JPH01197340A - Production of optical fiber and device therefor - Google Patents

Production of optical fiber and device therefor

Info

Publication number
JPH01197340A
JPH01197340A JP2233688A JP2233688A JPH01197340A JP H01197340 A JPH01197340 A JP H01197340A JP 2233688 A JP2233688 A JP 2233688A JP 2233688 A JP2233688 A JP 2233688A JP H01197340 A JPH01197340 A JP H01197340A
Authority
JP
Japan
Prior art keywords
preform
core tube
optical fiber
pipe
furnace core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2233688A
Other languages
Japanese (ja)
Inventor
Yoshiki Chigusa
佳樹 千種
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2233688A priority Critical patent/JPH01197340A/en
Publication of JPH01197340A publication Critical patent/JPH01197340A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/029Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/90Manipulating the gas flow through the furnace other than by use of upper or lower seals, e.g. by modification of the core tube shape or by using baffles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To uniformize the diameter of a drawn optical fiber by practically equalizing the clearance between a furnace core tube and a preform to the clearance between the furnace core tube and a pipe, heating and melting the lower end of the preform, and drawing an optical fiber. CONSTITUTION:The pipe 6 is made of the same material as that of the furnace core tube 3, and heated by the radiant heat from the furnace core tube 3 to almost the same temp. In addition, since the clearance between the preform 1 and the furnace core tube 3 is almost equalized to the clearance between the pipe 6 and the furnace core tube 3, an eddy current of gaseous nitrogen is not caused. Accordingly, the gaseous nitrogen shown by the arrow A1 is kept at a uniform temp. and forms a stabilized current, and hence nonuniformity is not caused even in the gas current shown by the arrow A2. In addition, even when the drawing stage proceeds and the preform 1 is shortened, the preform 1 and the pipe 6 are simultaneously moved by a slider 9, and an eddy current, etc., are not caused.

Description

【発明の詳細な説明】 【産業上の利用分野〕 本発明は光ファイバの製造方法と、これに用いられる製
造装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical fiber manufacturing method and a manufacturing apparatus used therein.

〔従来の技術〕[Conventional technology]

プリフォーム(母材)からの光ファイバの線引きは、例
えば第2図のようにしてなされている。
An optical fiber is drawn from a preform (base material) as shown in FIG. 2, for example.

図示の通り、コアとなるべき高屈折率の内側部分1aと
、クラッドとなるべき低屈折率の外側部分1bによって
プリフォーム1が構成され、このプリフォーム1は例え
ば石英からなる支持棒2に固着されている。この様なプ
リフォーム1は、例えばカーボンからなる炉心管3に挿
入される。ここで、炉心管3の所定部分にはヒーター4
が配設され、従ってプリフォーム1の下端部は加熱、溶
融されて光ファイバ5が線引きされる。このような光フ
ァイバ5の線引き工程においては、炉心管3に雰囲気ガ
スとして例えば窒素(N2)ガスが、図中の矢印Al、
A2のように流通させられる。
As shown in the figure, a preform 1 is constituted by an inner part 1a with a high refractive index to serve as a core and an outer part 1b with a low refractive index to serve as a cladding, and this preform 1 is fixed to a support rod 2 made of, for example, quartz. has been done. Such a preform 1 is inserted into a furnace core tube 3 made of carbon, for example. Here, a heater 4 is installed in a predetermined portion of the furnace tube 3.
The lower end of the preform 1 is heated and melted, and the optical fiber 5 is drawn. In the drawing process of the optical fiber 5, nitrogen (N2) gas, for example, is supplied to the furnace tube 3 as an atmospheric gas in the direction indicated by the arrows Al,
It will be distributed like A2.

