液のアルカリ成分濃度は2.380(wt%)であった。   The measurement results of the absorbed carbon dioxide concentration, absorbance, and alkali component concentration of each representative sample are illustrated. When the absorbed carbon dioxide concentration is 0.0 (wt%) and the absorbance is 0.0 (abs) (so-called new solution), the alkali component concentration of the developer capable of exhibiting a predetermined development performance is 2.380 (wt). %)Met.

吸収二酸化炭素濃度が0.0(wt%)で、吸光度が0.8absである場合、所定の現像性能を発揮できる現像液のアルカリ成分濃度は2.379(wt%)であり、吸光度が1.3absである場合、現像液のアルカリ成分濃度は2.378(wt%)であった。   When the absorbed carbon dioxide concentration is 0.0 (wt%) and the absorbance is 0.8 abs, the alkali component concentration of the developer capable of exhibiting a predetermined development performance is 2.379 (wt%), and the absorbance is 1 In the case of .3 abs, the alkali component concentration of the developer was 2.378 (wt%).

また、吸光度が0.0(abs)で、吸収二酸化炭素濃度が0.6(wt%)である場合、現像液のアルカリ成分濃度は2.381(wt%)であり、吸収二酸化炭素濃度が1.3(wt%)である場合、現像液のアルカリ成分濃度は2.388(wt%)であった。   When the absorbance is 0.0 (abs) and the absorbed carbon dioxide concentration is 0.6 (wt%), the alkali component concentration of the developer is 2.381 (wt%), and the absorbed carbon dioxide concentration is In the case of 1.3 (wt%), the alkali component concentration of the developer was 2.388 (wt%).

また、吸収二酸化炭素濃度が0.6(wt%)で、吸光度が0.7absである場合、現像液のアルカリ成分濃度は2.381(wt%)であり、吸光度が1.3absである場合、現像液のアルカリ成分濃度は2.380(wt%)であった。   When the absorbed carbon dioxide concentration is 0.6 (wt%) and the absorbance is 0.7 abs, the alkali component concentration of the developer is 2.381 (wt%) and the absorbance is 1.3 abs. The alkali component concentration of the developer was 2.380 (wt%).

また、吸収二酸化炭素濃度が1.3(wt%)で、吸光度が0.7absである場合、現像液のアルカリ成分濃度は2.388(wt%)であり、吸光度が1.3absである場合、現像液のアルカリ成分濃度は2.388(wt%)であった。   Further, when the absorbed carbon dioxide concentration is 1.3 (wt%) and the absorbance is 0.7 abs, the alkali component concentration of the developer is 2.388 (wt%) and the absorbance is 1.3 abs. The alkali component concentration of the developer was 2.388 (wt%).

なお、上述の実験においては、ある濃度領域において、吸収二酸化炭素濃度が大きくなると、アルカリ成分濃度の管理値が大きくなる傾向にあり、吸光度が大きくなると、アルカリ成分濃度の管理値が小さくなる傾向が見られた。   In the above-described experiment, when the absorbed carbon dioxide concentration increases in a certain concentration region, the management value of the alkali component concentration tends to increase, and when the absorbance increases, the management value of the alkali component concentration tends to decrease. It was seen.

上述の実験では、各サンプルの現像液のアルカリ成分濃度は、導電率計で導電率を測定することにより求めることができる。具体的には、TMAH水溶液の新液(現像前のTMAH水溶液)のアルカリ成分濃度と導電率値との相関関係(例えば直線関係)を予め検量線として作成しておく。この検量線に基づいて、導電率値からアルカリ成分濃度を求めることができる。   In the above-described experiment, the alkali component concentration of the developer of each sample can be obtained by measuring the conductivity with a conductivity meter. Specifically, a correlation (for example, a linear relationship) between the alkali component concentration and the conductivity value of a new TMAH aqueous solution (TMAH aqueous solution before development) is prepared in advance as a calibration curve. Based on this calibration curve, the alkali component concentration can be determined from the conductivity value.

吸収二酸化炭素濃度は滴定分析法によりを測定した値を用いた。滴定は、塩酸を滴定試薬とする中和滴定である。滴定装置として、三菱化学アナリテック社製の自動滴定装置GT−200を使用した。吸光度の測定には吸光光度計を用いた。   The value measured by the titration analysis method was used for the absorbed carbon dioxide concentration. Titration is neutralization titration using hydrochloric acid as a titration reagent. As a titration apparatus, an automatic titration apparatus GT-200 manufactured by Mitsubishi Chemical Analytech Co., Ltd. was used. An absorptiometer was used to measure the absorbance.

なお、上述のアルカリ成分濃度、吸収二酸化炭素濃度、及び吸光度は、アルカリ成分濃度、吸収二酸化炭素濃度、及び吸光度と現像性能との関係性を見出すためであり、各数値に限定されない。   The alkali component concentration, the absorbed carbon dioxide concentration, and the absorbance described above are for finding the alkali component concentration, the absorbed carbon dioxide concentration, and the relationship between the absorbance and the development performance, and are not limited to the respective numerical values.

上述したように、現像性能を発揮できるアルカリ成分濃度は、吸収二酸化炭素濃度、及び吸光度により様々に異なっていることが理解できる。このように、現像液の管理において、吸収二酸化炭素、及び溶解フォトレジストを含む現像液では、アルカリ成分濃度を現像液の管理値とし、さらに吸収二酸化炭素濃度、及び吸光度を測定し、各測定結果に基づいてアルカリ成分濃度の管理値を異ならせることにより、所定の現像性能を発揮させることができる。   As described above, it can be understood that the alkali component concentration capable of exhibiting the development performance varies depending on the absorbed carbon dioxide concentration and the absorbance. Thus, in the management of the developer, in the developer containing the absorbed carbon dioxide and the dissolved photoresist, the alkali component concentration is set as the control value of the developer, and the absorbed carbon dioxide concentration and the absorbance are measured, and each measurement result By varying the control value of the alkali component concentration based on the above, predetermined development performance can be exhibited.

つまり、現像液の吸光度、及び吸収二酸化炭素濃度を指標として特定される濃度領域ごとに、所定の現像性能となることが予め確認された現像液のアルカリ成分濃度値を有するアルカリ成分濃度データ(マトリックス)を記憶し、アルカリ成分濃度データ(マトリックス)を利用することで、所定の現像性能を発揮させることができる。   That is, alkali component concentration data (matrix) having an alkali component concentration value of the developer that has been confirmed in advance to have a predetermined developing performance for each concentration region specified by using the absorbance of the developer and the absorbed carbon dioxide concentration as an index. ) And the use of the alkali component concentration data (matrix), the predetermined development performance can be exhibited.

次に、具体的な実施例について、図面を参照しながら説明する。   Next, specific examples will be described with reference to the drawings.

〔第一実施形態〕
図1は、本実施形態の現像液管理装置Dの説明をするための現像工程の模式図である。本発明の現像液管理装置Dが、現像工程設備A、補充液貯留部B、循環攪拌機構Cなどとともに図示されている。
[First embodiment]
FIG. 1 is a schematic diagram of a developing process for explaining the developer management apparatus D of the present embodiment. A developing solution management apparatus D of the present invention is shown together with a developing process facility A, a replenisher storing portion B, a circulation stirring mechanism C, and the like.

まず、現像工程設備Aについて簡単に説明する。   First, the development process facility A will be briefly described.

現像工程設備Aは、主に、現像液貯留槽61、オーバーフロー槽62、現像室フード64、ローラーコンベア65、現像液シャワーノズル67などからなる。現像液貯留槽61には現像液が貯留されている。現像液は、補充液が補充されて組成管理される。現像液貯留槽61は、液面計63とオーバーフロー槽62とを備え、補充液を補給することによる液量の増加を管理している。現像液貯留槽61と現像液シャワーノズル67とは、現像液管路80により接続されている。現像液貯留槽61内に貯留された現像液が現像液管路80に設けられた循環ポンプ72によりフィルター73を介して現像液シャワーノズル67に送液される。ローラーコンベア65は、現像液貯留槽61の上方に備えられ、フォトレジスト膜の製膜された基板66を搬送する。現像液は現像液シャワーノズル67から滴下される。ローラーコンベア65により搬送される基板66は滴下される現像液の中を通過することで現像液に浸される。その後、現像液は、現像液貯留槽61に回収され、再び貯留される。このように、現像液は、現像工程で循環して繰り返し使用される。なお、小型のガラス基板における現像室内は、窒素ガスを充満させるなどにより、空気中の二酸化炭素を吸収しないような処理が施される場合もある。なお、劣化した現像液は廃液ポンプ71を作動することにより廃液(ドレン)される。   The development process facility A mainly includes a developer storage tank 61, an overflow tank 62, a development chamber hood 64, a roller conveyor 65, a developer shower nozzle 67, and the like. A developer is stored in the developer storage tank 61. The composition of the developer is managed by replenishing the replenisher. The developer storage tank 61 includes a liquid level gauge 63 and an overflow tank 62, and manages an increase in the amount of liquid caused by replenishing the replenisher. The developer reservoir 61 and the developer shower nozzle 67 are connected by a developer conduit 80. The developer stored in the developer storage tank 61 is sent to the developer shower nozzle 67 via the filter 73 by a circulation pump 72 provided in the developer conduit 80. The roller conveyor 65 is provided above the developer storage tank 61 and conveys a substrate 66 on which a photoresist film is formed. The developer is dropped from the developer shower nozzle 67. The substrate 66 conveyed by the roller conveyor 65 is immersed in the developer by passing through the dropped developer. Thereafter, the developer is collected in the developer storage tank 61 and stored again. As described above, the developer is circulated and used repeatedly in the development process. Note that the developing chamber in a small glass substrate may be subjected to a treatment that does not absorb carbon dioxide in the air, for example, by being filled with nitrogen gas. The deteriorated developer is drained (drained) by operating the waste liquid pump 71.

循環攪拌機構Cについて説明する。循環攪拌機構Cは、主として、現像液貯留槽61内に貯留された現像液を循環し、攪拌するためのものである。   The circulation stirring mechanism C will be described. The circulation stirring mechanism C is mainly for circulating and stirring the developer stored in the developer storage tank 61.

現像液貯留槽61の底部と現像液貯留槽61の側部とは、途中に循環ポンプ74とフィルター75とが設けられた循環管路85により接続されている。循環ポンプ74を作動させると、現像液貯留槽61に貯留された現像液は、循環管路85を介して循環する。現像液は、循環管路85を介して現像液貯留槽61の側部から現像液貯留槽61に戻され、貯留された現像液を攪拌する。   The bottom of the developer storage tank 61 and the side of the developer storage tank 61 are connected by a circulation pipe 85 provided with a circulation pump 74 and a filter 75 in the middle. When the circulation pump 74 is operated, the developer stored in the developer storage tank 61 is circulated through the circulation pipe 85. The developer is returned to the developer reservoir 61 from the side of the developer reservoir 61 via the circulation line 85, and the stored developer is agitated.

また、合流管路84を介して循環管路85に補充液が流入した場合、この流入した補充液は、循環管路85内において循環する現像液と混合されながら、現像液貯留槽61内に供給される。   Further, when the replenisher flows into the circulation line 85 via the junction line 84, the replenisher that has flowed into the developer storage tank 61 is mixed with the developer circulating in the circulation line 85. Supplied.

次に、本実施形態の現像液管理装置Dについて説明する。本実施形態の現像液管理装置Dは、アルカリ性を示す現像液の溶解フォトレジスト濃度及び吸収二酸化炭素濃度を指標として特定される濃度領域ごとに所定の現像性能となることが予め確認された現像液の導電率値を有する導電率データを用いて、現像液の溶解フォトレジスト濃度の測定値、及び吸収二酸化炭素濃度の測定値により特定される濃度領域の導電率を制御目標値として、現像液の導電率が制御目標値となるように現像液に補充液を補給する方式の現像液管理装置である。   Next, the developer management apparatus D of this embodiment will be described. The developer management apparatus D of the present embodiment is a developer that has been confirmed in advance to have a predetermined development performance for each concentration region specified by using the dissolved photoresist concentration and absorbed carbon dioxide concentration of the developer exhibiting alkalinity as an index. Using the conductivity data having the conductivity value of the developer, the measured value of the dissolved photoresist concentration of the developer and the conductivity of the concentration region specified by the measured value of the absorbed carbon dioxide concentration are used as control target values. This is a developing solution management apparatus that replenishes the developing solution with a replenisher so that the conductivity becomes a control target value.

