JPS5952551B2 - Gate turn-off thyristor - Google Patents

Gate turn-off thyristor

Info

Publication number
JPS5952551B2
JPS5952551B2 JP9957481A JP9957481A JPS5952551B2 JP S5952551 B2 JPS5952551 B2 JP S5952551B2 JP 9957481 A JP9957481 A JP 9957481A JP 9957481 A JP9957481 A JP 9957481A JP S5952551 B2 JPS5952551 B2 JP S5952551B2
Authority
JP
Japan
Prior art keywords
gto
layer
current
thyristor
gate turn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9957481A
Other languages
Japanese (ja)
Other versions
JPS5743462A (en
Inventor
実 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP9957481A priority Critical patent/JPS5952551B2/en
Publication of JPS5743462A publication Critical patent/JPS5743462A/en
Publication of JPS5952551B2 publication Critical patent/JPS5952551B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/744Gate-turn-off devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/7404Thyristor-type devices, e.g. having four-zone regenerative action structurally associated with at least one other device
    • H01L29/7408Thyristor-type devices, e.g. having four-zone regenerative action structurally associated with at least one other device the device being a capacitor or a resistor

Description

【発明の詳細な説明】 この発明はマルチエミッタ構造を有するゲートターンオ
フサイリスタ(以下GTOと称する)に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gate turn-off thyristor (hereinafter referred to as GTO) having a multi-emitter structure.

一般に電流容量の大きいGTOはマルチ・ミッタ構造を
とる必要があり、従つて複数個のGTOが並列に接続さ
れて1つのGTOを形成している。
Generally, a GTO with a large current capacity must have a multi-mitter structure, and therefore a plurality of GTOs are connected in parallel to form one GTO.

個々のGTO(GTOエレメントと称する)の電流容量
は通常100A程度であるが、このようなGTOエレメ
ントを複数個(例えば100個)並列接続しても、電流
容量は高々400A程度である。これはGTOをターン
オフする際に特定のGTOエレメントに電流集中が起り
、ターンオフの最終段階では高々3個程度のエレメント
が全電流を負担していることを示している。そこでGT
Oはベース拡散制御とベースのライフタイムの制御を必
要とする。
The current capacity of an individual GTO (referred to as a GTO element) is usually about 100A, but even if a plurality of such GTO elements (for example, 100) are connected in parallel, the current capacity is about 400A at most. This indicates that current concentration occurs in a specific GTO element when the GTO is turned off, and that at most three elements bear the entire current in the final stage of turn-off. So GT
O requires base diffusion control and control of base lifetime.

しかし現在の技術では40重囲φのウェハに均一にこれ
らを施すことは殆ど不可能であり、ある程度の不均一性
はやむを得ない条件である。例えば抵抗が0.1Ω程度
異なるGTOエレメントを並列接続することは常識的で
ある。ここで抵抗が1.4Ωと1.5Ωの2つのGTO
エレメントA、Bを並列接続した場合を考える。順方向
電圧降下を1.5Vとすれば、各々の負担する電流はA
が1.07A、BがIAである。これらに共通のゲート
電流を通電してターンオフさせるとBの方がAより早く
飽和状態を脱出して高インピーダンス状態に移る。この
間にもアノード、カソード間には一定のバイアスがかか
つているので、ある時刻にはAが全電流を負担すること
になる。第1図にこの現象の説明図を示す。言い換えれ
ばGTOの電流集中現象は正のフィードバックであり、
従来の方法ではこれを阻止することはできない。上記説
明はGTOエレメンレ2個の場合であるが、多数個にな
つても何等本質的に変わることなく、GTOの大電流化
の重要な問題点となつている。
However, with the current technology, it is almost impossible to uniformly apply these to a 40-fold circumferential φ wafer, and a certain degree of non-uniformity is an unavoidable condition. For example, it is common sense to connect GTO elements whose resistances differ by about 0.1Ω in parallel. Here, there are two GTOs with resistances of 1.4Ω and 1.5Ω.
Consider the case where elements A and B are connected in parallel. If the forward voltage drop is 1.5V, the current borne by each is A
is 1.07A, and B is IA. When a common gate current is applied to these to turn them off, B escapes from the saturation state earlier than A and shifts to a high impedance state. During this time, a constant bias is applied between the anode and cathode, so A will bear the entire current at a certain time. FIG. 1 shows an explanatory diagram of this phenomenon. In other words, the GTO current concentration phenomenon is a positive feedback,
Conventional methods cannot prevent this. Although the above explanation is based on the case of two GTO elements, there is no essential change even if there are a large number of GTO elements, and this is an important problem in increasing the current of the GTO.

この発明は上記した問題点に対処してなされたもので、
電流容量を増大し得るマルチエミッタ構造を有するゲー
トターンオフサイリスタを提供するものである。
This invention was made in response to the above-mentioned problems.
A gate turn-off thyristor having a multi-emitter structure capable of increasing current capacity is provided.

以下図面を参照してこの発明の一実施例を説明する。An embodiment of the present invention will be described below with reference to the drawings.