そして、この窒素ガスによって線引き後の光ファイバ5
が冷却されるようになっている。
Then, the optical fiber 5 after being drawn with this nitrogen gas is
is now being cooled.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記のような従来技術では、窒素ガスの
温度がブリ゛フオーム1の下端部近傍で変、動じたり、
あるいは場所によって異なることがあった。これは、プ
リフォーム1と炉心管3との間のクリアランスが、支持
棒2と炉心管3のクリアランスと大きく異なるためであ
ると考えられる。
However, in the above-described conventional technology, the temperature of the nitrogen gas changes or fluctuates near the lower end of the main body 1.
Or it may vary depending on location. This is considered to be because the clearance between the preform 1 and the furnace core tube 3 is significantly different from the clearance between the support rod 2 and the furnace core tube 3.

すなわち、支持棒2と炉心管3の間では、流通される窒
素ガスが炉心管3によって均一に加熱されず、また図中
に点線内部Bで示すプリフォーム1の上方部で、窒素ガ
スの渦流が生じやすいためであると考えられる。
That is, between the support rod 2 and the furnace core tube 3, the flowing nitrogen gas is not heated uniformly by the furnace core tube 3, and in the upper part of the preform 1, which is indicated by the dotted line interior B in the figure, a vortex flow of nitrogen gas occurs. This is thought to be due to the fact that this is likely to occur.

このようにして、プリフォーム1の下端部近傍で窒素ガ
ス温度に不均一性が生じると、線引きされた光ファイバ
5の線径が変動する。そして、この傾向はプリフォーム
1が大径になるほど著しくなっていた。また、光ファイ
バ5の線引きが進んで、プリフォーム1が短くなればな
るほど著しくなっていた。
In this way, when non-uniformity occurs in the nitrogen gas temperature near the lower end of the preform 1, the diameter of the drawn optical fiber 5 fluctuates. This tendency became more pronounced as the diameter of the preform 1 became larger. Further, as the drawing of the optical fiber 5 progresses and the preform 1 becomes shorter, the problem becomes more noticeable.

そこで本発明は、線引きされた光ファイバの線径を均一
にすることのできる光ファイバの製造方法を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an optical fiber manufacturing method that can make the diameter of a drawn optical fiber uniform.

また本発明は、上記製造方法を実施するのに好適な光フ
ァイバの製造装置を提供することを目的とする。
Another object of the present invention is to provide an optical fiber manufacturing apparatus suitable for carrying out the above manufacturing method.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る光ファイバの製造方法は、支持棒に固着さ
れたプリフォームを炉心管内に挿入し、炉心管内に上方
から雰囲気ガスを流通させながら、プリフォームの下端
部を加熱、溶融して光ファイバを線引きする光ファイバ
の製造方法において、下側開口端部がプリフォームの上
側肩部に当接もしくは近接するパイプを、支持棒を通し
て炉心管内に挿入し、炉心管とプリフォームの間隙を炉
心管とパイプの間隙と略同一にしたことを特徴とする。
The optical fiber manufacturing method according to the present invention involves inserting a preform fixed to a support rod into a furnace tube, and heating and melting the lower end of the preform while circulating atmospheric gas from above into the furnace tube, thereby producing light. In an optical fiber manufacturing method in which fiber is drawn, a pipe whose lower open end touches or is close to the upper shoulder of a preform is inserted into the core tube through a support rod, and the gap between the core tube and the preform is inserted into the core tube. It is characterized in that the gap is approximately the same as the gap between the pipes.

また、本発明に係る光ファイバの製造装置は、所定位置
にヒーターが配設され、上方から雰囲気ガスが流通させ
られる炉心管と、この炉心管内に挿入されるプリフォー
ムが下端に固着された支持棒を支持する支持機構と、こ
の支持機構を介して支持棒と共に上下動するよう炉心管
内に配設され、外径がプリフォームの外径と略同一のパ
イプとを備えることを特徴とする。
Further, the optical fiber manufacturing apparatus according to the present invention includes a furnace core tube in which a heater is disposed at a predetermined position and an atmospheric gas is circulated from above, and a support fixed to a lower end of a preform to be inserted into the furnace core tube. It is characterized by comprising a support mechanism that supports the rod, and a pipe that is disposed within the reactor core tube so as to move up and down together with the support rod via the support mechanism, and whose outer diameter is approximately the same as the outer diameter of the preform.