現像液管理装置Dは、測定部1と、制御手段21とを備えている。現像液管理装置Dはサンプリング配管15及び出口側配管16により現像液貯留槽61と接続されている。   The developer management apparatus D includes a measuring unit 1 and a control unit 21. The developer management apparatus D is connected to the developer storage tank 61 by a sampling pipe 15 and an outlet side pipe 16.

測定部1は、サンプリングポンプ14と、導電率計11、及び溶解フォトレジスト濃度を測定する第1濃度測定手段12、及び吸収二酸化炭素濃度を測定するための第2濃度測定手段13を、備えている。導電率計11、第1濃度測定手段12、及び第2濃度測定手段13は、サンプリングポンプ14の後段に直列に接続される。測定部1は、さらに、測定精度を高めるために、サンプリングした現像液を所定の温度に安定させる温度調節手段(図示せず)を備えていることが望ましい。この際、温度調節手段は、測定手段の直前に設けられていることが好ましい。サンプリング配管15は、現像液管理装置Dの測定部1のサンプリングポンプ14に接続されており、出口側配管16は、測定手段末端の配管と接続されている。   The measuring unit 1 includes a sampling pump 14, a conductivity meter 11, a first concentration measuring means 12 for measuring the dissolved photoresist concentration, and a second concentration measuring means 13 for measuring the absorbed carbon dioxide concentration. Yes. The conductivity meter 11, the first concentration measuring unit 12, and the second concentration measuring unit 13 are connected in series to the subsequent stage of the sampling pump 14. The measurement unit 1 preferably further includes a temperature adjusting means (not shown) that stabilizes the sampled developer at a predetermined temperature in order to increase the measurement accuracy. At this time, the temperature adjusting means is preferably provided immediately before the measuring means. The sampling pipe 15 is connected to the sampling pump 14 of the measuring unit 1 of the developer management device D, and the outlet side pipe 16 is connected to a pipe at the end of the measuring means.

また、図1では、導電率計11、第1濃度測定手段12、及び第2濃度測定手段13が、直列に接続された態様を図示したが、導電率計11、第1濃度測定手段12、及び第2濃度測定手段13の接続はこれに限定されない。並列接続でもよいし、それぞれが独立に送液経路を備えて測定するのでもよい。導電率計11、第1濃度測定手段12、及び第2濃度測定手段13の順番についても、特にその先後を問わない。各測定手段の特徴に応じて適宜最適な順番で測定すればよい。   In FIG. 1, the conductivity meter 11, the first concentration measuring unit 12, and the second concentration measuring unit 13 are illustrated as being connected in series, but the conductivity meter 11, the first concentration measuring unit 12, And the connection of the 2nd density | concentration measurement means 13 is not limited to this. A parallel connection may be used, or each may be independently provided with a liquid supply path for measurement. The order of the conductivity meter 11, the first concentration measuring means 12, and the second concentration measuring means 13 is not particularly limited. What is necessary is just to measure in the optimal order suitably according to the characteristic of each measuring means.

制御手段21は、データ記憶部23と制御部31とを備えている。データ記憶部23には、アルカリ性を示す現像液の溶解フォトレジスト濃度及び吸収二酸化炭素濃度を指標として特定される濃度領域ごとに所定の現像性能となることが予め確認された、使用する現像液の導電率値を有する導電率データが格納されている。   The control means 21 includes a data storage unit 23 and a control unit 31. In the data storage unit 23, it is confirmed in advance that a predetermined development performance is obtained for each concentration region specified by using the dissolved photoresist concentration and the absorbed carbon dioxide concentration of the developer exhibiting alkalinity as an index. Conductivity data having conductivity values is stored.

制御手段21は、測定部1の導電率計11、第1濃度測定手段12、及び第2濃度測定手段13と信号線により接続されている。測定部1で測定された導電率値、溶解フォトレジスト濃度値、及び、吸収二酸化炭素濃度値が制御手段21へと送られる。   The control means 21 is connected to the conductivity meter 11, the first concentration measuring means 12, and the second concentration measuring means 13 of the measuring unit 1 through signal lines. The conductivity value, the dissolved photoresist concentration value, and the absorbed carbon dioxide concentration value measured by the measurement unit 1 are sent to the control means 21.

制御手段21の制御部31は、現像液に補充液を送液する管路に設けられた制御弁41〜43と、信号線により接続されている。図1では、制御弁41〜43は、現像液管理装置Dの内部部品として図示したが、制御弁41〜43は、本実施形態の現像液管理装置Dの部品として必須のものというわけではない。制御部31は、制御弁41〜43の動作を制御して、現像液に補充液を補給できるように、制御弁41〜43と連絡していればよい。制御弁41〜43は、現像液管理装置Dの外に存在するのでもよい。   The control unit 31 of the control means 21 is connected to control valves 41 to 43 provided in a pipeline for sending the replenisher to the developer by a signal line. In FIG. 1, the control valves 41 to 43 are illustrated as internal components of the developer management device D, but the control valves 41 to 43 are not necessarily essential components of the developer management device D of the present embodiment. . The control unit 31 only needs to communicate with the control valves 41 to 43 so as to control the operation of the control valves 41 to 43 so that the replenisher can be supplied to the developer. The control valves 41 to 43 may exist outside the developer management apparatus D.

実施形態の現像液管理装置Dは、さらに表示手段22を備えている。表示手段22は、現像液の導電率値、アルカリ成分濃度値、溶解フォトレジスト濃度値及び吸収二酸化炭素濃度値のうち少なくとも導電率値及びアルカリ成分濃度値のうちのいずれか一方を表示することができる。   The developer management apparatus D of the embodiment further includes a display unit 22. The display means 22 may display at least one of the conductivity value and the alkali component concentration value among the conductivity value, the alkali component concentration value, the dissolved photoresist concentration value, and the absorbed carbon dioxide concentration value of the developer. it can.

表示手段22は、現像液管理装置Dに電気的に接続されたディスプレーモニターでもよいし、現像液管理装置Dに組み込まれたタッチパネル型コンピュータでもよい。タッチパネル型コンピュータの場合、制御手段と表示手段(制御部およびデータ記憶部)とが一体的に構成される。   The display means 22 may be a display monitor electrically connected to the developer management apparatus D or a touch panel computer incorporated in the developer management apparatus D. In the case of a touch panel computer, a control unit and a display unit (a control unit and a data storage unit) are integrally configured.

続いて、本実施形態の現像液管理装置Dの動作について説明する。   Next, the operation of the developer management device D of this embodiment will be described.

現像液貯留槽61からサンプリングされた現像液は、測定部1内に送液され、温度調節される。現像液は、その後、導電率計11、第1濃度測定手段12、及び第2濃度測定手段13に送液され、導電率、溶解フォトレジスト濃度、及び吸収二酸化炭素濃度が測定される。各測定データは制御手段21に送られる。   The developer sampled from the developer reservoir 61 is fed into the measuring unit 1 and the temperature is adjusted. Thereafter, the developer is fed to the conductivity meter 11, the first concentration measuring means 12, and the second concentration measuring means 13, and the conductivity, dissolved photoresist concentration, and absorbed carbon dioxide concentration are measured. Each measurement data is sent to the control means 21.

制御部31には、現像液の溶解フォトレジスト濃度及び吸収二酸化炭素濃度を指標として特定される濃度領域ごとに所定の現像性能となることが予め確認された現像液の導電率値を有する導電率データの導電率値に対応する、導電率の管理値が設定されている。制御部31は、測定部1から受け取った測定データにより、以下のように制御を行う。   The control unit 31 has a conductivity having a conductivity value of the developer that has been confirmed in advance to have a predetermined development performance for each concentration region specified by using the dissolved photoresist concentration and the absorbed carbon dioxide concentration as an index. A conductivity management value corresponding to the conductivity value of the data is set. The control unit 31 performs control as follows based on the measurement data received from the measurement unit 1.

制御部31は、測定部1から受け取った溶解フォトレジスト濃度と吸収二酸化炭素濃度とに基づいて、データ記憶部23に記憶されている導電率データのうち、測定された溶解フォトレジスト濃度及び測定された吸収二酸化炭素濃度により特定される濃度領域の導電率値を求める。求めた導電率値を現像液の導電率の制御目標値として設定する。   Based on the dissolved photoresist concentration and the absorbed carbon dioxide concentration received from the measuring unit 1, the control unit 31 measures and measures the measured dissolved photoresist concentration in the conductivity data stored in the data storage unit 23. The conductivity value in the concentration region specified by the absorbed carbon dioxide concentration is obtained. The obtained conductivity value is set as a control target value for the conductivity of the developer.

制御部31は、測定部1から受け取った測定された導電率と、制御目標値として設定された導電率とを比較し、比較結果に応じて次のような管理を行う。すなわち、制御目標値として設定された導電率が、測定された導電率と同じ場合、基本的に現像液に補充液を加えない。また、制御目標値として設定された導電率が、測定された導電率より大きい場合、現像液に導電率を上げるように作用をする補充液を補給すればよい。また、制御目標値として設定された導電率が、測定された導電率より小さい場合、現像液に導電率を下げるように作用をする補充液を補給すればよい。   The control unit 31 compares the measured conductivity received from the measurement unit 1 with the conductivity set as the control target value, and performs the following management according to the comparison result. That is, when the conductivity set as the control target value is the same as the measured conductivity, basically, no replenisher is added to the developer. When the conductivity set as the control target value is larger than the measured conductivity, a replenisher that acts to increase the conductivity may be supplied to the developer. When the conductivity set as the control target value is smaller than the measured conductivity, a replenisher that acts to lower the conductivity may be supplied to the developer.

ここで、現像液に補給される補充液としては、例えば、現像液の原液や新液、純水などがある。   Here, examples of the replenisher to be replenished to the developer include a developer stock solution, a new solution, and pure water.

補充液は、補充液貯留部Cの補充液貯留槽91、92に貯留されている。補充液貯留槽91、92は、バルブ46、47を備えた窒素ガス用管路86が接続されており、この管路を介して供給される窒素ガスにより加圧されている。また、補充液貯留槽91、92にはそれぞれに補充液用管路81、82が接続され、通常開いた状態のバルブ44、45を介して補充液が送液される。補充液用管路81、82及び純水用管路83には制御弁41〜43が備えられており、制御弁41〜43は制御部31により開閉制御される。制御弁が動作することにより、補充液貯留槽91、92に貯留されていた補充液が圧送され、また、純水が送液される。その後、補充液は合流管路84を経て、循環攪拌機構Dと合流し、現像液貯留槽61に補給され攪拌される。   The replenisher is stored in the replenisher reservoirs 91 and 92 of the replenisher reservoir C. The replenisher storage tanks 91 and 92 are connected to a nitrogen gas pipe 86 having valves 46 and 47, and are pressurized by nitrogen gas supplied through the pipe. Also, replenisher reservoirs 91 and 92 are connected to replenisher conduits 81 and 82, respectively, and replenisher is fed through valves 44 and 45 that are normally open. The replenisher lines 81 and 82 and the pure water line 83 are provided with control valves 41 to 43, and the control valves 41 to 43 are controlled to be opened and closed by the control unit 31. By operating the control valve, the replenisher stored in the replenisher reservoirs 91 and 92 is pumped and pure water is transported. Thereafter, the replenisher is joined to the circulation stirring mechanism D via the joining conduit 84, and is supplied to the developer storage tank 61 and stirred.