そしてこの発明一実施例の構造の概略を第2図に、その
第2図の深さ方向の不純物濃度プロファ・イルを第3図
に示す。
FIG. 2 shows a schematic structure of an embodiment of the present invention, and FIG. 3 shows an impurity concentration profile in the depth direction of FIG. 2.

そこで第1のエミッタ領域21はn’″−n−−nf構
造をとるが表面側のn″′層2laはカソード電極25
のオーミック接触のためにある。その製造法はn゛21
−P22−n−23−P24構造に拡散されたウェハー
28のnf層・21Cの表面にCVD法で多結晶の半導
体層21bを形成し、更にその上にn”層21aをオー
ミック接触を可能にする程度に設ける。尚、第2図にお
いて、26はアノード電極、27はゲート電極である。
通常、シリコン半導体の不純物濃度C(Cm−3)とシ
ート抵抗ρ(Ω・Cm)の関係は、不純物濃度の低い領
域ではほぼ反比例関係にあり、次式のように書ける。
Therefore, the first emitter region 21 has an n'''-n--nf structure, but the n''' layer 2la on the front side is the cathode electrode 25.
This is due to ohmic contact. The manufacturing method is n゛21
- A polycrystalline semiconductor layer 21b is formed by CVD on the surface of the nf layer 21C of the wafer 28 diffused into the P22-n-23-P24 structure, and the n'' layer 21a is further placed on top of it to enable ohmic contact. In FIG. 2, 26 is an anode electrode, and 27 is a gate electrode.
Normally, the relationship between the impurity concentration C (Cm-3) of a silicon semiconductor and the sheet resistance ρ (Ω·Cm) is approximately inversely proportional in a region where the impurity concentration is low, and can be written as the following equation.

ρC+5×1015 即ち、Cとρ.の値は以下のようになる。ρC+5×1015 That is, C and ρ. The value of is as follows.

単結晶高抵抗層を高い不純物濃度n+(通常1020c
m−3以上)で挟むと、n+層から高抵抗層へ不純物が
浸み出すため、高抵抗層の不純物濃度は高々1015c
m−3まで七か低くすることができない。
The single crystal high resistance layer is formed with a high impurity concentration n+ (usually 1020c
m-3 or more), impurities seep from the n+ layer to the high resistance layer, so the impurity concentration in the high resistance layer is at most 1015c.
It cannot be lowered to m-3 by seven.

すなわち、高抵抗層のシート抵抗値はせいぜい5Ω−C
mである。第2図に示すような第1のエミツタ領域λ工
をr−n−一n+構造では、高抵抗層の厚さは高々10
μm程度で、電流の流れる面積は2501tmX4mm
程度なので、この層の抵抗R,(Ω)は、となる。
In other words, the sheet resistance value of the high resistance layer is at most 5Ω-C.
It is m. When the first emitter region λ structure has an r-n-1n+ structure as shown in FIG. 2, the thickness of the high-resistance layer is at most 10
On the order of μm, the area through which the current flows is 2501 tm x 4 mm
Therefore, the resistance R, (Ω) of this layer is as follows.

つまり、単結晶ではRを0.5Ω以上にす?ることは非
常に難しい。したがつて第1のエミツタ領域21の高抵
抗層となるn一層21bを単結晶で構成した場合、上述
の如くn一層2]bの抵抗が0.5Ω程度しか得られな
いため、各GTOエレメントの陽極電流の平5均化を2
0〜30%改善される程度である。
In other words, for single crystals, R should be 0.5Ω or more? It is very difficult to do so. Therefore, if the n-layer 21b, which is the high-resistance layer of the first emitter region 21, is made of a single crystal, the resistance of the n-layer 2]b is only about 0.5Ω as described above, so each GTO element The average 5 equalization of the anode current is 2
The improvement is about 0 to 30%.

一方本発明のようにn一層21bを多結晶で構成すると
、n一層21bの抵抗が、その多結晶Siの不純物濃度
〜1015/Cm2で50〔Ω〕以上の抵抗になるため
、各GTOエレメントの陽極電流の平均化を90%以上
改善され、一個のGTOエレメントで全電流を負担する
ことがなくなり、大幅に電流容量を大きくすることが可
能になる。以上のように第1エミツタ領域に多結晶半導
体層(抵抗層)を設けると複数個のGTOエレメントを
並列運転した時各エレメントの陽極電流を著しく平均化
することができるのでGTOの電流容量を増大すること
ができる。
On the other hand, if the n-layer 21b is made of polycrystal as in the present invention, the resistance of the n-layer 21b becomes 50 [Ω] or more at the impurity concentration of polycrystalline Si ~1015/Cm2, so each GTO element The averaging of the anode current is improved by more than 90%, and one GTO element no longer bears the entire current, making it possible to significantly increase the current capacity. As described above, by providing a polycrystalline semiconductor layer (resistance layer) in the first emitter region, when multiple GTO elements are operated in parallel, the anode current of each element can be significantly averaged, increasing the current capacity of the GTO. can do.

