JPS5952513B2 - Scanning electron microscope sample fine movement device - Google Patents

Scanning electron microscope sample fine movement device

Info

Publication number
JPS5952513B2
JPS5952513B2 JP14603277A JP14603277A JPS5952513B2 JP S5952513 B2 JPS5952513 B2 JP S5952513B2 JP 14603277 A JP14603277 A JP 14603277A JP 14603277 A JP14603277 A JP 14603277A JP S5952513 B2 JPS5952513 B2 JP S5952513B2
Authority
JP
Japan
Prior art keywords
sample
fine movement
movement device
view
moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14603277A
Other languages
Japanese (ja)
Other versions
JPS5478967A (en
Inventor
尚武 斉藤
雄吉 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14603277A priority Critical patent/JPS5952513B2/en
Publication of JPS5478967A publication Critical patent/JPS5478967A/en
Publication of JPS5952513B2 publication Critical patent/JPS5952513B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は走査形電子顕微鏡の試料微動装置の改良に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a sample fine movement device for a scanning electron microscope.

物体の表面構造を観察および分析する走査形電子顕微鏡
(以後SEMと記す)やその類似装置は応用範囲が拡大
すると共にそれに適応させるための改良が要求されるよ
うになった。
As the range of applications of scanning electron microscopes (hereinafter referred to as SEMs) and similar devices for observing and analyzing the surface structure of objects has expanded, improvements have been required to accommodate them.

その最も重要な問題の一つが試料の大形化に対処する改
良である。
One of the most important issues is the improvement to cope with increasing sample size.

第1図は従来のSEMにおける試料微動機構の動作と試
料室の大きさを説明する図である。
FIG. 1 is a diagram illustrating the operation of a sample fine movement mechanism and the size of a sample chamber in a conventional SEM.

外径寸法りである円板状の試料1の全表面を観察する場
合、試料微動装置のX、 Y方向の移動によってla、
lb、ICおよび1dの位置まで試料1を移動させなけ
ればならないので、試料室2は少なくとも直径2Dの円
形空間を持っていなければならない。
When observing the entire surface of the disk-shaped sample 1, which has the outer diameter, the movement of the sample fine movement device in the X and Y directions moves la,
Since the sample 1 must be moved to positions lb, IC and 1d, the sample chamber 2 must have a circular space with a diameter of at least 2D.

もし、直径が2倍の試料を観測する時は4倍の面積の試
料室を必要とし、真空排気系の能力および試料微動機構
が大型高価なものになると共に、検出器3の位置が試料
面より遠くなり検出感度が低下するという問題点が生じ
ていた。
If a sample with twice the diameter is to be observed, a sample chamber with four times the area is required, and the capacity of the vacuum evacuation system and sample fine movement mechanism become large and expensive, and the position of the detector 3 is placed on the sample surface. A problem has arisen in that detection sensitivity decreases as the distance increases.

第2図は従来のSEMの試料微動装置の正面図で、試料
1はY方向移動台5の上に、Y方向移動台5はX方向移
動台4の上に設置されている。
FIG. 2 is a front view of a conventional SEM sample fine movement device, in which the sample 1 is placed on a Y-direction moving table 5, and the Y-direction moving table 5 is placed on an X-direction moving table 4.

これらの移動台は試料室壁18に設けたOリング15を
介して挿入されたX駆動軸13、X駆動軸7を回転させ
ることによって、真空状態にある試料室2外より移動さ
せることができる。
These moving tables can be moved from outside the sample chamber 2 in a vacuum state by rotating the X drive shaft 13 and the X drive shaft 7 inserted through an O-ring 15 provided on the sample chamber wall 18. .

8はX駆動軸7の操作つまみであり、操作つまみ8を正
回転させるとX駆動軸7が左右に移動しX方向移動台4
を押す。
Reference numeral 8 denotes an operating knob for the X drive shaft 7. When the operating knob 8 is rotated in the forward direction, the X drive shaft 7 moves left and right, and the X direction moving base 4
Press.

