JPS5951501B2 - Optical fiber drawing furnace - Google Patents

Optical fiber drawing furnace

Info

Publication number
JPS5951501B2
JPS5951501B2 JP4114277A JP4114277A JPS5951501B2 JP S5951501 B2 JPS5951501 B2 JP S5951501B2 JP 4114277 A JP4114277 A JP 4114277A JP 4114277 A JP4114277 A JP 4114277A JP S5951501 B2 JPS5951501 B2 JP S5951501B2
Authority
JP
Japan
Prior art keywords
heating element
optical fiber
base material
fiber
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4114277A
Other languages
Japanese (ja)
Other versions
JPS53125855A (en
Inventor
茂樹 坂口
基博 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4114277A priority Critical patent/JPS5951501B2/en
Publication of JPS53125855A publication Critical patent/JPS53125855A/en
Publication of JPS5951501B2 publication Critical patent/JPS5951501B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/029Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/62Heating means for drawing
    • C03B2205/63Ohmic resistance heaters, e.g. carbon or graphite resistance heaters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 本発明はカーボン抵抗体を発熱体として用い、光ファイ
バ用母材を加熱軟化し、光ファイバに線引きするための
線引き炉に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a drawing furnace for heating and softening an optical fiber base material and drawing it into an optical fiber using a carbon resistor as a heating element.

従来、この種の抵抗加熱線引き炉として第1図に示すよ
うに構成されたものが知られている。すなわち第1図中
1は光ファイバ用母材、2は線引き炉炉体、3は保温材
、4は抵抗発熱体、5は光ファイバ、6は発熱体電極で
ある。しかしながら、かかる構造にあつては発熱体4は
所要の抵抗値を与えるため、発熱体4の軸方向と平行ま
たはらせん状のスリットが必要であつた。このため、発
熱体4の中央部において、母材1の発熱体4からの熱の
受授が母材1の周方向に均一でなくなつてしまう。即ち
、ふく射による伝熱は発熱体4のスリット部において不
連続となる。また、炉内には、カーボンの酸化消耗を防
ぐため、不活性ガスが流入されるが、炉内の雰囲気ガス
がスリット部において出入するため発熱体4の中央部に
おけるガスの流れに乱れを生じさせ、ガスを介した熱伝
導が安定せず、母材1の加熱される部分の温度が変動し
、その結果ファイバ径が変動してしまう。雰囲気ガスの
乱れは、その流入量によつても著しく影響を受け、ガス
の乱れによつて引き起こされた温度変動により、ファイ
バ外径も大きく変動する。さらには各種外径を有する母
材を線引きする場合、それらに見合う発熱体を用いらな
ければならないので、作業能率が極端に低下するといつ
た欠点を有していた。本発明は以上のような点に鑑みて
なされたもので、発熱体内側にカーボン円筒を挿入する
ことによつて母材を均一に加熱して温度変動を解消し得
jる極めて良好な光ファイバ線引き炉を提供することを
目的としている。
Conventionally, as this type of resistance heating wire drawing furnace, one constructed as shown in FIG. 1 is known. That is, in FIG. 1, 1 is a base material for an optical fiber, 2 is a drawing furnace body, 3 is a heat insulating material, 4 is a resistance heating element, 5 is an optical fiber, and 6 is a heating element electrode. However, in such a structure, in order to provide the heating element 4 with a required resistance value, a slit parallel or spiral to the axial direction of the heating element 4 is required. For this reason, in the central portion of the heating element 4, the heat received from the heating element 4 of the base material 1 is not uniform in the circumferential direction of the base material 1. That is, heat transfer by radiation becomes discontinuous at the slit portion of the heating element 4. In addition, an inert gas is flowed into the furnace to prevent oxidation and consumption of carbon, but the atmospheric gas in the furnace enters and exits at the slit, causing turbulence in the gas flow at the center of the heating element 4. As a result, the heat conduction through the gas is unstable, and the temperature of the heated portion of the base material 1 fluctuates, resulting in a fluctuation in the fiber diameter. The turbulence of the atmospheric gas is also significantly affected by its inflow amount, and the fiber outer diameter also varies greatly due to temperature fluctuations caused by the gas turbulence. Furthermore, when drawing base materials having various outside diameters, it is necessary to use a heating element suitable for each diameter, which has the disadvantage of extremely reducing work efficiency. The present invention has been made in view of the above points, and provides an extremely good optical fiber that can uniformly heat the base material and eliminate temperature fluctuations by inserting a carbon cylinder inside the heating element. The purpose is to provide wire drawing furnaces.