またターンオフ時の電流集中は正のフイードバツクであ
るが、エミツタ領域の抵抗の存在により電流集中が起こ
るとその電流を分散させる効果があるので負のフイード
バツク機構を導入したことになる。従つてエミツタ領域
中の多結晶半導体層によつて、他のGTO機能を損うこ
となく電流容量を増大することができる。
Also, current concentration at turn-off is a positive feedback, but when current concentration occurs due to the presence of a resistance in the emitter region, it has the effect of dispersing the current, so a negative feedback mechanism has been introduced. Therefore, the polycrystalline semiconductor layer in the emitter region allows the current capacity to be increased without impairing other GTO functions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は2個のGTOエレメントの陽極電流のアンバラ
ンスを表わす波形を示す図、第2図はこの発明一実施例
の構造を概略的に示した図、第3図は第2図の深さ方向
の不純物濃度プロフイルを示す図で゛ある。 第2図において21は第1のエミツタ領域、21aはオ
ーミツク電極形成のためのギ層、21bはこの発明のポ
イントである多結晶半導体層、21Cは耐層、22は第
1のベース領域、23は第2のベース領域、24は第2
のエミツタ領域である。
Fig. 1 is a diagram showing waveforms representing the unbalance of the anode currents of two GTO elements, Fig. 2 is a diagram schematically showing the structure of an embodiment of this invention, and Fig. 3 is a diagram showing the depth of Fig. 2. FIG. 2 is a diagram showing an impurity concentration profile in the horizontal direction. In FIG. 2, 21 is a first emitter region, 21a is a gear layer for forming an ohmic electrode, 21b is a polycrystalline semiconductor layer which is the key point of this invention, 21C is a breakdown layer, 22 is a first base region, 23 is the second base region, and 24 is the second base region.
This is the emitter area.

Claims (1)

【特許請求の範囲】[Claims] 1 マルチエミッタ構造を有するゲートターンオフサイ
リスタにおいて、エミッタ領域をn^+−n^−−n^
+構造とし、そのn^−層を多結晶半導体で構成したこ
とを特徴とするゲートターンオフサイリスタ。
1 In a gate turn-off thyristor with a multi-emitter structure, the emitter region is n^+-n^--n^
A gate turn-off thyristor characterized in that it has a + structure and its n^- layer is made of a polycrystalline semiconductor.
JP9957481A 1981-06-29 1981-06-29 Gate turn-off thyristor Expired JPS5952551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9957481A JPS5952551B2 (en) 1981-06-29 1981-06-29 Gate turn-off thyristor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9957481A JPS5952551B2 (en) 1981-06-29 1981-06-29 Gate turn-off thyristor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP51029881A Division JPS584826B2 (en) 1976-03-22 1976-03-22 Gate turn-off thyristor

Publications (2)

Publication Number Publication Date
JPS5743462A JPS5743462A (en) 1982-03-11
JPS5952551B2 true JPS5952551B2 (en) 1984-12-20

Family

ID=14250872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9957481A Expired JPS5952551B2 (en) 1981-06-29 1981-06-29 Gate turn-off thyristor

Country Status (1)

Country Link
JP (1) JPS5952551B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164656U (en) * 1989-05-11 1989-11-16

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658959B2 (en) * 1987-01-29 1994-08-03 富士電機株式会社 Gate Turn Off Thyristor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164656U (en) * 1989-05-11 1989-11-16

Also Published As

Publication number Publication date
JPS5743462A (en) 1982-03-11

Similar Documents

Publication Publication Date Title
US4495513A (en) Bipolar transistor controlled by field effect by means of an isolated gate
US3016313A (en) Semiconductor devices and methods of making the same
JP3165480B2 (en) Turn-off thyristor
US4200877A (en) Temperature-compensated voltage reference diode with intermediate polycrystalline layer
JPS6141145B2 (en)
JP3163758B2 (en) Bidirectional overvoltage protection device
JPS5952551B2 (en) Gate turn-off thyristor
US4195306A (en) Gate turn-off thyristor
JPS5933272B2 (en) semiconductor equipment
JPS6040190B2 (en) Semiconductor controlled rectifier
EP0064614A2 (en) Improved emitter structure for semiconductor devices
US5010384A (en) Gate turn-off thyristor with resistance layers
JPS584826B2 (en) Gate turn-off thyristor
JPS6327865B2 (en)
JP2596126B2 (en) Epitaxial gate turn-off thyristor
JPH02202061A (en) Reverse conduction gate turn off thyristor
JPS63205957A (en) Electrostatic induction thyristor
JP2511023B2 (en) Bidirectional thyristor
JPS6155259B2 (en)
JPH0444363A (en) Gate turn-off thyristor
JPS6362907B2 (en)
JPH02137371A (en) Gate turn-off thyristor
JPS5927572A (en) Gate turn-off thyristor
JPH0547988B2 (en)
JPS621271A (en) Gate turn-off thyristor