操作つまみ8を逆回転させれば、X駆動軸7とは反対側
に設けた押ばねによってX方向移動台4は右方に戻る。
When the operation knob 8 is rotated in the opposite direction, the X-direction moving table 4 returns to the right by a push spring provided on the opposite side of the X drive shaft 7.

一方、操作つまみ14を回転させるとユニバーサルジヨ
イント12が回転してスプライン継手11およびユニバ
ーサルジヨイント10を回転させる。
On the other hand, when the operating knob 14 is rotated, the universal joint 12 rotates, causing the spline joint 11 and the universal joint 10 to rotate.

ユニバーサルジヨイント10の先端にある軸16はX方
向移動台4上に設置した軸受9に嵌合して支持され、そ
の先端の図示されていない小歯車はY方向移動台5のラ
ック部と噛み合っている。
The shaft 16 at the tip of the universal joint 10 is fitted and supported by a bearing 9 installed on the X-direction moving table 4, and the small gear (not shown) at the tip meshes with the rack part of the Y-direction moving table 5. ing.

したがって、操作っまみ14を回転させることによって
Y方向移動台5を紙面に垂直なY方向に移動させること
ができる。
Therefore, by rotating the operating knob 14, the Y-direction moving table 5 can be moved in the Y-direction perpendicular to the plane of the paper.

このような従来の試料微動装置は、試料が大形になるに
従って試料移動台の移動量は第1図で説明した様に大と
なる。
In such a conventional sample fine movement device, as the sample becomes larger, the amount of movement of the sample moving stage increases as explained in FIG. 1.

特に、X駆動軸7のねじ部が長くなって外部に突出し、
Y方向の駆動系に用いられるスプライン継手も長くなり
操作に時間を要すると共に、動作が不円滑になり易い。
In particular, the threaded part of the X drive shaft 7 becomes longer and protrudes to the outside.
The spline joint used in the drive system in the Y direction also becomes long, takes time to operate, and tends to operate unsmoothly.

また、当然これらの試料微動装置を収容した試料室2は
大容量のものとなり、真空状態にするには時間を要し、
前記のように検出器3と試料1との距離が遠ざかり検出
感度の低下を来すという欠点が生じていた。
Also, of course, the sample chamber 2 that accommodates these sample fine movement devices has a large capacity, and it takes time to create a vacuum state.
As mentioned above, the distance between the detector 3 and the sample 1 increases, resulting in a decrease in detection sensitivity.

本発明は、比較的小容量の試料室で大型の試料を観察す
るに好適な小型な試料微動装置を提供することを目的と
し、その特徴とするところは、X方向の直線移動機構と
回転機構との組合せによって、試料室を大形化すること
なく試料の全範囲を観察できるようにしたことにある。
The present invention aims to provide a small sample fine movement device suitable for observing a large sample in a sample chamber with a relatively small capacity, and is characterized by a linear movement mechanism in the X direction and a rotation mechanism. In combination with this, the entire range of the sample can be observed without increasing the size of the sample chamber.

第3図は本発明の試料微動機構の動作と試料室の大きさ
を説明する図であり、第1図と同一部分には同じ符号を
付しである。
FIG. 3 is a diagram for explaining the operation of the sample fine movement mechanism of the present invention and the size of the sample chamber, and the same parts as in FIG. 1 are given the same reference numerals.

直径りの円形試料1は視野中心A点より偏心した位置に
設置され、X方向にD/2だけ動かすと破線で示す1C
の位置に移動する。
A circular sample 1 with a diameter is installed at a position eccentric from point A, the center of the field of view, and when moved by D/2 in the X direction, 1C shown by the broken line
Move to the position.

点Bは試料1の回転中心であり、B点を中心とした回転
と上記X方向へD/2の偏位を試料1に与えれば、試料
の全範囲を観察することかで゛きる。
Point B is the center of rotation of the sample 1, and if the sample 1 is rotated about point B and deflected by D/2 in the X direction, it is possible to observe the entire range of the sample.

このときの試料室の寸法は、幅はD、長さは1.5Dあ
れば十分で、極めて小型の試料室2となる。
The dimensions of the sample chamber at this time are sufficient if the width is D and the length is 1.5D, resulting in an extremely small sample chamber 2.