以下図面を参照して本発明の一実施例につき詳細に説明
する。
An embodiment of the present invention will be described in detail below with reference to the drawings.

すなわち第2図において、1はファイバ母材、J2は炉
体、3は保温材、4は発熱体、5は光ファイバ、6は発
熱体電極、7はカーボン円筒均熱層である。
That is, in FIG. 2, 1 is a fiber base material, J2 is a furnace body, 3 is a heat insulating material, 4 is a heating element, 5 is an optical fiber, 6 is a heating element electrode, and 7 is a carbon cylindrical heat-uniforming layer.

そして以上のように構成される線引き炉を用いてファイ
バを線引きするためには、炉体2の上部クよりファイバ
母材1を挿入し、カーボン抵抗体を用いた発熱体4の中
央部にて母材1を加熱軟化し、ファイバに線引きするも
のであるが、このとき、母材1は発熱体4により直接加
熱されず、発熱体4と母材1との間に介在されるカーボ
ン円筒5均熱層7により間接的に加熱されるようにした
点がこの発明の特徴である。
In order to draw a fiber using the drawing furnace configured as described above, the fiber base material 1 is inserted from the upper part of the furnace body 2, and the fiber base material 1 is inserted into the central part of the heating element 4 using a carbon resistor. The base material 1 is softened by heating and drawn into a fiber. At this time, the base material 1 is not directly heated by the heating element 4, but a carbon cylinder 5 interposed between the heating element 4 and the base material 1. A feature of the present invention is that heating is performed indirectly by the heat-uniforming layer 7.

次に、以上の実施例を具体的に例示する。Next, the above embodiment will be specifically illustrated.

内径50mmφの発熱体4を使用し、その内側に、内径
×外径が38X44mmφのカーボン円筒を均熱層7と
して挿入した。これにより、外径25mmφの石英フア
イバ母材1を、外径125μmφのフアイバに線引きし
た場合、線速30〜60m/Minにおいて、フアイバ
の外径変動は、125μmφに対し、±1.5μm以内
であつた。この結果を同一条件において、均熱層がない
場合と比較すると、均熱層がない場合外径変動は±5μ
m以上であつた。さらに、母材外径/発熱体内径の比を
実施例と同じとするため、発熱体4を内径40mmφの
ものに交換して線引きした。この場合にも、外径゛変動
は±2μm程度であり、明らかに均熱層7がある場合の
方が小さく、有効性があることは明白である。一方、フ
アイバ外径の変動は、炉内を不活性に,保つために流入
している雰囲気ガス流量にも影響を受ける。
A heating element 4 with an inner diameter of 50 mmφ was used, and a carbon cylinder with an inner diameter×outer diameter of 38×44 mmφ was inserted as a heat-uniforming layer 7 inside the heating element 4. As a result, when a quartz fiber base material 1 with an outer diameter of 25 mmφ is drawn into a fiber with an outer diameter of 125 μmφ, at a drawing speed of 30 to 60 m/min, the outer diameter of the fiber fluctuates within ±1.5 μm with respect to 125 μmφ. It was hot. Comparing this result with the case without the heat-uniforming layer under the same conditions, the outer diameter variation is ±5μ without the heat-uniforming layer.
It was more than m. Furthermore, in order to make the ratio of the outer diameter of the base material/the diameter of the heating element the same as in the example, the heating element 4 was replaced with one having an inner diameter of 40 mm and wire drawing was performed. In this case as well, the variation in the outer diameter is approximately ±2 μm, which is clearly smaller in the case where the heat-uniforming layer 7 is provided, and it is clear that the variation is more effective. On the other hand, variations in the fiber outer diameter are also affected by the flow rate of atmospheric gas flowing into the furnace to keep it inert.