〔作用〕[Effect]

本発明によれば、例えばカーボンなどで形成されるパイ
プは、プリフォームの部分と支持棒の部分とで雰囲気ガ
スの流通路の断面積を略同一にする。このため、雰囲気
ガスは均一に加熱され、また渦流の発生による温度の変
動も少なくなる。
According to the present invention, in the pipe made of, for example, carbon, the cross-sectional area of the atmospheric gas flow path is made approximately the same in the preform portion and the support rod portion. Therefore, the atmospheric gas is heated uniformly, and fluctuations in temperature due to the generation of eddy currents are also reduced.

〔実施例〕〔Example〕

以下、添付図面の第1図および第2図を参照して、本発
明の詳細な説明する。なお、図面の説明において同一要
素には同一符号を付し、重複する説明を省略する。
Hereinafter, the present invention will be described in detail with reference to FIGS. 1 and 2 of the accompanying drawings. In addition, in the description of the drawings, the same elements are given the same reference numerals, and redundant description will be omitted.

第1図は本発明の実施例に係る光ファイバの製造方法を
適用するための、線引き装置の一部を断面にて示した側
面図である。図示の通り、炉心管3にはプリフォーム1
が挿入され、この上側にはパイプロが挿入されている。
FIG. 1 is a side view, in cross section, of a part of a drawing apparatus for applying an optical fiber manufacturing method according to an embodiment of the present invention. As shown in the figure, the preform 1 is placed in the furnace tube 3.
is inserted, and a pipero is inserted above this.

このパイプロの外径はプリフォーム1の外径と略同一で
あり、その下側開口端部はプリフォーム1の上側肩部に
近接ないし当接している。そして、プリフォーム1が固
着された支持棒2の上端部は支持棒チャック7aによっ
て把持され、パイプロの上端部はパイプチャック7bに
よって把持され、これらはアーム8a、8bを介してス
ライダ9に固定される。このスライダ9はねじ切りされ
た軸10に取り付けられ、従ってプリフォーム1とパイ
プロは共・に上下動できるようになっている。
The outer diameter of this pipero is approximately the same as the outer diameter of the preform 1, and its lower open end is close to or in contact with the upper shoulder of the preform 1. The upper end of the support rod 2 to which the preform 1 is fixed is gripped by a support rod chuck 7a, and the upper end of the pipe is gripped by a pipe chuck 7b, which are fixed to the slider 9 via arms 8a and 8b. Ru. This slider 9 is attached to a threaded shaft 10, so that both the preform 1 and the pipero can move up and down.

次に、上記実施例の作用を説明する。Next, the operation of the above embodiment will be explained.

第1図において、パイプロは炉心管3と同一の材料で構
成され、従って炉心管3がカーボン製であるときはパイ
プロもカーボン製になっている。
In FIG. 1, the pipero is made of the same material as the furnace core tube 3, so when the furnace core tube 3 is made of carbon, the pipero is also made of carbon.

このため、パイプロは炉心管3からの輻射熱により略同
一温度に加熱される。また、プリフォーム1と炉心管3
の間のクリアランスと、パイプロと炉心管3の間のクリ
アランスが略同一になっているため、窒素ガスの渦流が
発生することもない。
Therefore, the pipes are heated to approximately the same temperature by the radiant heat from the core tube 3. In addition, preform 1 and furnace tube 3
Since the clearance between the pipe and the furnace core tube 3 is approximately the same as that between the pipro and the furnace core tube 3, no swirl of nitrogen gas is generated.