また、検知器3は観察中心Aに近いので検出感度が向上
する。
Furthermore, since the detector 3 is close to the observation center A, detection sensitivity is improved.

更にX方向の移動距離は従来は±Dだけ必要であったも
のがD/2だけで済むので移動機構は小型になるという
利点をもっている。
Furthermore, the moving distance in the X direction, which conventionally required ±D, is now only D/2, which has the advantage that the moving mechanism can be made smaller.

しかるにこの試料微動機構は、X方向に試料1を移動さ
せなからBを中心として試料台を回転させると、試料視
野の単位回転量当りの移動距離が変化する。
However, in this sample fine movement mechanism, when the sample stage is rotated about B instead of moving the sample 1 in the X direction, the moving distance per unit rotation amount of the sample field of view changes.

第4図は第3図の試料微動機構における試料視野の単位
回転量当りの移動距離の変化、したがって移動速度の変
化を説明する図で、試料1がA位置にあるときBを中心
としてθ角回転させたときは円弧γだけ視野は移動する
Fig. 4 is a diagram illustrating changes in the moving distance per unit rotation of the sample field of view in the sample fine movement mechanism of Fig. 3, and therefore changes in moving speed. When rotated, the field of view moves by an arc γ.

しかるに試料1がA′位置に移動したときは同じθ角回
転してもどしか移動しない。
However, when sample 1 moves to position A', it only moves back through the same θ angle rotation.

即ち、X方向に試料位置が移動するときは試料視野の移
動速度が大きく異なることになる。
That is, when the sample position moves in the X direction, the moving speed of the sample field of view differs greatly.

このことはSEMによる観察・分析においては好ましい
ことではないので、この欠点を次のようにして解決した
Since this is not preferable in observation and analysis using SEM, this drawback was solved as follows.

第5図は本発明の一実施例であるSEMの試料微動装置
の動作を説明する図で、第3図と同一部分には同じ符号
を付しである。
FIG. 5 is a diagram for explaining the operation of the SEM sample fine movement device which is an embodiment of the present invention, and the same parts as in FIG. 3 are given the same reference numerals.

この装置は視野中心点Aの真下に回転駆動体20を設置
して試料台を回転させるようにしたものであり、この回
転駆動体20はX方向の駆動機構とは全く無関係にA点
下の試料台下面に接触し回転している。
In this device, a rotary drive body 20 is installed directly below the center point A of the field of view to rotate the sample stage, and this rotary drive body 20 rotates the sample stage below the point A, completely unrelated to the drive mechanism in the X direction. It contacts the bottom surface of the sample stage and rotates.

したがって、回転駆動軸21が等速度で回転していると
きは回転駆動体20の回転速度に従って試料視野が移動
するので、常に一定速度で視野移動を行なわせることが
可能となる。
Therefore, when the rotary drive shaft 21 is rotating at a constant speed, the sample field of view moves according to the rotational speed of the rotary drive body 20, so that the field of view can always be moved at a constant speed.

第6図は第5図の試料微動装置を示す試料室の断面図で
、第2図と同じ部分には同一符号を付しである。
FIG. 6 is a sectional view of the sample chamber showing the sample fine movement device of FIG. 5, and the same parts as in FIG. 2 are given the same reference numerals.

試料室2の上部に取付けた対物レンズ34によって収束
された電子ビーム33は試料1の視野中心Aを照射して
いる。
An electron beam 33 focused by an objective lens 34 attached to the upper part of the sample chamber 2 illuminates the center A of the field of view of the sample 1.

試料1はX方向移動台4の上に設置されており、X方向
移動台4の下面でA点の真下には小円板状の回転駆動体
20が接触している。
The sample 1 is placed on an X-direction moving table 4, and a small disk-shaped rotational drive body 20 is in contact with the lower surface of the X-direction moving table 4, just below point A.

この回転駆動体20は試料室壁18を気密に貫通した回
転駆動軸21で回転させられる。
This rotary drive body 20 is rotated by a rotary drive shaft 21 that passes through the sample chamber wall 18 in an airtight manner.