そのため、上記実施例では、外径変動を減少することに
主眼をおいてガス流量を設定しているが、発熱体4の消
耗防止については次のような考慮を払うことが好ましい
。すなわち、均熱二層7内部と発熱体4側との間に気密
を保ち、それぞれ別個に流量を制御することが有効とな
る。この場合、前記実施例と同寸法の発熱体4、均熱層
7を設け、例えばカーボンフエルト製のパツキンを用い
て均熱層7内部および発熱体4側雰囲気と2の間をガス
シールしてやればよい。これにより、フアイバの外径変
動は均熱層7内部に流入させるガス流量によつて制御す
ることができる。そして、前記実施例と同一条件で線引
きした場合、抱熱層7内部に流入させるアルゴンガスの
流量が4〜81/Minの範囲で、外径変動は±1μm
程度にまで減少した。一方、発熱体4側には、アルゴン
/窒素の混合ガスを121/Minとすることにより、
発熱体4寿命は500時間以上となつた。すなわちこの
ように発熱体4と母材1との間に均熱層7を介在したこ
とにより、発熱体4のスリツトによるふく射伝熱の母材
円周方向の不連続性および炉内雰囲気ガス流れの乱れに
よる不均一熱伝達を解消することができる。従つて、フ
アイバ母材は均熱層内部で均一に加熱され温度も安定に
保つことができる。また、これによつてフアイバ用母材
は均一かつ一定温度で加熱されるため、温度変動に基づ
くフアイバ外径の変動を解消することが可能となる。
Therefore, in the embodiment described above, the gas flow rate is set with a focus on reducing the variation in the outer diameter, but it is preferable to take the following consideration into preventing wear of the heating element 4. That is, it is effective to maintain airtightness between the inside of the two-layer soaking layer 7 and the side of the heating element 4, and to control the flow rates of each separately. In this case, a heating element 4 and a heat equalizing layer 7 having the same dimensions as those in the above embodiment are provided, and a gas seal is created between the inside of the heat equalizing layer 7 and the atmosphere on the side of the heating element 4 and 2 using a gasket made of carbon felt, for example. good. Thereby, the variation in the outer diameter of the fiber can be controlled by the flow rate of the gas flowing into the inside of the heat-uniforming layer 7. When wire is drawn under the same conditions as in the above embodiment, the outer diameter variation is ±1 μm when the flow rate of argon gas flowing into the heat absorbing layer 7 is in the range of 4 to 81/min.
decreased to a certain extent. On the other hand, on the heating element 4 side, by setting the mixed gas of argon/nitrogen to 121/min,
The life of heating element 4 was over 500 hours. That is, by interposing the heat-uniforming layer 7 between the heating element 4 and the base metal 1, discontinuities in the base material circumferential direction of radiant heat transfer due to the slits of the heating element 4 and the flow of gas in the furnace atmosphere are prevented. It is possible to eliminate uneven heat transfer caused by turbulence. Therefore, the fiber base material can be heated uniformly within the heat-uniforming layer and the temperature can be kept stable. Furthermore, since the fiber base material is heated uniformly and at a constant temperature, it is possible to eliminate fluctuations in the fiber outer diameter due to temperature fluctuations.

以上説明したように本発明による光フアイバ線引き炉は
温度変動によるフアイバ径変動を解消することが可能と
なり、線引き速度の自動制御も含めて均一な径を有する
長尺フアイバの線引きを安定して行うことができるとい
う利点を有している。
As explained above, the optical fiber drawing furnace according to the present invention can eliminate fiber diameter fluctuations caused by temperature fluctuations, and can stably draw long fibers with a uniform diameter, including automatic control of the drawing speed. It has the advantage of being able to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の抵抗加熱線引き炉の構成図、第2図は本
発明による光フアイバ線引き炉の一実施例を示す構成図
である。 1・・・・・・光フアイバ用母材、2・・・・・・線引
き炉炉体、3・・・・・・保温材、4・・・・・・抵抗
発熱体、5・・・・・・光フアイバ 6・・・・・・発
熱体電極、7・・・・・・カーボン円筒均熱層。
FIG. 1 is a block diagram of a conventional resistance heating drawing furnace, and FIG. 2 is a block diagram showing an embodiment of an optical fiber drawing furnace according to the present invention. DESCRIPTION OF SYMBOLS 1... Optical fiber base material, 2... Wire drawing furnace body, 3... Heat insulating material, 4... Resistance heating element, 5... ... Optical fiber 6 ... Heating element electrode, 7 ... Carbon cylindrical heat equalizing layer.