補給により補充液貯留槽91、92内に貯留された補充液が減少すると、その内圧が下がって供給量が不安定となるため、補充液の減少に応じてバルブ46、47を適宜開いて窒素ガスを供給し、補充液貯留槽91、92の内圧が保たれるように維持される。補充液貯留槽91、92が空になったときは、バルブ44、45を閉じて、補充液を満たした新しい補充液貯留槽と交換するか、または、別途調達した補充液を空になった補充液貯留槽に再び充填する。   When the replenisher stored in the replenisher reservoirs 91 and 92 decreases due to replenishment, the internal pressure decreases and the supply amount becomes unstable. Therefore, the valves 46 and 47 are opened as appropriate according to the decrease of the replenisher. Gas is supplied and maintained so that the internal pressure of the replenisher storage tanks 91 and 92 is maintained. When the replenisher reservoirs 91 and 92 are emptied, the valves 44 and 45 are closed and replaced with a new replenisher reservoir filled with the replenisher, or the separately procured replenisher is emptied. Refill the replenisher reservoir.

制御弁41〜43の制御は、例えば、次のように行われる。制御弁の開時に流れる流量が調整されていれば、制御弁を開けている時間を管理することにより、補給すべき液量の補充液を補給することができる。制御部31は、測定部1から受け取った測定された導電率と、制御目標値として設定された導電率に基づいて、補給すべき液量の補充液が流れるように、所定時間制御弁を開けるように制御弁に制御信号を発する。   Control of the control valves 41-43 is performed as follows, for example. If the flow rate flowing when the control valve is opened is adjusted, the amount of replenisher to be replenished can be replenished by managing the time during which the control valve is open. Based on the measured conductivity received from the measurement unit 1 and the conductivity set as the control target value, the control unit 31 opens the control valve for a predetermined time so that the replenisher of the amount to be replenished flows. A control signal is issued to the control valve.

制御の方式は、制御量を目標値に合わせる制御に用いられる各種の制御方法を採用し得る。特に、比例制御(P制御)、積分制御(I制御)、微分制御(D制御)、及び、これらを組み合わせた制御(PI制御など)が好ましい。より好ましくは、PID制御が適している。   As the control method, various control methods used for control for adjusting the control amount to the target value can be adopted. In particular, proportional control (P control), integral control (I control), differential control (D control), and a combination of these (PI control, etc.) are preferable. More preferably, PID control is suitable.

以上により、本実施形態に係る現像液管理装置Dによれば、現像液がどのような溶解フォトレジスト濃度及び吸収二酸化炭素濃度となろうとも、現像液中の導電率で、現像液を管理することにより、現像作用に活性を有する成分が維持されるので、所望の現像性能を維持でき、所望の線幅及び残膜厚を維持できる現像処理を実現できる。   As described above, according to the developer management apparatus D according to the present embodiment, the developer is managed by the conductivity in the developer regardless of the dissolved photoresist concentration and the absorbed carbon dioxide concentration of the developer. As a result, a component having activity in the developing action is maintained, so that it is possible to maintain a desired developing performance and to realize a developing process capable of maintaining a desired line width and remaining film thickness.

また、本実施形態に係る現像液管理装置Dによれば、現像性能が予め確認された現像液の導電率値の導電率データを使用して制御目標管理値とすることで、現像液の溶解フォトレジスト濃度が0.0〜0.40(wt%)(0.0〜1.3(abs)相当)であり、かつ吸収二酸化炭素濃度が0.0〜1.3(wt%)であっても、所望の現像活性を有する現像液として使用することができる。すなわち、本実施形態に係る現像液管理装置Dによれば、現像液の溶解フォトレジスト濃度が0.25(wt%)以上(0.8(abs)相当)、かつ吸収二酸化炭素濃度が0.6(wt%)以上であっても、現像液を廃液することなく使用でき、現像液の廃液量を減らすことが可能となる。   In addition, according to the developer management apparatus D according to the present embodiment, by using the conductivity data of the conductivity value of the developer whose development performance has been confirmed in advance, the control target management value is used, thereby dissolving the developer. The photoresist concentration was 0.0 to 0.40 (wt%) (equivalent to 0.0 to 1.3 (abs)), and the absorbed carbon dioxide concentration was 0.0 to 1.3 (wt%). However, it can be used as a developer having a desired development activity. That is, according to the developer management apparatus D according to the present embodiment, the dissolved photoresist concentration of the developer is 0.25 (wt%) or more (equivalent to 0.8 (abs)) and the absorbed carbon dioxide concentration is 0.1. Even if it is 6 (wt%) or more, the developer can be used without waste, and the waste amount of developer can be reduced.

上述において、現像液の導電率、吸収二酸化炭素濃度、及び溶解フォトレスト濃度と、導電率データを用いた例を説明した。これに限定されることなく、現像液のアルカリ成分濃度、吸収二酸化炭素濃度、及び吸光度と、アルカリ成分濃度データを用いて、現像液を管理することができる。   In the above description, the example of using the conductivity data of the developer, the absorbed carbon dioxide concentration, the dissolved photorest concentration, and the conductivity data has been described. Without being limited thereto, the developer can be managed using the alkali component concentration, absorbed carbon dioxide concentration, absorbance, and alkali component concentration data of the developer.

〔第二実施形態〕
図2は、本実施形態の現像液管理装置Dの説明をするための現像工程の模式図である。本発明の現像液管理装置Dが、現像工程設備A、補充液貯留部B、循環攪拌機構Cなどとともに図示されている。なお、第一実施形態の構成と同様の構成には同一符号を付して説明を省略する場合がある。
[Second Embodiment]
FIG. 2 is a schematic diagram of a developing process for explaining the developer management apparatus D of the present embodiment. A developing solution management apparatus D of the present invention is shown together with a developing process facility A, a replenisher storing portion B, a circulation stirring mechanism C, and the like. In addition, the same code | symbol may be attached | subjected to the structure similar to the structure of 1st embodiment, and description may be abbreviate | omitted.

現像液管理装置Dの測定部1は、導電率計11、現像液の溶解フォトレジスト濃度と相関のある現像液の特性値と、現像液の吸収二酸化炭素濃度と相関のある現像液の特性値とを測定する複数の測定装置を備えている。例えば、溶解フォトレジスト濃度と相関のある現像液の特性値を測定する第1特性値測定手段12Aとして、例えばλ=560nmにおける吸光度を測定する吸光光度計を備えている。吸収二酸化炭素濃度と相関のある現像液の特性値を測定する第2特性値測定手段13Aとして、現像液の密度を測定する密度計を備えている。   The measuring unit 1 of the developer management device D includes a conductivity meter 11, a developer characteristic value correlated with the dissolved photoresist concentration of the developer, and a developer characteristic value correlated with the absorbed carbon dioxide concentration of the developer. Are provided with a plurality of measuring devices. For example, as the first characteristic value measuring means 12A for measuring the characteristic value of the developer having a correlation with the dissolved photoresist concentration, for example, an absorptiometer for measuring the absorbance at λ = 560 nm is provided. As the second characteristic value measuring means 13A for measuring the characteristic value of the developer having a correlation with the absorbed carbon dioxide concentration, a density meter for measuring the density of the developer is provided.

ここで、「相関のある」現像液の特性値とは、その特性値がその成分濃度と関係があり、その成分濃度の変化に応じて特性値が変わるような関係にあることをいう。例えば、現像液の成分濃度のうち少なくとも成分濃度Aと相関のある現像液の特性値aとは、特性値aが成分濃度を変数とする関数により求められるときに、変数の一つに少なくとも成分濃度Aを含むことをいう。特性値aが成分濃度Aのみの関数であってもよいが、通常は、成分濃度Aのほかに、成分濃度BやCなどを変数とする多変数関数となっているときに、多変量解析法(例えば、重回帰分析法)を用いる意義が大きい。   Here, the characteristic value of the “correlated” developer means that the characteristic value is related to the component concentration, and the characteristic value is changed according to the change of the component concentration. For example, the developer characteristic value a having a correlation with at least the component concentration A among the component concentrations of the developer is obtained when the characteristic value a is obtained by a function having the component concentration as a variable. The concentration A is included. The characteristic value a may be a function of only the component concentration A. Usually, when the characteristic value a is a multivariable function having the component concentrations B and C as variables in addition to the component concentration A, the multivariate analysis is performed. The significance of using a method (for example, multiple regression analysis) is great.

制御手段21は、データ記憶部23、制御部31、及び演算部32を備えている。演算部32は、測定部1で測定された現像液の複数の特性値から、多変量解析により、現像液の溶解フォトレジスト濃度の測定値及び吸収二酸化炭素濃度の測定値を算出する。   The control means 21 includes a data storage unit 23, a control unit 31, and a calculation unit 32. The computing unit 32 calculates a measured value of the dissolved photoresist concentration and a measured value of the absorbed carbon dioxide concentration of the developer from the plurality of characteristic values of the developer measured by the measuring unit 1 by multivariate analysis.

本実施形態では、現像液貯留槽61からサンプリングされた現像液は、測定部1内に送液され、温度調節される。現像液は、その後、導電率計11、第1特性値測定手段12A吸、及び第2特性値測定手段13Aに送液され、導電率、吸光度、及び密度が測定される。各測定データは制御手段21に送られる。   In the present embodiment, the developer sampled from the developer storage tank 61 is fed into the measurement unit 1 and the temperature is adjusted. Thereafter, the developer is sent to the conductivity meter 11, the first characteristic value measuring means 12A suction, and the second characteristic value measuring means 13A, and the conductivity, absorbance, and density are measured. Each measurement data is sent to the control means 21.

演算部32は、測定部1で測定された吸光度、及び密度から多変量解析により、現像液の溶解フォトレジスト濃度の測定値及び吸収二酸化炭素濃度の測定値を算出する。この際、導電率、吸光度、及び密度から多変量解析により溶解フォトレジスト濃度の測定値及び吸収二酸化炭素濃度の測定値を算出することもできる。   The computing unit 32 calculates a measured value of the dissolved photoresist concentration and a measured value of the absorbed carbon dioxide concentration of the developer by multivariate analysis from the absorbance and density measured by the measuring unit 1. At this time, the measured value of the dissolved photoresist concentration and the measured value of the absorbed carbon dioxide concentration can also be calculated from the conductivity, absorbance, and density by multivariate analysis.

制御部31は、演算部32で算出された溶解フォトレジスト濃度と吸収二酸化炭素濃度とに基づいて、データ記憶部23に記憶されている導電率データのうち、測定された溶解フォトレジスト濃度及び測定された吸収二酸化炭素濃度により特定される濃度領域の導電率値を求める。求めた導電率値を現像液の導電率の制御目標値として設定する。   Based on the dissolved photoresist concentration and the absorbed carbon dioxide concentration calculated by the calculation unit 32, the control unit 31 determines the measured dissolved photoresist concentration and measurement among the conductivity data stored in the data storage unit 23. The conductivity value of the concentration region specified by the absorbed carbon dioxide concentration is obtained. The obtained conductivity value is set as a control target value for the conductivity of the developer.

その他の構成、動作などは、第一実施形態と同様であるので、省略する。   Other configurations and operations are the same as those in the first embodiment, and are omitted.

次に、現像液の複数の特性値から、溶解フォトレジスト濃度の測定値及び吸収二酸化炭素濃度を、多変量解析により算出する手法について説明する。   Next, a method for calculating the measured value of the dissolved photoresist concentration and the absorbed carbon dioxide concentration from a plurality of characteristic values of the developer by multivariate analysis will be described.

発明者は、演算手法に多変量解析法(例えば、重回帰分析法)を用いれば、従来法を用いた場合より、精度よく現像液の各成分の濃度を算出できること、及び、従来困難であった吸収二酸化炭素濃度が測定できること、を見出した。多変量解析法(例えば、重回帰分析法)により算出した現像液の成分濃度(溶解フォトレジスト濃度、及び吸収二酸化炭素濃度)を用いれば、予め現像性の確認された溶解フォトレジスト濃度、及び吸収二酸化炭素濃度と導電率値を有する導電率データから、目的の導電率値を容易に得ることが可能となる。   The inventor can calculate the concentration of each component of the developer with higher accuracy than the conventional method by using a multivariate analysis method (for example, multiple regression analysis method) as the calculation method, and has been difficult in the past. It was found that the absorbed carbon dioxide concentration can be measured. Using developer component concentrations (dissolved photoresist concentration and absorbed carbon dioxide concentration) calculated by multivariate analysis methods (for example, multiple regression analysis method), dissolved photoresist concentrations and absorption that have been confirmed in advance for developing properties. The target conductivity value can be easily obtained from the conductivity data having the carbon dioxide concentration and the conductivity value.