また、X方向移動台4はX駆動軸7を回転することによ
って試料1をX方向に移動させる。
Further, the X-direction moving stage 4 moves the sample 1 in the X-direction by rotating the X-drive shaft 7.

第6図の平面図は第5図に示すようにX方向に長い小容
積の試料室とすることが可能で、同一容積の試料室で従
来よりも大型の試料の観察が可能となる。
As shown in the plan view of FIG. 6, it is possible to create a small-volume sample chamber that is long in the X direction as shown in FIG. 5, and it is possible to observe a larger sample than in the past with a sample chamber of the same volume.

この様にに構成された本実施例のSEMの試料微動装置
は、X方向の移動機構と視野中心真下の試料移動台に接
触する回転機構とによって、試料が移動しても常に一定
速度で試料面を走査することができると共に、試料微動
機構を小型にして小容積の試料室とし、検知器と試料の
視野との距離を短縮して大型の試料でも高感度で観察分
析することが可能にするという効果をもっている。
The SEM sample fine movement device of this embodiment configured as described above uses a movement mechanism in the X direction and a rotation mechanism that contacts the sample movement stage directly below the center of the field of view to move the sample at a constant speed even when the sample moves. In addition to being able to scan a surface, the sample fine movement mechanism is made smaller to create a small volume sample chamber, and the distance between the detector and the field of view of the sample is shortened, making it possible to observe and analyze even large samples with high sensitivity. It has the effect of

第7図は本発明の他の実施例である試料微動機構の動作
を説明する図で、第6図の試料微動機構の動作を付加し
たものである。
FIG. 7 is a diagram illustrating the operation of a sample fine movement mechanism according to another embodiment of the present invention, in which the operation of the sample fine movement mechanism shown in FIG. 6 is added.

回転駆動体20の回転軸をX方向移動台4の傾斜中心と
しているので、傾斜角ψが変化しても上記試料微動機構
には何等影響を及ぼすことはない。
Since the rotation axis of the rotary drive body 20 is set as the center of inclination of the X-direction moving stage 4, even if the inclination angle ψ changes, there is no effect on the sample fine movement mechanism.

この方法によれば試料1を検出器3側に傾むけた状態で
試料のX方向および回転微動が可能であり、詳斜面より
発生する2次電子線を効率良く検知することができる。
According to this method, the sample can be slightly moved in the X direction and rotationally while the sample 1 is tilted toward the detector 3, and the secondary electron beam generated from the detailed surface can be efficiently detected.

第8図は第7図の試料傾斜微動装置を示す試料室の断面
図で、第6図と同一部分には同じ符号が付されている。
FIG. 8 is a sectional view of the sample chamber showing the sample tilt fine movement device of FIG. 7, and the same parts as in FIG. 6 are given the same reference numerals.

この図は傾斜機構と共に試料1と対物レンズ34との間
隔が調節できるZ移動機構も示している。
This figure also shows a Z-moving mechanism that can adjust the distance between the sample 1 and the objective lens 34 as well as the tilting mechanism.

試料室壁18に大きな開口部を設け、これを気密に封止
している面板25に試料微動傾斜装置を取付けている。
A large opening is provided in the sample chamber wall 18, and a sample fine tilting device is attached to a face plate 25 which hermetically seals the opening.

この面板25はつまみ28を回転させることによって圧
縮ばね29の力により円滑に上下方向(Z方向)に微動
させられ、電子ビーム33の収束点と試料面とが合致す
るようとこ調節することが可能となる。
By rotating the knob 28, this face plate 25 can be smoothly slightly moved in the vertical direction (Z direction) by the force of the compression spring 29, and can be adjusted so that the convergence point of the electron beam 33 matches the sample surface. becomes.

試料の傾斜は、回転駆動軸21の外面に挿入された傾斜
駆動軸24を傾斜つまみ23で回転することによって行
なわれる。
The sample is tilted by rotating a tilting drive shaft 24 inserted into the outer surface of the rotary drive shaft 21 with a tilting knob 23 .