Claims (1)

【特許請求の範囲】[Claims] 1 炉内部に設けられたカーボン抵抗体でなる発熱体で
光ファイバ母材を加熱軟化して所定の外径を有する光フ
ァイバに線引きする光ファイバ線引き炉において、前記
発熱体と前記光ファイバ用母材との間にカーボン円筒均
熱層を介在したことを特徴とする光ファイバ線引き炉。
1. In an optical fiber drawing furnace that heats and softens an optical fiber base material with a heating element made of a carbon resistor provided inside the furnace and draws it into an optical fiber having a predetermined outer diameter, the heating element and the optical fiber base material are An optical fiber drawing furnace characterized by having a carbon cylindrical heat-uniforming layer interposed between the fiber and the fiber.
JP4114277A 1977-04-11 1977-04-11 Optical fiber drawing furnace Expired JPS5951501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4114277A JPS5951501B2 (en) 1977-04-11 1977-04-11 Optical fiber drawing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4114277A JPS5951501B2 (en) 1977-04-11 1977-04-11 Optical fiber drawing furnace

Publications (2)

Publication Number Publication Date
JPS53125855A JPS53125855A (en) 1978-11-02
JPS5951501B2 true JPS5951501B2 (en) 1984-12-14

Family

ID=12600164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4114277A Expired JPS5951501B2 (en) 1977-04-11 1977-04-11 Optical fiber drawing furnace

Country Status (1)

Country Link
JP (1) JPS5951501B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2563826B1 (en) * 1984-05-07 1991-08-30 Verre Fluore Sa METHODS OF MANUFACTURING FIBERS AND OPTICAL COMPONENTS IN FLUORINATED GLASSES AND APPARATUSES FOR IMPLEMENTING SAME
JPS6161352A (en) * 1984-08-31 1986-03-29 Nec Kagoshima Ltd Fluorescent character display tube

Also Published As

Publication number Publication date
JPS53125855A (en) 1978-11-02

Similar Documents

Publication Publication Date Title
US5545246A (en) Method and device for manufacturing an optical fiber
JPS5951501B2 (en) Optical fiber drawing furnace
GB2044589A (en) Fiber forming bushing construction
JP2007070189A (en) Optical fiber drawing apparatus and method of sealing drawing furnace
JPH038738A (en) Furnace and method for drawing optical fiber
JPS6229377B2 (en)
JPS61147009A (en) Radiant tube
JPH02164738A (en) Method for drawing optical fiber
KR20040047441A (en) Graphite resistance furnace providing non-oxidizing atmosphere, an apparatus for preventing entry of air, and a furnace having the same
JPS63182231A (en) Dehydrating and sintering furnace for producing base material of optical fiber
JP2920184B2 (en) Fluid heater
JP2644310B2 (en) Optical fiber drawing method
JPH05208840A (en) Method for optical fiber spinning and equipment therefor
JPH06235828A (en) Heating furnace for drawing optical fiber preform
JPH01197340A (en) Production of optical fiber and device therefor
JP2891498B2 (en) Dehydration sintering furnace
JP3301146B2 (en) Dehydration sintering furnace for optical fiber preform manufacturing
JP3288020B2 (en) Burner for optical fiber preform processing
JPS62138340A (en) Device for wiredrawing optical fiber
JPS5654243A (en) Preparation of optical fiber matrix
JP2703011B2 (en) Radiant tube
JPH0854187A (en) Electric furnace
JPH05147970A (en) Optical fiber drawing furnace
JPH0781967A (en) Optical fiber drawing furnace
JPH07109143A (en) Furnace for spinning optical fiber