従って、図中に矢印A1で示す窒素ガスは均一温度であ
って、しかも安定した流れとなるので、図中に矢印A2
で示すガス流においても、温度の不均一性などが現れる
ことがない。
Therefore, the nitrogen gas indicated by the arrow A1 in the figure has a uniform temperature and a stable flow, so the nitrogen gas indicated by the arrow A1 in the figure
Even in the gas flow shown by , no temperature non-uniformity appears.

更に、線引き工程が進行してプリフォーム1が短くなっ
たときでも、プリフォーム1とパイプロはスライダ9に
よって同時に移動するので、炉心管3との間のクリアラ
ンスはプリフォーム1の部分でも支持棒2の部分でも一
定に保たれるので、渦流などの生じる余地はない。従っ
て、パイプロに十分な長さがあれば、窒素ガスは炉心管
3とパイプロの間で安定に加熱され、均一な温度で安定
する。
Furthermore, even when the preform 1 becomes shorter as the wire drawing process progresses, the preform 1 and pipero are simultaneously moved by the slider 9, so the clearance between the furnace core tube 3 and the support rod 2 is limited even in the preform 1 part. Since it remains constant even in the area, there is no room for eddy currents to occur. Therefore, if the pipe has a sufficient length, the nitrogen gas will be stably heated between the reactor core tube 3 and the pipe, and the temperature will be stabilized at a uniform temperature.

本発明は上記実施例に限定されることなく、種々の変形
が可能である。
The present invention is not limited to the above embodiments, and various modifications are possible.

例えば、パイプロの材料は炉心管3と同一の例えばカー
ボンであることが好ましいが、これに限られず、プリフ
ォーム1と同一の材料として例えば石英などを用いても
よい。また、支持機構を構成する支持棒チャック7a、
パイプチャック7b。
For example, the material of the pipero is preferably the same as that of the furnace tube 3, such as carbon, but is not limited to this, and the same material as that of the preform 1, such as quartz, may be used. Further, a support rod chuck 7a constituting a support mechanism,
Pipe chuck 7b.

アーム8a、8b、スライダ9などは図示のものに限ら
れず、プリフォーム1の上側肩部とパイプロの下側開口
端部を当接あるいは近接した状態に保てるものであれば
、いかなる構成でもよい。
The arms 8a, 8b, slider 9, etc. are not limited to those shown in the drawings, and may have any configuration as long as they can keep the upper shoulder of the preform 1 and the lower open end of the pipero in contact with or close to each other.

本発明者は、発明の有効性を確認するため、下記のよう
な比較実験を行なった。
The present inventor conducted the following comparative experiment in order to confirm the effectiveness of the invention.

まず、従来例として第2図のような装置を用い、直径が
80m■のプリフォームを600m/分の線速で紡糸し
た。この場合には、得られた光ファイバの線径変動σd
は3μm程度であった。次に、実施例として、第1図の
ような装置において炉心管とパイプをカーボンで構成し
、直径が80龍のプリフォームを600m/分の線速で
紡糸したところ、線径変動はσ、−0.15μmであっ
た。
First, as a conventional example, a preform having a diameter of 80 m was spun at a line speed of 600 m/min using an apparatus as shown in FIG. In this case, the diameter variation σd of the obtained optical fiber is
was about 3 μm. Next, as an example, when the furnace core tube and pipe were made of carbon in the apparatus shown in Fig. 1, and a preform with a diameter of 80 mm was spun at a line speed of 600 m/min, the wire diameter variation was σ, -0.15 μm.

これにより、本発明によれば雰囲気ガスが均一な温度で
安定的に流通し、従って光ファイバの線径変動を著しく
低減できることがわかった。
As a result, it has been found that according to the present invention, the atmospheric gas can stably flow at a uniform temperature, and therefore, variations in the diameter of the optical fiber can be significantly reduced.