傾斜駆動軸24め先端はX方向移動台4と係合しており
、第7図に示すごとく試料1を傾斜させることになる。
The tip of the tilt drive shaft 24 engages with the X-direction moving table 4, and the sample 1 is tilted as shown in FIG.

第9図は第8図の変形例である試料傾斜微動装置の要部
説明図である。
FIG. 9 is an explanatory view of the main parts of a sample tilt fine movement device which is a modification of FIG. 8.

第7図のごとく傾斜中心を回転駆動軸21と一致させる
と、傾斜時の移動量が大である。
If the center of inclination is made to coincide with the rotary drive shaft 21 as shown in FIG. 7, the amount of movement during inclination will be large.

第9図はこの欠点を改良すると共に試料1の傾斜方向を
第7図とは90°異なるX方向に傾斜させるようにした
もので、X方向移動台4の側面に回転駆動体20が接触
している点を中心とした傾斜ラック36を取付け、これ
に傾斜駆動軸24で回転させるピニオン35を噛み合わ
せている。
In FIG. 9, this defect is improved and the inclination direction of the sample 1 is tilted in the X direction, which is 90 degrees different from that in FIG. A tilting rack 36 centered at a point is attached, and a pinion 35 rotated by a tilting drive shaft 24 is meshed with this.

したがって、試料1の表面と傾斜中心との距離が短縮さ
れ傾斜時の視野の移動量が縮少されるという利点がある
Therefore, there is an advantage that the distance between the surface of the sample 1 and the center of tilt is shortened, and the amount of movement of the field of view during tilting is reduced.

以上本実施例の試料微動傾斜装置は、試料の全域に亘っ
て視野を移動させると共に傾斜させて観察することがで
きるという効果を有している。
As described above, the sample fine tilting device of this embodiment has the effect of being able to move and tilt the field of view over the entire area of the sample for observation.

またこの装置は前記実施例と同様に小型であるので比較
的大型の試料が観測できるという効果を有することは勿
論である。
Furthermore, since this apparatus is small in size like the previous embodiment, it is of course advantageous in that relatively large samples can be observed.

本発明のSEMの試料微動装置は、比較的小容積の試料
室で大形の試料全域を高感度で走査観察することができ
るという顕著な効果を持っている。
The SEM sample fine movement device of the present invention has the remarkable effect of being able to scan and observe the entire area of a large sample with high sensitivity in a relatively small volume sample chamber.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のSEMにおける試料微動機構の動作と試
料室の大きさを説明する図、第2図は従来の試料微動装
置の正面図、第3図は本発明の試料微動機構の動作と試
料室の大きさを説明する図、第4図は第3図の試料微動
機構における試料視野の移動距離の変化を説明する図、
第5図は本発明の一実施例である試料微動機構の動作を
説明する図、第6図は第5図の試料微動装置を示す試料
室の断面図、第7図は本発明の他の実施例である試料傾
斜微動機構の動作を説明する図、第8図は第7図の試料
傾斜微動装置を示す試料室の断面図、第9図は第8図の
変形例である試料傾斜微動装置の要部説明図である。 1・・・試料、3・・・検出器、4・・・X方向移動台
、20・・・回転駆動体、21・・・回転駆動軸、24
・・・傾斜駆動軸、33・・・電子ビーム、35・・・
ピニオン、36・・・傾斜ラック。
Fig. 1 is a diagram explaining the operation of the sample fine movement mechanism and the size of the sample chamber in a conventional SEM, Fig. 2 is a front view of the conventional sample fine movement device, and Fig. 3 is a diagram explaining the operation of the sample fine movement mechanism of the present invention. Figure 4 is a diagram explaining the size of the sample chamber; Figure 4 is a diagram explaining changes in the moving distance of the specimen field of view in the specimen fine movement mechanism of Figure 3;
FIG. 5 is a diagram explaining the operation of a sample fine movement mechanism that is an embodiment of the present invention, FIG. 6 is a sectional view of a sample chamber showing the sample fine movement device of FIG. 5, and FIG. 8 is a sectional view of the sample chamber showing the sample tilting fine movement device of FIG. 7, and FIG. 9 is a variation of the sample tilting fine movement mechanism of FIG. 8. FIG. 2 is an explanatory diagram of main parts of the device. DESCRIPTION OF SYMBOLS 1... Sample, 3... Detector, 4... X direction moving table, 20... Rotation drive body, 21... Rotation drive shaft, 24
... Inclined drive shaft, 33... Electron beam, 35...
Pinion, 36... inclined rack.