2.38%TMAH水溶液の管理を行う場合を想定して、アルカリ成分濃度、溶解フォトレジスト濃度、吸収二酸化炭素濃度を様々に変化させたTMAH水溶液を模擬現像液サンプルとして調製した。発明者は、これらの模擬現像液サンプルについて測定した各種特性値から、重回帰分析法によりその成分濃度を求める実験を行った。以下に、重回帰分析法による一般的な演算手法を説明し、そのあと、発明者の行った実験に基づいて、重回帰分析法を用いた現像液の成分濃度の演算手法について説明する。   A TMAH aqueous solution in which the alkali component concentration, dissolved photoresist concentration, and absorbed carbon dioxide concentration were variously changed was prepared as a simulated developer sample, assuming that a 2.38% TMAH aqueous solution was to be managed. The inventor conducted an experiment for determining the component concentration by a multiple regression analysis method from various characteristic values measured for these simulated developer samples. Hereinafter, a general calculation method based on the multiple regression analysis method will be described, and thereafter, a calculation method of the developer component concentration using the multiple regression analysis method will be described based on experiments conducted by the inventors.

重回帰分析は校正と予測の二段階からなる。n成分系の重回帰分析において、校正標準溶液をm個用意したとする。i番目の溶液中に存在するj番目の成分の濃度をCijと表す。ここで、i=1〜m、j=1〜nである。m個の標準溶液について、それぞれ、p個の特性値(例えば、ある波長における吸光度とか導電率などの特性値)Aik(k=1〜p)を測定する。濃度データと特性データは、それぞれ、まとめて行列の形(C,A)に表すことができる。 Multiple regression analysis consists of two stages: calibration and prediction. Assume that m calibration standard solutions are prepared in an n-component multiple regression analysis. The concentration of the j-th component present in the i-th solution is represented as C ij . Here, i = 1 to m and j = 1 to n. For each of m standard solutions, p characteristic values (for example, characteristic values such as absorbance or conductivity at a certain wavelength) A ik (k = 1 to p) are measured. The density data and the characteristic data can be collectively represented in matrix form (C, A).

Figure 2018120899
Figure 2018120899

これらの行列を関係づける行列を校正行列といい、ここでは記号S(Skj;k=1〜p、j=1〜n)で表す。 A matrix relating these matrices is called a calibration matrix, and is represented by a symbol S (S kj ; k = 1 to p, j = 1 to n).

Figure 2018120899
Figure 2018120899

既知のCとA(Aの内容は、同質の測定値のみならず異質の測定値が混在しても構わない。例えば、導電率と吸光度と密度。)からSを行列演算により算出するのが校正段階である。この時、p>=n、且つ、m>=npでなければならない。Sの各要素は全て未知数であるから、m>npであることが望ましく、その場合は次のように最小二乗演算を行う。   It is possible to calculate S by matrix calculation from known C and A (the contents of A may include not only the same measurement value but also different measurement values. For example, conductivity, absorbance and density). Calibration stage. At this time, p> = n and m> = np must be satisfied. Since all elements of S are unknown, it is desirable that m> np. In this case, the least squares operation is performed as follows.

Figure 2018120899
Figure 2018120899

ここで、上付きのTは転置行列を、上付きの−1は逆行列を意味する。   Here, the superscript T means a transposed matrix, and the superscript -1 means an inverse matrix.

濃度未知の試料液についてp個の特性値を測定し、それらをAu(Au;k=1〜p)とすれば、それにSを乗じて求めるべき濃度Cu(Cu;j=1〜n)を得ることができる。 If p characteristic values are measured for a sample solution of unknown concentration and these are set to Au (Au k ; k = 1 to p), the concentration Cu (Cu j ; j = 1 to n) to be obtained by multiplying it by S ) Can be obtained.

Figure 2018120899
Figure 2018120899

これが予測段階である。   This is the prediction stage.

発明者は、使用済みのアルカリ性現像液(2.38%TMAH水溶液)を、アルカリ成分、溶解フォトレジスト、吸収二酸化炭素の3成分からなる多成分系(n=3)とみなして、当該現像液の特性値として3つの特性値(p=3)、すなわち、現像液の導電率値、特定波長における吸光度値、及び、密度値から、上記重回帰分析法により各成分濃度を算出する実験を行った。発明者は、2.38%TMAH水溶液を現像液の基本組成として、アルカリ成分濃度(TMAH濃度)、溶解フォトレジスト濃度、吸収二酸化炭素濃度を様々に変化させた11個の校正標準溶液を調製した(m=11で、p>=nかつm>npを満たす)。   The inventor regards the used alkaline developer (2.38% TMAH aqueous solution) as a multi-component system (n = 3) composed of three components of an alkali component, a dissolved photoresist, and absorbed carbon dioxide, and the developer. An experiment was conducted to calculate the concentration of each component by the multiple regression analysis method from three characteristic values (p = 3), that is, the conductivity value of the developer, the absorbance value at a specific wavelength, and the density value. It was. The inventor prepared 11 calibration standard solutions in which the alkali component concentration (TMAH concentration), dissolved photoresist concentration, and absorbed carbon dioxide concentration were variously changed with a 2.38% TMAH aqueous solution as the basic composition of the developer. (When m = 11, p> = n and m> np are satisfied).

実験は、11個の校正標準溶液について、導電率値、波長λ=560nmにおける吸光度値、及び、密度値を現像液の特性値として測定し、各成分濃度を線形重回帰分析(Multiple Linear Regression − Inverse Least Squares;MLR−ILS)により演算した。   In the experiment, for 11 calibration standard solutions, the conductivity value, the absorbance value at a wavelength λ = 560 nm, and the density value were measured as the characteristic values of the developer, and the concentration of each component was determined by linear multiple regression analysis (Multiple Linear Regression − Inverse Least Squares (MLR-ILS).

測定は、校正標準溶液を25.0℃に温度調整して、行った。温度調整は、25℃付近に温度管理された恒温水槽に校正標準溶液の入ったボトルを長時間浸しておき、ここからサンプリングして、さらに測定直前に温度コントローラにて再度25.0℃にする、という方式である。導電率計は自社製の導電率計を採用した。白金黒処理を施した自社製の導電率フローセルを用いて測定した。導電率計には、別途校正作業により確認された導電率フローセルのセル定数が入力されている。吸光光度計も自社製のものを採用した。波長λ=560nmの光源部と測光部とガラスフローセルとを備える吸光光度計である。密度測定には、U字管フローセルを励振して測定される固有振動数から密度を求める固有振動法を採用した密度計を用いた。測定された導電率値、吸光度値、密度値の単位は、それぞれ、mS/cm、Abs.(Absorbance)、g/cmである。 The measurement was performed by adjusting the temperature of the calibration standard solution to 25.0 ° C. To adjust the temperature, immerse the bottle containing the calibration standard solution in a constant temperature water bath whose temperature is controlled at around 25 ° C. for a long time, sample from here, and set the temperature controller to 25.0 ° C. again immediately before the measurement. This is the method. A conductivity meter made in-house was adopted as the conductivity meter. It measured using the conductivity flow cell made in-house which gave the platinum black process. The conductivity meter is inputted with the cell constant of the conductivity flow cell confirmed by a separate calibration operation. An in-house manufactured absorptiometer was also used. It is an absorptiometer including a light source unit having a wavelength λ = 560 nm, a photometric unit, and a glass flow cell. For the density measurement, a density meter employing a natural vibration method for obtaining a density from a natural frequency measured by exciting a U-shaped flow cell was used. The measured conductivity value, absorbance value, and density value are in units of mS / cm, Abs. (Absorbance), g / cm 3 .

演算は、11個の校正標準溶液のうち一つを未知試料に見立てて、残り10標準で校正行列を求め、仮定した未知試料の濃度を算出して既知の値(他の正確な分析手法により測定した濃度値や重量調製値)と比べる手法(一個抜き交差確認法;Leave−One−Out法)によるものである。   The calculation is based on the assumption that one of the 11 calibration standard solutions is an unknown sample, a calibration matrix is obtained with the remaining 10 standards, the concentration of the assumed unknown sample is calculated, and a known value (by other accurate analysis method) is calculated. This is based on a method (a single cross check method; Leave-One-Out method) compared with a measured concentration value or weight adjustment value.

MLR−ILS計算を行った結果を表1に示す。   The results of MLR-ILS calculation are shown in Table 1.

Figure 2018120899
Figure 2018120899

MLR−ILS計算に当たっては、TMAH水溶液が強アルカリ性で二酸化炭素を吸収して劣化しやすいことに鑑み、演算に用いる濃度行列には、アルカリ成分濃度や吸収二酸化炭素濃度を正確に分析できる滴定分析法により校正標準溶液を別途測定した値を用いた。ただし、溶解フォトレジスト濃度に関しては、重量調製値を用いた。   In the MLR-ILS calculation, in view of the fact that the TMAH aqueous solution is strongly alkaline and easily deteriorates by absorbing carbon dioxide, the concentration matrix used for the calculation includes a titration analysis method capable of accurately analyzing the concentration of alkali components and absorbed carbon dioxide. A value obtained by separately measuring the calibration standard solution was used. However, the weight preparation value was used for the dissolved photoresist concentration.

滴定は、塩酸を滴定試薬とする中和滴定である。滴定装置として、三菱化学アナリテック社製の自動滴定装置GT−200を使用した。   Titration is neutralization titration using hydrochloric acid as a titration reagent. As a titration apparatus, an automatic titration apparatus GT-200 manufactured by Mitsubishi Chemical Analytech Co., Ltd. was used.

以下、表2に、濃度行列を示す。   Table 2 below shows the concentration matrix.

Figure 2018120899
Figure 2018120899

このときの校正標準溶液の特性値の測定結果を表3に示す。吸光度の欄は、波長λ=560nmにおける吸光度値(光路長d=10mm)である。   Table 3 shows the measurement results of the characteristic values of the calibration standard solution at this time. The column for absorbance is the absorbance value at the wavelength λ = 560 nm (optical path length d = 10 mm).

Figure 2018120899
Figure 2018120899

校正行列を表4に示す。   Table 4 shows the calibration matrix.

Figure 2018120899
Figure 2018120899

表5に、表2の濃度測定値と表1のMLR−ILS計算値との比較を示す。   Table 5 shows a comparison between the measured concentration values in Table 2 and the calculated MLR-ILS values in Table 1.

Figure 2018120899
Figure 2018120899

表5の通り、重回帰分析法により求められたTMAH濃度、溶解フォトレジスト濃度、吸収二酸化炭素濃度は、いずれも滴定分析により測定したTMAH濃度や吸収二酸化炭素濃度、及び、調整重量から求めた溶解フォトレジスト濃度と、いずれもかなり近似した値となっている。   As shown in Table 5, the TMAH concentration, dissolved photoresist concentration, and absorbed carbon dioxide concentration determined by multiple regression analysis were all determined from the TMAH concentration and absorbed carbon dioxide concentration measured by titration analysis, and the adjusted weight. Both values are very close to the photoresist concentration.

このように、アルカリ性現像液の導電率、特定波長における吸光度、及び、密度を測定して、多変量解析法(例えば、重回帰分析法)を用いることにより、現像液のアルカリ成分濃度、溶解フォトレジスト濃度、及び、吸収二酸化炭素濃度を測定できることが理解される。   Thus, by measuring the conductivity, the absorbance at a specific wavelength, and the density of an alkaline developer, and using a multivariate analysis method (for example, multiple regression analysis), the alkali component concentration of the developer, dissolved photo It is understood that the resist concentration and the absorbed carbon dioxide concentration can be measured.

多変量解析法(例えば、重回帰分析法)は、複数の成分の濃度を演算して求めるのに有効である。現像液の複数の特性値a、b、c、…を測定して、それらの測定値から多変量解析法(例えば、重回帰分析法)により成分濃度A、B、C、…を求めることができる。この際、求めるべき成分濃度につき、少なくともこの成分濃度と相関のある特性値が、少なくともひとつは測定されて演算に用いられることが必要である。   A multivariate analysis method (for example, multiple regression analysis method) is effective for calculating and obtaining concentrations of a plurality of components. A plurality of characteristic values a, b, c,... Of the developer are measured, and component concentrations A, B, C,... Are obtained from the measured values by a multivariate analysis method (for example, multiple regression analysis method). it can. At this time, it is necessary that at least one characteristic value correlated with the component concentration is measured and used for calculation for the component concentration to be obtained.