〔発明の効果〕〔Effect of the invention〕

以上、詳細に説明した通り、例えばカーボンなどで形成
されるパイプは、プリフォームの部分と支持棒の部分と
で雰囲気ガスの流通路の断面積を略同一にする。このた
め、雰囲気ガスは均一に加熱され、また渦流の発生によ
る温度の変動も少なくなる。従って、線引きされた光フ
ァイバの線径を均一にすることができる。
As described in detail above, in a pipe made of, for example, carbon, the cross-sectional area of the atmospheric gas flow path is approximately the same in the preform portion and the support rod portion. Therefore, the atmospheric gas is heated uniformly, and fluctuations in temperature due to the generation of eddy currents are also reduced. Therefore, the diameter of the drawn optical fiber can be made uniform.

また本発明は、上記製造方法を実施するのに好適であっ
て、しかも構成が簡単な光ファイバの製造装置を提供で
きる。
Further, the present invention can provide an optical fiber manufacturing apparatus that is suitable for carrying out the above manufacturing method and has a simple configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る光ファイバの製造方法
を適用した線引き装置の一部を断面にて示した側面図、
第2図は従来の線引き装置の要部断面図である。 1・・・プリフォーム、2・・・支持棒、3・・・炉心
管、4・・・ヒーター、5・・・光ファイバ、6・・・
パイプ、7a・・・支持棒チャック、7b・・・パイプ
チャック、9・・・スライダ。 特許出願人  住友電気工業株式会社 代理人弁理士   長谷用  芳  樹第1図 第2図
FIG. 1 is a cross-sectional side view of a part of a drawing apparatus to which an optical fiber manufacturing method according to an embodiment of the present invention is applied;
FIG. 2 is a sectional view of a main part of a conventional wire drawing device. DESCRIPTION OF SYMBOLS 1... Preform, 2... Support rod, 3... Furnace tube, 4... Heater, 5... Optical fiber, 6...
Pipe, 7a... Support rod chuck, 7b... Pipe chuck, 9... Slider. Patent applicant: Sumitomo Electric Industries, Ltd. Representative Patent Attorney Yoshiki Hase Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1、支持棒に固着されたプリフォームを炉心管内に挿入
し、前記炉心管内に上方から雰囲気ガスを流通させなが
ら、前記プリフォームの下端部を加熱、溶融して光ファ
イバを線引きする光ファイバの製造方法において、 下側開口端部が前記プリフォームの上側肩部に当接もし
くは近接するパイプを、前記支持棒を通して前記炉心管
内に挿入し、前記炉心管と前記プリフォームの間隙を前
記炉心管と前記パイプの間隙と略同一にしたことを特徴
とする光ファイバの製造方法。 2、所定位置にヒーターが配設され、上方から雰囲気ガ
スが流通させられる炉心管と、この炉心管内に挿入され
るプリフォームが下端に固着された支持棒を支持する支
持機構と、この支持機構を介して前記支持棒と共に上下
動するよう前記炉心管内に配設され、外径が前記プリフ
ォームの外径と略同一のパイプとを備えることを特徴と
する光ファイバの製造装置。 3、前記パイプが前記炉心管と同一材料からなることを
特徴とする請求項2記載の光ファイバの製造装置。
[Claims] 1. A preform fixed to a support rod is inserted into a furnace tube, and while atmospheric gas is passed from above into the furnace tube, the lower end of the preform is heated and melted to form an optical fiber. In the method of manufacturing an optical fiber, a pipe whose lower open end abuts or is close to the upper shoulder of the preform is inserted into the core tube through the support rod, and the pipe is inserted into the core tube and the preform is connected to the core tube. A method for manufacturing an optical fiber, characterized in that the gap is made substantially the same as the gap between the furnace core tube and the pipe. 2. A furnace core tube in which a heater is arranged at a predetermined position and atmospheric gas is circulated from above, a support mechanism that supports a support rod to which a preform to be inserted into the furnace core tube is fixed at its lower end, and this support mechanism. An optical fiber manufacturing apparatus comprising: a pipe disposed within the furnace core tube so as to move up and down together with the support rod, and having an outer diameter substantially the same as an outer diameter of the preform. 3. The optical fiber manufacturing apparatus according to claim 2, wherein the pipe is made of the same material as the furnace tube.
JP2233688A 1988-02-02 1988-02-02 Production of optical fiber and device therefor Pending JPH01197340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2233688A JPH01197340A (en) 1988-02-02 1988-02-02 Production of optical fiber and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2233688A JPH01197340A (en) 1988-02-02 1988-02-02 Production of optical fiber and device therefor