Claims (1)

【特許請求の範囲】[Claims] 1 収束した電子ビームが照射される試料が設置された
移動台と、該移動台を前記電子ビームに対して実質的に
直角な方向に移動する手段と、前記移動台を、該移動台
の予め定められた回転軸を中心として回転させる手段と
を備え、該回転手段は回転駆動体を含み、該回転駆動体
はその回転中心が前記電子ビームの延長線上にあるよう
に前記移動台の下面に接触している走査形電子顕微鏡の
試料微動装置。
1. A moving table on which a sample to be irradiated with a focused electron beam is installed, a means for moving the moving table in a direction substantially perpendicular to the electron beam, and a means for moving the moving table in a direction substantially perpendicular to the electron beam. means for rotating around a predetermined rotational axis, the rotating means includes a rotational drive body, and the rotational drive body is mounted on the lower surface of the movable base so that its center of rotation is on an extension line of the electron beam. The specimen fine movement device of the scanning electron microscope is in contact with the specimen.
JP14603277A 1977-12-07 1977-12-07 Scanning electron microscope sample fine movement device Expired JPS5952513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14603277A JPS5952513B2 (en) 1977-12-07 1977-12-07 Scanning electron microscope sample fine movement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14603277A JPS5952513B2 (en) 1977-12-07 1977-12-07 Scanning electron microscope sample fine movement device

Publications (2)

Publication Number Publication Date
JPS5478967A JPS5478967A (en) 1979-06-23
JPS5952513B2 true JPS5952513B2 (en) 1984-12-20

Family

ID=15398556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14603277A Expired JPS5952513B2 (en) 1977-12-07 1977-12-07 Scanning electron microscope sample fine movement device

Country Status (1)

Country Link
JP (1) JPS5952513B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59123150A (en) * 1982-12-28 1984-07-16 Jeol Ltd Sample-moving device in electron ray device
JP4534273B2 (en) * 1999-08-31 2010-09-01 株式会社日立製作所 Sample preparation device

Also Published As

Publication number Publication date
JPS5478967A (en) 1979-06-23

Similar Documents

Publication Publication Date Title
JP5485209B2 (en) Method of tilting a beam column of a beam system
JP3897271B2 (en) Processing observation apparatus and sample processing method
US5329125A (en) Device for corpuscular-optical examination and/or processing of material samples
JP2008107226A (en) Sample preparing system
US3086112A (en) Corpuscular radiation apparatus
KR100890001B1 (en) Stage unit of SEM
JPS5952513B2 (en) Scanning electron microscope sample fine movement device
JPS583586B2 (en) scanning electron microscope
JPH0619965B2 (en) Sample exchange device for scanning electron microscope
JPS5854463B2 (en) electronic probe device
JPS594442Y2 (en) scanning electron microscope
JP3031495B2 (en) Microscope sample holder positioning device
JP2002319365A (en) Stage, and device for preparing fib sample
JPS6336925Y2 (en)
JP6063755B2 (en) Charged particle beam device and disk sample observation module
JPH11149897A (en) Sample device in charged particle beam apparatus
JP2841645B2 (en) Surface analyzer
JPH05173081A (en) Positioning device for microscope sample holder
JPS63281341A (en) X-ray analyzing device provided with energy dispersion type x-ray spectroscope
JP2000149847A (en) Sample stage
JP3702685B2 (en) Charged particle beam equipment
JP3404090B2 (en) Sample tilting device for electron microscope
JPH1187474A (en) Sample stage
JP6957002B2 (en) Charged particle beam device
JP2674993B2 (en) electronic microscope