また、成分濃度は、全体に対するその成分の相対量を示す尺度である。繰り返し使用される現像液のような経時的に成分が増減する混合液の成分濃度は、その成分単独で決まらず、通常、他の成分の濃度の関数となる。そのため、現像液の特性値と成分濃度の関係は、平面的なグラフで表示することが困難なことが多い。このような場合には、検量線を用いる演算法などでは、現像液の特性値から成分濃度を算出することができない。   The component concentration is a scale indicating the relative amount of the component with respect to the whole. The component concentration of a mixed solution whose components increase or decrease over time, such as a developer that is used repeatedly, is not determined by the component alone, but is usually a function of the concentration of other components. Therefore, it is often difficult to display the relationship between the characteristic value of the developer and the component concentration in a planar graph. In such a case, the component concentration cannot be calculated from the characteristic value of the developer by a calculation method using a calibration curve.

しかし、多変量解析法(例えば、重回帰分析法)によれば、算出しようとする成分濃度と相関のある複数の特性値の測定値が一組揃えば、これを演算に用いて、成分濃度が一組算出される。従来の知見では一見すると測定困難な成分濃度であっても、特性値を測定することで成分濃度を測定できる、という顕著な効果を、多変量解析法(例えば、重回帰分析法)による成分濃度測定では得ることができる。   However, according to the multivariate analysis method (for example, multiple regression analysis method), if a set of measured values of a plurality of characteristic values correlated with the component concentration to be calculated is prepared, this is used for the calculation. Is calculated as a set. The component concentration by the multivariate analysis method (for example, multiple regression analysis method) has the remarkable effect that the component concentration can be measured by measuring the characteristic value even if the component concentration is difficult to measure at first glance. It can be obtained by measurement.

以上のとおり、本発明の演算手法によれば、現像液のアルカリ成分濃度、溶解フォトレジスト濃度、及び、吸収二酸化炭素濃度を、現像液の特性値(例えば、導電率、特定波長における吸光度、及び、密度)の測定値に基づいて算出することができる。本発明の演算手法によれば、従来法に比べ、高精度に各成分濃度を算出することができる。   As described above, according to the calculation method of the present invention, the alkali component concentration, the dissolved photoresist concentration, and the absorbed carbon dioxide concentration of the developer are determined based on the characteristic values of the developer (for example, conductivity, absorbance at a specific wavelength, and , Density) can be calculated based on the measured value. According to the calculation method of the present invention, the concentration of each component can be calculated with higher accuracy than in the conventional method.

また、本発明では多変量解析法(例えば、重回帰分析法)を用いているので、現像液の成分濃度を算出する演算に、現像液の特定の成分濃度と直線関係にない現像液の特性値をも採用することができる。   Further, since a multivariate analysis method (for example, multiple regression analysis method) is used in the present invention, the characteristics of the developer not having a linear relationship with a specific component concentration of the developer are used in the calculation of the component concentration of the developer. Values can also be adopted.

また、本発明によれば、特許文献2の発明では必要な、高精度測定を可能とするための非常に多数のサンプルの準備と予備測定が、必要ない。(前述の実験例のとおり、成分数n=3の現像液であれば、測定する特性値の数p=3として、m>=npを満たすサンプル数p(例えばp=11個のサンプル)を準備して測定すれば、十分である。成分数n=2ならばサンプル数はさらに少なくてよい。)
さらに、本発明は多変量解析法(例えば、重回帰分析法)を用いているので、従来は測定が困難であった現像液の吸収二酸化炭素濃度を、精度よく算出することができる。
In addition, according to the present invention, it is not necessary to prepare a large number of samples and perform preliminary measurement to enable high-precision measurement, which is necessary in the invention of Patent Document 2. (As in the above experimental example, if the developer has n = 3 components, the number of characteristic values to be measured is p = 3, and the number of samples p satisfying m> = np (for example, p = 11 samples) is set. It is sufficient to prepare and measure.If the number of components is n = 2, the number of samples may be smaller.)
Furthermore, since the present invention uses a multivariate analysis method (for example, multiple regression analysis method), it is possible to accurately calculate the absorbed carbon dioxide concentration of the developer, which has been difficult to measure conventionally.

本実施形態では、現像液の溶解フォトレジスト濃度と相関のある現像液の特性値として、λ=560nmにおける吸光度を例示したが、これに限定されない。他の特定波長における吸光度、すなわち、可視領域、より好ましくは360〜600nmの波長領域、の特定波長、より好ましくは波長λ=480nm、における吸光度を、特性値として利用することもできる。これらの波長域に含まれる特定波長における吸光度は溶解レジスト濃度と比較的良好な対応関係にあるためである。   In this embodiment, the absorbance at λ = 560 nm is exemplified as the developer characteristic value correlated with the dissolved photoresist concentration of the developer. However, the present invention is not limited to this. Absorbance at other specific wavelengths, that is, absorbance at a specific wavelength in the visible region, more preferably in the wavelength region of 360 to 600 nm, more preferably at wavelength λ = 480 nm, can also be used as the characteristic value. This is because the absorbance at specific wavelengths included in these wavelength ranges has a relatively good correspondence with the dissolved resist concentration.

また、現像液の吸収二酸化炭素濃度と相関のある現像液の特性値として、密度を例示したが、これに限定されない。現像液の溶解フォトレジスト濃度や吸収二酸化炭素濃度と相関のある現像液の特性値として、現像液の導電率と組み合わせて測定する特性値に採用し得る特性値には、例えば、上記特定波長における吸光度や密度の他に、超音波伝播速度、屈折率、滴定終点、pHなどを挙げることができる。   Further, although the density is exemplified as the characteristic value of the developer having a correlation with the absorbed carbon dioxide concentration of the developer, the density is not limited thereto. The characteristic value that can be adopted as the characteristic value measured in combination with the conductivity of the developing solution as the characteristic value of the developing solution having a correlation with the dissolved photoresist concentration or absorbed carbon dioxide concentration of the developing solution includes, for example, the above-mentioned specific wavelength In addition to absorbance and density, examples include ultrasonic propagation velocity, refractive index, titration end point, pH, and the like.

〔第三実施形態〕
図3は、本実施形態の現像液管理装置Dの説明をするための現像工程の模式図である。本発明の現像液管理装置Dが、現像工程設備A、補充液貯留部B、循環攪拌機構Cなどとともに図示されている。なお、第一実施形態、及び第二実施形態の構成と同様の構成には同一符号を付して説明を省略する場合がある。
[Third embodiment]
FIG. 3 is a schematic diagram of a developing process for explaining the developer management apparatus D of the present embodiment. A developing solution management apparatus D of the present invention is shown together with a developing process facility A, a replenisher storing portion B, a circulation stirring mechanism C, and the like. In addition, the same code | symbol may be attached | subjected to the structure similar to the structure of 1st embodiment and 2nd embodiment, and description may be abbreviate | omitted.

本実施形態の現像液管理装置Dは、測定部1と、制御手段21、及び演算手段36を備えている。本実施形態では、第二実施形態とは異なり、制御手段21と、演算を行う演算手段36とが、別体の装置で構成されている。   The developer management apparatus D of the present embodiment includes a measurement unit 1, a control unit 21, and a calculation unit 36. In the present embodiment, unlike the second embodiment, the control means 21 and the calculation means 36 for performing calculations are configured as separate devices.

測定部1は、導電率計11、第1特性値測定手段12A、及び第2特性値測定手段13Aを備えている。演算手段36は、第1特性値測定手段12A、及び第2特性値測定手段13Aにより測定された吸光度、及び密度から多変量解析により、現像液の溶解フォトレジスト濃度の測定値及び吸収二酸化炭素濃度の測定値を算出する。この際、導電率、吸光度、及び密度から多変量解析により溶解フォトレジスト濃度の測定値及び吸収二酸化炭素濃度を算出することができる。   The measuring unit 1 includes a conductivity meter 11, a first characteristic value measuring unit 12A, and a second characteristic value measuring unit 13A. The calculating means 36 is a multivariate analysis from the absorbance and density measured by the first characteristic value measuring means 12A and the second characteristic value measuring means 13A, and the measured value of the dissolved photoresist concentration and the absorbed carbon dioxide concentration in the developer. Calculate the measured value. At this time, the measured value of the dissolved photoresist concentration and the absorbed carbon dioxide concentration can be calculated from the conductivity, absorbance, and density by multivariate analysis.

制御部31は、演算手段で算出された溶解フォトレジスト濃度と吸収二酸化炭素濃度とに基づいて、データ記憶部23に記憶されている導電率データのうち、測定された溶解フォトレジスト濃度及び測定された吸収二酸化炭素濃度により特定される濃度領域の導電率値を求める。求めた導電率値を現像液の導電率の制御目標値として設定する。   Based on the dissolved photoresist concentration and the absorbed carbon dioxide concentration calculated by the calculation means, the control unit 31 measures the measured dissolved photoresist concentration and the measured concentration among the conductivity data stored in the data storage unit 23. The conductivity value in the concentration region specified by the absorbed carbon dioxide concentration is obtained. The obtained conductivity value is set as a control target value for the conductivity of the developer.

その他の構成、動作などは、第二実施形態と同様であるので、省略する。   Other configurations and operations are the same as those in the second embodiment, and are omitted.

〔第四実施形態〕
図4は、本実施形態の現像液管理装置Dの説明をするための現像工程の模式図である。本発明の現像液管理装置Dが、現像工程設備A、補充液貯留部B、循環攪拌機構Cなどとともに図示されている。なお、第一実施形態、第二実施形態、及び第三実施形態の構成と同様の構成には同一符号を付して説明を省略する場合がある。
[Fourth embodiment]
FIG. 4 is a schematic diagram of a developing process for explaining the developer management apparatus D of the present embodiment. A developing solution management apparatus D of the present invention is shown together with a developing process facility A, a replenisher storing portion B, a circulation stirring mechanism C, and the like. In addition, the same code | symbol may be attached | subjected to the structure similar to the structure of 1st embodiment, 2nd embodiment, and 3rd embodiment, and description may be abbreviate | omitted.

本実施形態の測定部1は、導電率計11、第1濃度測定手段12、及び密度計13Bを備える。制御手段21はデータ記憶部23と演算部33とを備える。演算部33は、現像液の吸収二酸化炭素濃度と密度との間の対応関係に基づいて密度計13Bにより測定された現像液の密度から現像液の吸収二酸化炭素濃度を算出する。   The measuring unit 1 of the present embodiment includes a conductivity meter 11, a first concentration measuring unit 12, and a density meter 13B. The control means 21 includes a data storage unit 23 and a calculation unit 33. The calculator 33 calculates the absorbed carbon dioxide concentration of the developer from the density of the developer measured by the density meter 13B based on the correspondence relationship between the absorbed carbon dioxide concentration and the density of the developer.

制御部31は、測定部1で測定された溶解フォトレジスト濃度と、演算部33で算出された吸収二酸化炭素濃度とに基づいて、データ記憶部23に記憶されている導電率データのうち、測定された溶解フォトレジスト濃度及び測定された吸収二酸化炭素濃度により特定される濃度領域の導電率値を求める。求めた導電率値を現像液の導電率の制御目標値として設定する。   Based on the dissolved photoresist concentration measured by the measurement unit 1 and the absorbed carbon dioxide concentration calculated by the calculation unit 33, the control unit 31 measures the conductivity data stored in the data storage unit 23. A conductivity value in a concentration region specified by the measured dissolved photoresist concentration and the measured absorbed carbon dioxide concentration is obtained. The obtained conductivity value is set as a control target value for the conductivity of the developer.

その他の構成、動作などは、第一実施形態と同様であるので、省略する。   Other configurations and operations are the same as those in the first embodiment, and are omitted.