Publications (1)

Publication Number Publication Date
JPH01197340A true JPH01197340A (en) 1989-08-09

Family

ID=12079863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2233688A Pending JPH01197340A (en) 1988-02-02 1988-02-02 Production of optical fiber and device therefor

Country Status (1)

Country Link
JP (1) JPH01197340A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180251393A1 (en) * 2017-03-01 2018-09-06 Shin-Etsu Chemical Co., Ltd. Wire-drawing optical fiber base material manufacturing method and manufacturing apparatus
JP2021519252A (en) * 2018-03-22 2021-08-10 コーニング インコーポレイテッド Flow instability suppression method and equipment in optical fiber drawing system
US11820696B2 (en) 2020-01-24 2023-11-21 Corning Incorporated Optical fiber draw furnace system and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180251393A1 (en) * 2017-03-01 2018-09-06 Shin-Etsu Chemical Co., Ltd. Wire-drawing optical fiber base material manufacturing method and manufacturing apparatus
US11384006B2 (en) * 2017-03-01 2022-07-12 Shin-Etsu Chemical Co., Ltd. Wire-drawing optical fiber base material manufacturing method and manufacturing apparatus
JP2021519252A (en) * 2018-03-22 2021-08-10 コーニング インコーポレイテッド Flow instability suppression method and equipment in optical fiber drawing system
US11820696B2 (en) 2020-01-24 2023-11-21 Corning Incorporated Optical fiber draw furnace system and method

Similar Documents

Publication Publication Date Title
EP1001912B1 (en) Apparatus and method for overcladding optical fiber preform rod and optical fiber drawing method
CN104936909B (en) Optical fiber manufacturing device and manufacturing method
RU2116269C1 (en) Furnace for spinning of optical fibers and method of joining of intermediate products of optical fibers
JPH0971433A (en) Optical fiber drawing oven
CA2064110C (en) Methods of and apparatus for heating elongated glass substrate
JPH01197340A (en) Production of optical fiber and device therefor
JP2870058B2 (en) Optical fiber drawing furnace and drawing method
JPH09142890A (en) Method and apparatus for drawing optical fiber
JP2007070189A (en) Optical fiber drawing apparatus and method of sealing drawing furnace
JP3189968B2 (en) Optical fiber drawing method and optical fiber drawing furnace
JPH01197342A (en) Production of optical fiber
JPS6135846A (en) Production of aerosol stream
JP5207571B2 (en) Rod-shaped preform for manufacturing optical fiber and method for manufacturing fiber
JP3377131B2 (en) Optical fiber drawing furnace and heater used therefor
GB2120774A (en) Oxyhydrogen torch
JP3197069B2 (en) Optical fiber manufacturing method
JP4252891B2 (en) Optical fiber drawing method
JPS62153137A (en) Wire drawing of optical fiber
US4328017A (en) Method and apparatus for making optical fiber waveguides
JPH0733471A (en) Method for drawing optical fiber
JPH01197341A (en) Production of optical fiber
JPH04310533A (en) Drawing of optical fiber
GB2305663A (en) Optical fibre spinning apparatus and method
JPH01208345A (en) Production of optical fiber and apparatus therefor
GB2136985A (en) Fabricating couplers in optical fibres by fusing