現像液の密度値と吸収二酸化炭素濃度値との関係について説明する。発明者は、鋭意研究を続けた結果、次の知見を得た。すなわち、現像液のアルカリ成分濃度や溶解フォトレジスト濃度によらず、現像液の密度値と吸収二酸化炭素濃度値との間には比較的良好な対応関係(直線関係)が得られること、である。また、この対応関係(直線関係)を用いれば密度計により現像液の密度を測定することで従来困難であった吸収二酸化炭素濃度が測定できること、である。   The relationship between the density value of the developer and the absorbed carbon dioxide concentration value will be described. The inventor obtained the following knowledge as a result of intensive research. That is, a relatively good correspondence (linear relationship) can be obtained between the density value of the developer and the absorbed carbon dioxide concentration value regardless of the alkali component concentration or dissolved photoresist concentration of the developer. . Further, if this correspondence (linear relationship) is used, it is possible to measure the absorbed carbon dioxide concentration, which has been difficult in the past, by measuring the density of the developer with a densitometer.

発明者は、多変量解析法を用いた現像液の成分濃度の演算に用いた11個の校正標準溶液を模擬現像液サンプルとし、これらについてアルカリ成分濃度(TMAH濃度)、溶解
フォトレジスト濃度、吸収二酸化炭素濃度、および、密度を測定し、成分濃度と密度との相関を確かめる実験を行った。
The inventor used 11 calibration standard solutions used for calculating the component concentration of the developer using the multivariate analysis method as a simulated developer sample, and the alkaline component concentration (TMAH concentration), dissolved photoresist concentration, absorption Experiments were conducted to measure the carbon dioxide concentration and density, and to confirm the correlation between the component concentration and density.

以下の表6に、各サンプルの成分濃度と密度の測定結果を示す。表6は、表5の濃度測定値(wt%)と表3の密度(g/cm)とを対比させた表である。 Table 6 below shows the measurement results of the component concentration and density of each sample. Table 6 is a table in which the measured concentration values (wt%) in Table 5 are compared with the densities (g / cm 3 ) in Table 3.

Figure 2018120899
Figure 2018120899

図5に、表6に示した各サンプルの吸収二酸化炭素濃度と密度とのグラフを示す。このグラフは、吸収二酸化炭素濃度(wt%)を横軸にとり、密度(g/cm)を縦軸にとり、各サンプルの値をプロットしたグラフである。プロットした各点から、最小二乗法により回帰直線を求めた。 FIG. 5 shows a graph of absorbed carbon dioxide concentration and density of each sample shown in Table 6. This graph is a graph in which the value of each sample is plotted with the absorbed carbon dioxide concentration (wt%) on the horizontal axis and the density (g / cm 3 ) on the vertical axis. A regression line was obtained from each plotted point by the least square method.

図5から、現像液の吸収二酸化炭素濃度は、アルカリ成分濃度や溶解フォトレジスト濃度が様々であるにも関わらず、現像液の密度との間に良好な直線関係があることが理解できる。この実験結果により、この現像液の吸収二酸化炭素濃度と密度との間の対応関係(直線関係)を用いれば、現像液の密度を測定することにより現像液の吸収二酸化炭素濃度を算出することが可能であることを、発明者は知見したのである。   From FIG. 5, it can be understood that the absorbed carbon dioxide concentration of the developer has a good linear relationship with the density of the developer even though the alkali component concentration and the dissolved photoresist concentration are various. From this experimental result, using the correspondence relationship (linear relationship) between the absorbed carbon dioxide concentration and density of the developer, the absorbed carbon dioxide concentration of the developer can be calculated by measuring the density of the developer. The inventor has found that this is possible.

したがって、アルカリ成分濃度(TMAH濃度)や溶解レジスト濃度にかかわらず、この対応関係(直線関係)により、密度計を用いることにより、現像液の吸収二酸化炭素濃度を測定することができる。   Therefore, regardless of the alkali component concentration (TMAH concentration) or the dissolved resist concentration, the absorbed carbon dioxide concentration of the developer can be measured by using the density meter according to this correspondence relationship (linear relationship).

演算部33で、現像液の密度と吸収二酸化炭素濃度の関係を利用することで、容易に現像液の吸収二酸化炭素濃度を測定することができる。   By using the relationship between the density of the developer and the absorbed carbon dioxide concentration in the computing unit 33, the absorbed carbon dioxide concentration of the developer can be easily measured.

〔第五実施形態〕
図6は、本実施形態の現像液管理装置Dの説明をするための現像工程の模式図である。本発明の現像液管理装置Dが、現像工程設備A、補充液貯留部B、循環攪拌機構Cなどとともに図示されている。なお、第一実施形態、及び第二実施形態の構成と同様の構成には同一符号を付して説明を省略する場合がある。
[Fifth embodiment]
FIG. 6 is a schematic diagram of a developing process for explaining the developer management apparatus D of the present embodiment. A developing solution management apparatus D of the present invention is shown together with a developing process facility A, a replenisher storing portion B, a circulation stirring mechanism C, and the like. In addition, the same code | symbol may be attached | subjected to the structure similar to the structure of 1st embodiment and 2nd embodiment, and description may be abbreviate | omitted.

本実施形態の現像液管理装置Dは、測定部1と、制御手段21、及び演算手段37を備えている。本実施形態では、第四実施形態とは異なり、制御手段21と、演算を行う演算手段37とが、別体の装置で構成されている。本実施形態の測定部1は、導電率計11、第1濃度測定手段12、及び密度計13Bを備える。演算手段37は、現像液の吸収二酸化炭素濃度と密度との間の対応関係に基づいて密度計13Bにより測定された現像液の密度から現像液の吸収二酸化炭素濃度を算出する。   The developer management apparatus D of this embodiment includes a measuring unit 1, a control unit 21, and a calculation unit 37. In the present embodiment, unlike the fourth embodiment, the control means 21 and the calculation means 37 for performing calculations are configured as separate devices. The measuring unit 1 of the present embodiment includes a conductivity meter 11, a first concentration measuring unit 12, and a density meter 13B. The computing unit 37 calculates the absorbed carbon dioxide concentration of the developer from the density of the developer measured by the density meter 13B based on the correspondence relationship between the absorbed carbon dioxide concentration and the density of the developer.

制御部31は、測定部1で測定された溶解フォトレジスト濃度と、演算手段37で算出された吸収二酸化炭素濃度とに基づいて、データ記憶部23に記憶されている導電率データのうち、測定された溶解フォトレジスト濃度及び測定された吸収二酸化炭素濃度により特定される濃度領域の導電率値を求める。求めた導電率値を現像液の導電率の制御目標値として設定する。   Based on the dissolved photoresist concentration measured by the measurement unit 1 and the absorbed carbon dioxide concentration calculated by the computing means 37, the control unit 31 measures the conductivity data stored in the data storage unit 23. A conductivity value in a concentration region specified by the measured dissolved photoresist concentration and the measured absorbed carbon dioxide concentration is obtained. The obtained conductivity value is set as a control target value for the conductivity of the developer.

その他の構成、動作などは、第四実施形態と同様であるので、省略する。   Other configurations and operations are the same as those in the fourth embodiment, and are therefore omitted.

以上のとおり、本実施形態の現像液管理装置Dによれば、現像液がどのような溶解フォトレジスト濃度及び吸収二酸化炭素濃度となろうとも、現像液中の現像作用に活性を有する成分が一定に維持されるので、所望の現像性能を維持でき、所望の線幅及び残膜厚を維持できる現像処理を実現できる。   As described above, according to the developer management apparatus D of the present embodiment, no matter what dissolved photoresist concentration or absorbed carbon dioxide concentration the developer has, the component having activity in the developing action in the developer is constant. Therefore, it is possible to realize a developing process capable of maintaining desired development performance and maintaining a desired line width and remaining film thickness.

次に、本実施形態の現像液管理装置Dの変形例について、説明する。   Next, a modified example of the developer management device D of the present embodiment will be described.

図1〜4,6では、現像液管理装置Dの測定部1は、制御手段21や演算手段36,37と一体に構成される現像液管理装置Dを描いたが、本実施形態の現像液管理装置Dはこれに限定されない。測定部1を別体の構成とすることもできる。   1 to 4 and 6, the measurement unit 1 of the developer management device D depicts the developer management device D configured integrally with the control means 21 and the calculation means 36 and 37. The management device D is not limited to this. The measurement part 1 can also be made into a separate structure.

測定部1において、それぞれの採用する測定原理に応じて最適な設置方法があるので、例えば、測定部1を現像液管路80にインライン接続したり、現像液貯留槽61に測定プローブを浸漬するように設置したりするのでもよい。導電率計11、第1濃度測定手段12、第1特性値測定手段12A、第2濃度測定手段13、第2特性値測定手段13A、及び密度計13Bの各測定手段がそれぞれ別個に設置されるのでもよい。本実施形態の現像液管理装置Dは、各測定手段が制御手段21や演算手段36,37との測定データのやり取りができるように相互に連絡した態様となっていれば実現可能である。   In the measurement unit 1, there is an optimum installation method according to the measurement principle employed. For example, the measurement unit 1 is connected inline to the developer pipe 80 or the measurement probe is immersed in the developer storage tank 61. It may be installed as follows. The conductivity meter 11, the first concentration measuring means 12, the first characteristic value measuring means 12A, the second concentration measuring means 13, the second characteristic value measuring means 13A, and the density meter 13B are installed separately. It's okay. The developing solution management apparatus D of the present embodiment can be realized as long as each measuring unit communicates with each other so that measurement data can be exchanged with the control unit 21 and the calculation units 36 and 37.

各測定手段が採用した測定原理に応じて、試薬添加が必要であれば、各測定手段がそのための配管を備えていてもよいし、廃液が必要であれば、各測定手段がそのための管路を備えていてもよい。各測定手段が直列に接続されていなくても、本実施形態の現像液管理装置Dは実現可能である。   Depending on the measurement principle adopted by each measuring means, if reagent addition is necessary, each measuring means may be provided with a pipe for that purpose, and if a waste liquid is required, each measuring means has a pipe line for that purpose. May be provided. Even if the measuring units are not connected in series, the developer management apparatus D of this embodiment can be realized.

図1〜4,6では、現像液に補給される補充液を送液する管路に設けられた制御弁41〜43が現像液管理装置Dの内部部品となるように、現像液管理装置Dが補充液用管路81、82及び純水用管路83と接続された態様を描いたが、本実施形態の現像液管理装置Dはこれに限定されない。現像液管理装置は制御弁41〜43を内部部品として備えていなくてもよく、現像液に補充液を補給するための管路81〜83と接続されていなくてもよい。   In FIGS. 1 to 4 and 6, the developer management device D is such that the control valves 41 to 43 provided in the pipelines for supplying the replenisher supplied to the developer are internal components of the developer management device D. However, the developer management device D of the present embodiment is not limited to this, but is connected to the replenishing liquid pipes 81 and 82 and the pure water pipe 83. The developer management apparatus may not include the control valves 41 to 43 as internal components, and may not be connected to the conduits 81 to 83 for supplying the replenisher to the developer.

本実施形態の現像液管理装置Dにおける制御手段21と、補充液を補給するための管路に設けられた制御弁41〜43とは、制御弁41〜43が現像液管理装置Dの制御手段21により発せられた制御信号を受け取って制御されるように相互に連絡した態様となっていればよい。制御弁が現像液管理装置Dの内部部品となっていなくても、本実施形態の現像液管理装置Dは実現可能である。   The control means 21 in the developer management apparatus D of the present embodiment and the control valves 41 to 43 provided in the pipelines for replenishing the replenisher are the same as the control means of the developer management apparatus D. It suffices if the control signals issued by 21 are received and controlled so as to communicate with each other. Even if the control valve is not an internal component of the developer management device D, the developer management device D of this embodiment can be realized.

〔第六実施形態〕
図7は、本実施形態の現像液管理装置Dの説明をするための模式図である。本実施形態の現像液管理装置Dは、第一実施形態と同様の構成を有している。なお、第一実施形態から第五実施形態の構成と同様の構成には同一符号を付して説明を省略する場合がある。
[Sixth embodiment]
FIG. 7 is a schematic diagram for explaining the developer management apparatus D of the present embodiment. The developer management apparatus D of this embodiment has the same configuration as that of the first embodiment. In addition, the same code | symbol may be attached | subjected to the structure similar to the structure of 1st embodiment to 5th embodiment, and description may be abbreviate | omitted.

第六実施形態の表示手段22は、図7に示されるように、現像液の導電率値、アルカリ成分濃度値、溶解フォトレジスト濃度値及び吸収二酸化炭素濃度値のうち少なくとも導電率値及びアルカリ成分濃度値のうちのいずれか一方を、測定時刻又は測定開始からの経過時間を指標にしてグラフ表示することができる。   As shown in FIG. 7, the display means 22 of the sixth embodiment includes at least a conductivity value and an alkali component among the conductivity value, the alkali component concentration value, the dissolved photoresist concentration value, and the absorbed carbon dioxide concentration value of the developer. Any one of the concentration values can be displayed in a graph using the measurement time or the elapsed time from the start of measurement as an index.

また、本実施形態においては、表示手段22は、特性値、及び成分濃度のグラフ表示の切替を、表示手段22の画面上に設定された表示切替手段である切替ボタンBTにより行うことができる。   Further, in the present embodiment, the display unit 22 can switch the graph display of the characteristic value and the component concentration by using a switching button BT that is a display switching unit set on the screen of the display unit 22.

第二実施形態から第五実施形態においても、第六実施形態の表示手段22を適用することができる。本発明の現像液管理装置は、上記のような各種の変形例が許容されるにもかかわらず、現像液の溶解フォトレジスト濃度及び吸収二酸化炭素濃度を指標として特定される濃度領域ごとに所定の現像性能となることが予め確認された前記現像液の導電率値を有する導電率データを備え、現像液の溶解フォトレジスト濃度の測定値及び吸収二酸化炭素濃度の測定値により特定される濃度領域の導電率データの導電率値を制御目標値として、現像液の導電率が前記制御目標値となるように前記現像液に補給される補充液を送液する。   The display means 22 of the sixth embodiment can also be applied in the second to fifth embodiments. The developer management apparatus according to the present invention has a predetermined density region for each concentration region specified by using the dissolved photoresist concentration and the absorbed carbon dioxide concentration of the developer as an index, although various modifications as described above are allowed. Conductivity data having conductivity values of the developer that have been previously confirmed to be development performance are provided, and the concentration region specified by the measured value of the dissolved photoresist concentration of the developer and the measured value of the absorbed carbon dioxide concentration Using the conductivity value of the conductivity data as a control target value, a replenisher that is replenished to the developer is fed so that the conductivity of the developer becomes the control target value.

以上のとおり、本発明の現像液の管理方法、及び現像液管理装置によれば、現像液がどのような溶解フォトレジスト濃度及び吸収二酸化炭素濃度となろうとも、現像液中の現像作用に活性を有する成分が一定に維持されるので、所望の現像性能を維持でき、所望の線幅及び残膜厚を維持できる現像処理を実現できる。   As described above, according to the developer management method and developer management apparatus of the present invention, no matter what dissolved photoresist concentration or absorbed carbon dioxide concentration the developer is active in the developing action in the developer. Since the component having a constant is maintained, a desired development performance can be maintained, and a development process capable of maintaining a desired line width and remaining film thickness can be realized.

現像液管理装置の好ましい態様として、溶解フォトレジスト濃度、吸収二酸化炭素濃度を多変量解析法により算出するため、溶解フォトレジスト濃度、吸収二酸化炭素濃度を精度良く求めることができる。これらの溶解フォトレジスト濃度、及び吸収二酸化炭素濃度に基づいて導電率データから目標となる導電率値を求めることができる。   As a preferred embodiment of the developing solution management apparatus, the dissolved photoresist concentration and the absorbed carbon dioxide concentration are calculated by the multivariate analysis method, so that the dissolved photoresist concentration and the absorbed carbon dioxide concentration can be obtained with high accuracy. Based on the dissolved photoresist concentration and the absorbed carbon dioxide concentration, a target conductivity value can be obtained from the conductivity data.

さらに、現像液管理装置の好ましい態様として、現像液の吸収二酸化炭素濃度と密度との間の対応関係に基づいて密度計により測定された現像液の密度から現像液の吸収二酸化炭素濃度を算出する。これにより、より簡便に現像液の吸収二酸化炭素濃度を求めることができる。この吸収二酸化炭素濃度、及び別途と求められた溶解フォトレジスト濃度に基づいて、導電率データから目標となる導電率値を求めることができる。   Further, as a preferred embodiment of the developer management device, the absorbed carbon dioxide concentration of the developer is calculated from the density of the developer measured by the density meter based on the correspondence relationship between the absorbed carbon dioxide concentration and the density of the developer. . Thereby, the absorbed carbon dioxide concentration of the developer can be obtained more easily. Based on the absorbed carbon dioxide concentration and the separately obtained dissolved photoresist concentration, a target conductivity value can be obtained from the conductivity data.

A…現像工程設備、B…補充液貯留部、C…循環攪拌機構、D…現像液管理装置
1…測定部
11…導電率計、12…第1濃度測定手段、12A…第1特性値測定手段、13…第2濃度測定手段、13A…第2特性値測定手段、13B…密度計
14…サンプリングポンプ、15…サンプリング配管、16…出口側配管
21…制御手段(例えばコンピュータ)、22・・・表示手段
23…データ記憶部、
31…制御部、32,33…演算部、36,37…演算手段
41〜43…制御弁、44、45、46、47…バルブ
61…現像液貯留槽、62…オーバーフロー槽、63…液面計、64…現像室フード、65…ローラーコンベア、66…基板、67…現像液シャワーノズル
71…廃液ポンプ、72、74…循環ポンプ、73、75…フィルター
80…現像液管路、81、82…補充液(現像原液及び/又は新液)用管路、83…純水用管路、84…合流管路、85…循環管路、86…窒素ガス用管路
91、92…補充液(現像原液及び/又は新液)貯留槽
A ... development process equipment, B ... replenisher storage unit, C ... circulating stirring mechanism, D ... developer management device 1 ... measurement unit 11 ... conductivity meter, 12 ... first concentration measuring means, 12A ... first characteristic value measurement Means, 13 ... second concentration measuring means, 13A ... second characteristic value measuring means, 13B ... density meter 14 ... sampling pump, 15 ... sampling pipe, 16 ... outlet side pipe 21 ... control means (for example, computer), 22 ... Display means 23: data storage unit,
DESCRIPTION OF SYMBOLS 31 ... Control part, 32, 33 ... Calculation part, 36, 37 ... Calculation means 41-43 ... Control valve, 44, 45, 46, 47 ... Valve 61 ... Developer storage tank, 62 ... Overflow tank, 63 ... Liquid level 64: Development chamber hood, 65 ... Roller conveyor, 66 ... Substrate, 67 ... Developer shower nozzle 71 ... Waste pump, 72, 74 ... Circulation pump, 73, 75 ... Filter 80 ... Developer pipeline, 81, 82 ... pipeline for replenisher (developing stock solution and / or new solution), 83 ... pipeline for pure water, 84 ... confluence pipeline, 85 ... circulation pipeline, 86 ... nitrogen gas pipelines 91, 92 ... replenisher ( Development stock solution and / or new solution) storage tank

Claims (11)

繰り返し使用される、アルカリ性を示す現像液の溶解フォトレジスト濃度及び吸収二酸化炭素濃度を指標として特定される濃度領域ごとに所定の現像性能となることが予め確認された前記現像液の導電率値を有する導電率データが格納されているデータ記憶部と、
前記現像液の溶解フォトレジスト濃度の測定値及び吸収二酸化炭素濃度の測定値により特定される濃度領域の前記データ記憶部に格納された前記導電率値を制御目標値として、前記現像液の導電率が前記制御目標値となるように、前記現像液に補給される補充液を送液する管路に設けられた制御弁に制御信号を発する制御部と、
を備えた制御手段と、
前記現像液の導電率値、アルカリ成分濃度値、溶解フォトレジスト濃度値及び吸収二酸化炭素濃度値のうち少なくとも導電率値及びアルカリ成分濃度値のいずれか一方を表示する表示手段と、
を備える現像液管理装置。
The conductivity value of the developer that has been confirmed in advance to have a predetermined development performance for each concentration region that is repeatedly used and is determined by using the dissolved photoresist concentration and the absorbed carbon dioxide concentration as an index. A data storage unit in which conductivity data is stored;
Using the conductivity value stored in the data storage unit of the concentration region specified by the measured value of the dissolved photoresist concentration and the measured value of the absorbed carbon dioxide concentration of the developer as a control target value, the conductivity of the developer A control unit that issues a control signal to a control valve provided in a conduit for supplying a replenisher to be replenished to the developer so that the control target value is
A control means comprising:
Display means for displaying at least one of the conductivity value and the alkali component concentration value among the conductivity value, alkali component concentration value, dissolved photoresist concentration value and absorbed carbon dioxide concentration value of the developer;
A developer management apparatus comprising:
前記表示手段に表示される表示対象を切り替える表示切替手段、をさらに備える請求項1に記載の現像液管理装置。   The developer management apparatus according to claim 1, further comprising a display switching unit that switches a display target displayed on the display unit. 繰り返し使用される、アルカリ性を示す現像液の溶解フォトレジスト濃度及び吸収二酸化炭素濃度を指標として特定される濃度領域ごとに所定の現像性能となることが予め確認された前記現像液の導電率値を有する導電率データが格納されているデータ記憶部と、
前記現像液の溶解フォトレジスト濃度の測定値及び吸収二酸化炭素濃度の測定値により特定される濃度領域の前記データ記憶部に格納された前記導電率値を制御目標値として、前記現像液の導電率が前記制御目標値となるように、前記現像液に補給される補充液を送液する管路に設けられた制御弁に制御信号を発する制御部と、
を備えた制御手段と、
前記現像液の導電率値、アルカリ成分濃度値、溶解フォトレジスト濃度値及び吸収二酸化炭素濃度値のうち少なくとも導電率値及びアルカリ成分濃度値のいずれか一方を、測定時刻又は測定開始からの経過時間を指標にしてグラフ表示する表示手段と、
を備える現像液管理装置。
The conductivity value of the developer that has been confirmed in advance to have a predetermined development performance for each concentration region that is repeatedly used and is determined by using the dissolved photoresist concentration and the absorbed carbon dioxide concentration as an index. A data storage unit in which conductivity data is stored;
Using the conductivity value stored in the data storage unit of the concentration region specified by the measured value of the dissolved photoresist concentration and the measured value of the absorbed carbon dioxide concentration of the developer as a control target value, the conductivity of the developer A control unit that issues a control signal to a control valve provided in a conduit for supplying a replenisher to be replenished to the developer so that the control target value is
A control means comprising:
At least one of the conductivity value and the alkali component concentration value among the conductivity value, the alkali component concentration value, the dissolved photoresist concentration value, and the absorbed carbon dioxide concentration value of the developer is measured time or the elapsed time from the start of measurement. A display means for displaying a graph using as an index,
A developer management apparatus comprising:
前記表示手段に表示される表示対象を切り替える表示切替手段、をさらに備える請求項3に記載の現像液管理装置。   The developer management apparatus according to claim 3, further comprising a display switching unit that switches a display target displayed on the display unit. 前記現像液の溶解フォトレジスト濃度と相関のある前記現像液の特性値と前記現像液の吸収二酸化炭素濃度と相関のある前記現像液の特性値とを含む前記現像液の複数の特性値を測定する複数の測定装置、をさらに備え、
前記制御手段が、さらに、
前記複数の測定装置により測定された前記現像液の複数の特性値から、多変量解析法により、前記現像液の溶解フォトレジスト濃度の測定値及び吸収二酸化炭素濃度の測定値を算出する演算部、
を備える請求項1から4のいずれか一項に記載の現像液管理装置。
Measuring a plurality of characteristic values of the developer, including the developer characteristic value correlated with the dissolved photoresist concentration of the developer and the developer characteristic value correlated with the absorbed carbon dioxide concentration of the developer; A plurality of measuring devices,
The control means further comprises:
An arithmetic unit for calculating a measured value of the dissolved photoresist concentration and a measured value of the absorbed carbon dioxide concentration of the developer by a multivariate analysis method from a plurality of characteristic values of the developer measured by the plurality of measuring devices,
A developing solution management apparatus according to any one of claims 1 to 4.
前記現像液の溶解フォトレジスト濃度と相関のある前記現像液の特性値と前記現像液の吸収二酸化炭素濃度と相関のある前記現像液の特性値とを含む前記現像液の複数の特性値を測定する複数の測定装置と、
前記複数の測定装置により測定された前記現像液の複数の特性値から、多変量解析法を用いて、前記現像液の溶解フォトレジスト濃度の測定値及び吸収二酸化炭素濃度の測定値を算出する演算手段と、
をさらに備える請求項1から4のいずれか一項に記載の現像液管理装置。
Measuring a plurality of characteristic values of the developer, including the developer characteristic value correlated with the dissolved photoresist concentration of the developer and the developer characteristic value correlated with the absorbed carbon dioxide concentration of the developer; A plurality of measuring devices,
An operation for calculating a measured value of dissolved photoresist concentration and a measured value of absorbed carbon dioxide concentration of the developer using a multivariate analysis method from a plurality of characteristic values of the developer measured by the plurality of measuring devices. Means,
The developer management apparatus according to claim 1, further comprising:
密度計を備え、
前記制御手段が、さらに、
前記現像液の吸収二酸化炭素濃度と密度との間の対応関係に基づいて前記密度計により測定された前記現像液の密度値から前記現像液の吸収二酸化炭素濃度値を算出する演算部、
を備える請求項1から4のいずれか一項に記載の現像液管理装置。
Equipped with a density meter,
The control means further comprises:
An arithmetic unit for calculating the absorbed carbon dioxide concentration value of the developer from the density value of the developer measured by the density meter based on the correspondence between the absorbed carbon dioxide concentration and density of the developer;
A developing solution management apparatus according to any one of claims 1 to 4.
密度計と、
前記現像液の吸収二酸化炭素濃度と密度との間の対応関係に基づいて前記密度計により測定された前記現像液の密度値から前記現像液の吸収二酸化炭素濃度値を算出する演算手段と、
をさらに備える請求項1から4のいずれか一項に記載の現像液管理装置。
A density meter;
A computing means for calculating an absorbed carbon dioxide concentration value of the developer from a density value of the developer measured by the density meter based on a correspondence relationship between the absorbed carbon dioxide concentration and the density of the developer;
The developer management apparatus according to claim 1, further comprising:
繰り返し使用される、アルカリ性を示す現像液の溶解フォトレジスト濃度と相関のある吸光度及び吸収二酸化炭素濃度を指標として特定される濃度領域ごとに所定の現像性能となることが予め確認された前記現像液のアルカリ成分濃度値を有するアルカリ成分濃度データが格納されているデータ記憶部と、
前記現像液の吸光度及び吸収二酸化炭素濃度の測定値により特定される濃度領域の前記データ記憶部に格納された前記アルカリ成分濃度値を制御目標値として、前記現像液のアルカリ成分濃度が前記制御目標値となるように前記現像液に補給される補充液を送液する管路に設けられた制御弁に制御信号を発する制御部と、
を備えた制御手段と、
前記現像液のアルカリ成分濃度値、溶解フォトレジスト濃度と相関のある吸光度値、及び、吸収二酸化炭素濃度値のうち少なくとも前記アルカリ成分濃度値を表示する表示手段と、
を備える現像液管理装置。
The developer that has been confirmed in advance to have a predetermined developing performance for each concentration region that is repeatedly used and is determined by using the absorbance and the absorbed carbon dioxide concentration correlated with the dissolved photoresist concentration of the developer exhibiting alkalinity. A data storage unit storing alkali component concentration data having the alkali component concentration value of
Using the alkali component concentration value stored in the data storage unit in the concentration region specified by the measured values of the absorbance and absorbed carbon dioxide concentration of the developer as a control target value, the alkali component concentration of the developer is the control target. A control unit that issues a control signal to a control valve provided in a conduit for feeding a replenisher to be replenished to the developer so as to be a value;
A control means comprising:
Display means for displaying at least the alkali component concentration value among the alkali component concentration value of the developer, the absorbance value correlated with the dissolved photoresist concentration, and the absorbed carbon dioxide concentration value;
A developer management apparatus comprising:
繰り返し使用される、アルカリ性を示す現像液の溶解フォトレジスト濃度と相関のある吸光度及び吸収二酸化炭素濃度を指標として特定される濃度領域ごとに所定の現像性能となることが予め確認された前記現像液のアルカリ成分濃度値を有するアルカリ成分濃度データが格納されているデータ記憶部と、
前記現像液の吸光度及び吸収二酸化炭素濃度の測定値により特定される濃度領域の前記データ記憶部に格納された前記アルカリ成分濃度値を制御目標値として、前記現像液のアルカリ成分濃度が前記制御目標値となるように前記現像液に補給される補充液を送液する管路に設けられた制御弁に制御信号を発する制御部と、
を備えた制御手段と、
前記現像液のアルカリ成分濃度値、溶解フォトレジスト濃度と相関のある吸光度値、及び、吸収二酸化炭素濃度値のうち少なくとも前記アルカリ成分濃度値を、測定時間又は測定開始からの経過時間を指標としてグラフ表示する表示手段と、
を備える現像液管理装置。
The developer that has been confirmed in advance to have a predetermined developing performance for each concentration region that is repeatedly used and is determined by using the absorbance and the absorbed carbon dioxide concentration correlated with the dissolved photoresist concentration of the developer exhibiting alkalinity. A data storage unit storing alkali component concentration data having the alkali component concentration value of
Using the alkali component concentration value stored in the data storage unit in the concentration region specified by the measured values of the absorbance and absorbed carbon dioxide concentration of the developer as a control target value, the alkali component concentration of the developer is the control target. A control unit that issues a control signal to a control valve provided in a conduit for feeding a replenisher to be replenished to the developer so as to be a value;
A control means comprising:
Graph showing at least the alkali component concentration value among the alkali component concentration value of the developer, the absorbance value correlated with the dissolved photoresist concentration, and the absorbed carbon dioxide concentration value, using the measurement time or the elapsed time from the start of measurement as an index. Display means for displaying;
A developer management apparatus comprising:
前記表示手段に表示される表示対象を切り替える表示切替手段、をさらに備える請求項9又は10に記載の現像液管理装置。   The developer management apparatus according to claim 9, further comprising a display switching unit that switches a display target displayed on the display unit.
JP2017009836A 2017-01-23 2017-01-23 Developer management device Expired - Fee Related JP6712415B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017009836A JP6712415B2 (en) 2017-01-23 2017-01-23 Developer management device
CN201711232620.8A CN108345183A (en) 2017-01-23 2017-11-29 Developer solution managing device
KR1020170161409A KR20180087124A (en) 2017-01-23 2017-11-29 Developing solution management apparatus
TW106141776A TW201827947A (en) 2017-01-23 2017-11-30 Developing solution management apparatus comprising a control means and a display means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017009836A JP6712415B2 (en) 2017-01-23 2017-01-23 Developer management device

Publications (2)

Publication Number Publication Date
JP2018120899A true JP2018120899A (en) 2018-08-02
JP6712415B2 JP6712415B2 (en) 2020-06-24

Family

ID=62962095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017009836A Expired - Fee Related JP6712415B2 (en) 2017-01-23 2017-01-23 Developer management device

Country Status (4)

Country Link
JP (1) JP6712415B2 (en)
KR (1) KR20180087124A (en)
CN (1) CN108345183A (en)
TW (1) TW201827947A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018120897A (en) * 2017-01-23 2018-08-02 株式会社平間理化研究所 Device for monitoring concentration of developer, and developer management device
KR102262358B1 (en) * 2020-04-08 2021-06-08 주식회사 에이치에스테크놀로지 Developer control system having concentration measurement apparatus and gas supply

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62186265A (en) * 1986-02-12 1987-08-14 Canon Inc Developing device
JPS6427624A (en) * 1987-02-10 1989-01-30 Hitachi Plant Eng & Constr Co Dilution device for stock solution of developer
JPH025534B2 (en) * 1985-07-31 1990-02-02 Shimano Industrial Co
JPH0324762B2 (en) * 1981-11-25 1991-04-04 Tdk Electronics Co Ltd
JP2001332469A (en) * 2000-05-19 2001-11-30 Tokyo Electron Ltd Developing apparatus and developing method
JP2004271974A (en) * 2003-03-10 2004-09-30 Fuji Photo Film Co Ltd Method for detecting fatigue degree of developer for photosensitive lithographic printing plate and method for controlling developer
JP2005049428A (en) * 2003-07-30 2005-02-24 Mitsubishi Chemical Engineering Corp Liquid developer supply device
JP2005070351A (en) * 2003-08-22 2005-03-17 Nagase & Co Ltd Method and apparatus for supplying developing solution
JP2008283162A (en) * 2006-11-30 2008-11-20 Mitsubishi Chemical Engineering Corp Method of adjusting concentration of liquid developer, preparation device of liquid developer, and liquid developer
JP2016028807A (en) * 2014-07-17 2016-03-03 株式会社平間理化研究所 Solid particulate recovery/removal device, liquid management device, and etching liquid management device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2561578B2 (en) 1991-08-07 1996-12-11 株式会社平間理化研究所 Developer management device
JP2005249818A (en) * 2004-03-01 2005-09-15 Nishimura Yasuji Method and apparatus for controlling developer for photoresist
JP4839820B2 (en) * 2005-12-19 2011-12-21 三菱化学エンジニアリング株式会社 Developer supply device
JP2011128455A (en) * 2009-12-18 2011-06-30 Nagase & Co Ltd Device for measuring concentration of carbonic acid-based salt, system for controlling alkali developing solution, and method for measuring concentration of carbonic acid-based salt

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0324762B2 (en) * 1981-11-25 1991-04-04 Tdk Electronics Co Ltd
JPH025534B2 (en) * 1985-07-31 1990-02-02 Shimano Industrial Co
JPS62186265A (en) * 1986-02-12 1987-08-14 Canon Inc Developing device
JPS6427624A (en) * 1987-02-10 1989-01-30 Hitachi Plant Eng & Constr Co Dilution device for stock solution of developer
JP2001332469A (en) * 2000-05-19 2001-11-30 Tokyo Electron Ltd Developing apparatus and developing method
JP2004271974A (en) * 2003-03-10 2004-09-30 Fuji Photo Film Co Ltd Method for detecting fatigue degree of developer for photosensitive lithographic printing plate and method for controlling developer
JP2005049428A (en) * 2003-07-30 2005-02-24 Mitsubishi Chemical Engineering Corp Liquid developer supply device
JP2005070351A (en) * 2003-08-22 2005-03-17 Nagase & Co Ltd Method and apparatus for supplying developing solution
JP2008283162A (en) * 2006-11-30 2008-11-20 Mitsubishi Chemical Engineering Corp Method of adjusting concentration of liquid developer, preparation device of liquid developer, and liquid developer
JP2016028807A (en) * 2014-07-17 2016-03-03 株式会社平間理化研究所 Solid particulate recovery/removal device, liquid management device, and etching liquid management device

Also Published As

Publication number Publication date
CN108345183A (en) 2018-07-31
TW201827947A (en) 2018-08-01
JP6712415B2 (en) 2020-06-24
KR20180087124A (en) 2018-08-01

Similar Documents

Publication Publication Date Title
JP6721157B2 (en) Method and apparatus for measuring component concentration of developer, and method and apparatus for managing developer
JP6505534B2 (en) Method and apparatus for managing developer
JP6713658B2 (en) Component concentration measuring device for developer, component concentration measuring method, developer controlling device, and developer controlling method
JP6712415B2 (en) Developer management device
JP6624762B2 (en) Method and apparatus for managing developer
JP2018120900A (en) Developer management device
JP2018120901A (en) Development device
TWI707383B (en) Concentration monitoring apparatus for developing solution and developing solution management apparatus
JP2018120893A (en) Device for measuring component concentration of developer, and developer management device
JP6763608B2 (en) Carbon dioxide concentration display device for developer and developer management device
JP2018120895A (en) Developing device
JP2018120898A (en) Development device
JP2018120897A (en) Device for monitoring concentration of developer, and developer management device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200518

R150 Certificate of patent or registration of utility model

Ref document number: 6712415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees