JPS59501551A - Wear-resistant white cast iron - Google Patents

Wear-resistant white cast iron

Info

Publication number
JPS59501551A
JPS59501551A JP50253882A JP50253882A JPS59501551A JP S59501551 A JPS59501551 A JP S59501551A JP 50253882 A JP50253882 A JP 50253882A JP 50253882 A JP50253882 A JP 50253882A JP S59501551 A JPS59501551 A JP S59501551A
Authority
JP
Japan
Prior art keywords
cast iron
composition
temperature
carbon
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP50253882A
Other languages
Japanese (ja)
Inventor
デイ・ウオレス
Original Assignee
ジ−アイダブリユ・インダストリ−ス・インコ−ポレ−テツド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジ−アイダブリユ・インダストリ−ス・インコ−ポレ−テツド filed Critical ジ−アイダブリユ・インダストリ−ス・インコ−ポレ−テツド
Publication of JPS59501551A publication Critical patent/JPS59501551A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • C22C37/08Cast-iron alloys containing chromium with nickel

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 耐摩耗性白鋳鉄 技術分野 この発明は、鋳鉄に関し、特に引張強さの顕著な増加と共にしん性および耐摩耗 性の優れた鋳鉄に関する。[Detailed description of the invention] Wear-resistant white cast iron Technical field This invention relates to cast iron, and in particular to improved toughness and wear resistance with a significant increase in tensile strength. Concerning cast iron with excellent properties.

さらに詳しくは5本発明は、炭化物の形態の改良によって所望の耐摩耗性を維持 しながら優nたじん性、延性および引張強さを有する新しい白鋳鉄の組成物およ び該鋳、鉄の製造法に関する。More specifically, 5 the present invention maintains desired wear resistance by improving the morphology of carbides. A new white cast iron composition with excellent toughness, ductility and tensile strength while and related to casting and iron manufacturing methods.

背景技術 合金白鋳鉄は、一般にL5%以上の炭素含量で形成される高耐摩耗性材料であっ て、他の金属(普通はクロム)と合金化され、炭素と結合してMxCyのような Fe−Cr炭化物の化合物を生成する可能性のあることがよく知られている。多 くの場合に、合金化されない鋳鉄固有の耐摩耗性は所期の用途を満たすのに十分 であるから、使用者に問題を持ち出さない。しかしながら、産業機械を形成する 鋳鉄が特殊な摩耗を受ける場合、鋳鉄固有の機械的性質は所望のものから著しく 離れる。Background technology Alloyed white cast iron is a highly wear-resistant material generally formed with a carbon content of L5% or more. is alloyed with another metal (usually chromium) and combined with carbon to form a metal such as MxCy. It is well known that Fe-Cr carbide compounds can be produced. Many In many cases, the inherent wear resistance of unalloyed cast iron is sufficient to meet the intended application. Therefore, they do not bring up the problem to the users. However, forming industrial machinery When cast iron is subjected to special wear, the inherent mechanical properties of the cast iron are significantly reduced from the desired ones. Leave.

鋳鉄材料が受ける摩耗は幾つかに分類されることは良く知られている。第1のえ ぐり(またはみそ切り)摩耗においては、研摩性粗粒子が鋳鉄の加工表面に侵入 して高速で金属を除去する。この種の摩耗の典型的な経験1例えば地ならし装置 、ハンマミル作業およびショークラッシャーにおいては、鋳鉄に有害な影響を与 えることが知られているところの金属を除去する過酷な衝撃荷重を伴う。It is well known that the wear that cast iron materials undergo can be classified into several types. 1st row In boring (or miso-kiri) wear, coarse abrasive particles penetrate the machined surface of cast iron. to remove metal at high speed. Typical experience of this type of wear 1 e.g. earthmoving equipment , hammer mill operations and show crushers have a detrimental effect on cast iron. It involves severe impact loads that remove metal where it is known to cause damage.

しばしば高応力摩耗と呼ばれる第2の摩耗(例えば。Secondary wear, often referred to as high stress wear (e.g.

採鉱作業において遭遇する)においては、研摩粒子は移動する金属表面の粉砕作 用下で粉砕される。研摩ロール、粉砕ロールやミル・ライナに使用さnる鋳物に 典型的に生じるこの種の摩耗過程に含ま扛る応力レベルは、従来の鋳鉄のφ力性 能をしばしば越えて装置の破損をもたらヂ。(encountered in mining operations), abrasive particles are used to crush moving metal surfaces. It is crushed under use. For castings used in grinding rolls, grinding rolls and mill liners. The stress levels involved in this type of wear process typically occur in This often causes damage to the equipment beyond its capacity.

第うのカテゴリーの摩耗である低応力摩耗または侵食においては、装置の鋳鉄表 面が受ける研摩作用は過酷な応力状態ではないが、高耐摩耗性が要求される。In the second category of wear, low stress wear or erosion, the cast iron surface of the equipment Although the abrasive action to which the surface is subjected is not a severe stress condition, high wear resistance is required.

過酷な衝撃荷重を伴うえぐり(またはみそ切り)摩耗は、鋳鉄が典型的に過去に おいて特質的にもっていなかったしん性全必要とする。高い塑性およびじん性を もったマンガン鋼はこの種の摩耗を受ける材料に対する過酷な耐衝撃要求を満た すことができた。しかしながら、その硬度および耐摩耗性は一般に1回転式ボー ルミルのような広範囲の粉砕過程での高応力研磨作用における極めて高い摩耗速 度を防ぐには不適当であることがわかった。この高応力作用においては、クロム ・モリブデン鋼および合金白銑がじん性の必要条件および必要な耐摩耗性の組合 せに応じて種々の装置に使用できる。低応力作用を含む前記第5のカテゴリーの 摩耗においては、モリブデンまたはニッケルを添加、または添加しないクロム− 鉄合金が炭化物を分散した望ましいマルテンサイトのマトリックス全もって使用 における必要条件を満たすために利用する金属の種類に関する産業の知識を考慮 すると、当業者はジレンマに落ち入る。少なくとも最初の2つのカテゴリーの摩 耗を受ける装置を動かすためには、最適の耐摩耗性およびこ几らの摩耗に特徴的 な過酷な衝撃および応力条件に耐える十分なしん性が要求される。一般に硬度と じん性は範囲の両極端にあると考えら扛るので、1つ以上の特性をもつそれらの 組成物は他のいくらかをもLax<、しかも硬度とじん性の両方が要求される。Gouge (or gouge) wear associated with severe impact loads has typically been It requires all the sensitivities that it characteristically did not have. High plasticity and toughness Manganese steel meets the harsh impact requirements for materials that are subject to this type of wear. I was able to However, its hardness and wear resistance are generally Extremely high wear rates in high stress abrasive action in extensive grinding processes such as Lumil It was found to be inadequate to prevent the disease. In this high stress action, chromium ・Molybdenum steels and white alloy alloys combine toughness requirements and necessary wear resistance. It can be used in various devices depending on the application. The fifth category includes low stress effects. For wear, chromium with or without molybdenum or nickel is used. Ferrous alloys use a desirable martensitic matrix with dispersed carbides taking into account industry knowledge of the types of metals utilized to meet the requirements of The person skilled in the art is then faced with a dilemma. At least the first two categories For operating equipment subject to wear, optimum wear resistance and wear characteristic of these Requires sufficient toughness to withstand severe shock and stress conditions. Generally hardness and Since toughness is considered to be at the extremes of a range, we The composition also requires some other properties such as Lax<, and both hardness and toughness.

耐摩耗性の鋳物を供給する産業界は、前述の摩耗に鋳物を利用した装置の有効寿 命を改善することをずっと追求してきた。The industry that supplies wear-resistant castings is concerned with the useful life of equipment that utilizes castings to reduce the aforementioned wear. I have always sought to improve lives.

合金化および合金化しない種々の鉄−炭素組成物は。Various alloyed and unalloyed iron-carbon compositions.

o、oq%なる低含量で出発した炭素ではマルテンサイト状態において高いしん 性をもたない。過共析鋼および白銑はそのセメンタイ)(Fe3C)の形態のた めに不十分なしん性を示す。鉄−炭素の組成物の合金化は炭化物(MxCy)k 生成し、硬度を増すので高耐摩耗性の要件を若干溝たす。しかしながら、いずれ の体積においても炭化物の粒径が小さくならない限り、炭化物の体積が増すと、 耐摩耗性は増すがじん性または耐破壊性は低下する。金属学者は、2つの主微小 構成成分である炭化物とマトリックスが相互に実質的に無関係に作用するため白 鋳鉄の複雑性を認識してきた。それにもかかわらず、材料の最終特性は、白銑が 摩耗および衝撃状態にあると前記2つの微小構成成分間の相互依存から生じる。Carbon starting with a low content of o, oq% has a high carbon content in the martensitic state. It has no gender. Hypereutectoid steel and white pig iron are It shows insufficient stiffness. Alloying of iron-carbon compositions is carbide (MxCy)k As it increases hardness, it slightly satisfies the requirement for high wear resistance. However, eventually As long as the grain size of the carbide does not decrease even in the volume of , as the volume of the carbide increases, Abrasion resistance increases, but toughness or fracture resistance decreases. Metallurgists believe that there are two main White because the constituent carbides and matrix act virtually independently of each other. I have come to appreciate the complexity of cast iron. Nevertheless, the final properties of the material are Wear and impact conditions result from the interdependence between the two microcomponents.

そのような材料に衝撃が加わると、炭化物は粉りになる、そして炭化物が連続し ていて比較的大きいと1割れが組織全体に伝播して、しばしば破壊を導いたり、 或いは少なくとも材料の摩耗を加速する。When such materials are subjected to impact, the carbides turn into powder, and the carbides become continuous. If the crack is relatively large, it will propagate throughout the tissue, often leading to fracture, or Or at least accelerate the wear of the material.

このように今日までのところ、優れた耐摩耗性と良好な衝撃応力吸収の必要条件 をaたすところの炭素含量が17重量%以上の鉄−炭素合金は認識されていない 。Thus to date, the requirements for good wear resistance and good impact stress absorption Iron-carbon alloys with a carbon content of more than 17% by weight are not recognized. .

従って、本発明の主目的は、高硬度または高耐摩耗性および優れたしん性を有す る白鋳鉄全提供することである。Therefore, the main objective of the present invention is to provide a material with high hardness or high wear resistance and excellent toughness. We offer a complete range of white cast iron.

さらに、本発明の目的は、所望の耐摩耗性およびじん性のみならず優れた引張り 強さを有する白鋳鉄を提供することである。Furthermore, it is an object of the present invention to provide not only the desired wear resistance and toughness but also excellent tensile strength. Our objective is to provide white cast iron with strength.

また1本発明の目的は、炭化物が球形に近ハ球状であるところの高耐摩耗性およ び高じん性を有する鋳鉄組成物を提供することである。Another object of the present invention is to provide high wear resistance and near-spherical carbide. An object of the present invention is to provide a cast iron composition having high strength and toughness.

また、本発明の目的は、炭化物の大きさが従来の平均値より小さくてマ) l) ノクス全体に実質的に均一に分布しているしん性で耐摩耗性を有する鋳鉄を提供 することである。Moreover, the object of the present invention is to reduce the size of carbides smaller than the conventional average value. Provides tough, wear-resistant cast iron that is virtually evenly distributed throughout the nox It is to be.

また1本発明の目的は2球状粒子のみならず均一に分布している平均粒径の小さ い粒子を生成するためにホウ素を導入することによって1合金鋳鉄における高エ ントロピーのものを提供することである。In addition, 1) the object of the present invention is 2) to have not only spherical particles but also uniformly distributed small average particle diameters. High energy in single-alloy cast iron by introducing boron to produce fine grains It is to provide something of entropy.

さらに1本発明の目的は、溶融鋳鉄組成物を平衡凝固温度以下の過冷却温度に冷 却し、しかる後に凝固させて、従来の鋳鉄炭化物の平均粒径より小さい平均粒径 全盲する球状炭化物全生成させたしん性、耐摩耗性鋳鉄を提供することである。Furthermore, it is an object of the present invention to cool a molten cast iron composition to a supercooling temperature below the equilibrium solidification temperature. The average particle size is smaller than the average particle size of conventional cast iron carbides. It is an object of the present invention to provide a cast iron that is entirely made of completely blind spheroidal carbides and has toughness and wear resistance.

発明の開示 本発明は、主成分の鉄と、単独または累積的に添加または非添加のバナジウム、 チタン、ニオブ、モリブデン、ニッケル、銅、タンタルまたはクロム、またはそ nらの混合物Q、 001%〜50重量%と5合金組成物を形成する炭素20% 〜45重量%と、耐摩耗性、じん性および引張強さを改善するため導入したホウ 素0001%〜40重量%からなる合金鋳鉄組成物のユニークな発児である。本 合金は1204t:(2200F)−1316℃(21100F)ノ範囲、一般 的には1238℃(2260p) 〜1260℃(2500F)の範囲内の凝固 点を有する。この凝固点は所定の合金元素での鋳鉄の共晶温度の157”以内に ある。炭化物は球形に近い球状で存在し、従来の鋳鉄における炭化物の平均粒径 よりがなり小さいUミクロン以下の粒径を有する。Disclosure of invention The present invention consists of iron as the main component, vanadium added or not added singly or cumulatively, titanium, niobium, molybdenum, nickel, copper, tantalum or chromium, or Mixture Q of n et al., 001% to 50% by weight and 20% carbon forming 5 alloy composition ~45% by weight, which was introduced to improve wear resistance, toughness and tensile strength. This is a unique development of alloyed cast iron compositions consisting of 0,001% to 40% by weight. Book The alloy is 1204t: (2200F) - 1316℃ (21100F) range, general Generally solidification within the range of 1238℃ (2260p) to 1260℃ (2500F) Has a point. This freezing point is within 157" of the eutectic temperature of cast iron for a given alloying element. be. Carbide exists in a spherical shape, and the average particle size of carbide in conventional cast iron is It has a particle size of less than U micron, which is small.

本発明の方法において、o、oo1%〜50%のバナジウム、チタン、ニオブ、 モリブデン、ニッケル、銅、タンタル、またはクロムまたはそnらの混合物、お よび20%〜4.5%の炭素を含む合金白鋳鉄が溶融鋳鉄組成物を形成し、その 溶融鋳鉄組成物にO,OO1%〜lIO%のホウ素のようなエントロピー増大用 添加物を加え1次にその溶融鋳鉄組成物を12011℃(22007;’)〜1 316℃(211007)の平衡凝固温度より少なくとも5F低い過冷却温度に 冷却し、しかる後にその溶融鋳鉄組成物を凝固させて、従来の鋳鉄より小さい平 均粒径を有する球状炭化物または平均4μ以下の炭化物を生成する。In the method of the present invention, o, oo 1% to 50% vanadium, titanium, niobium, Molybdenum, nickel, copper, tantalum, or chromium or mixtures thereof, or Alloyed white cast iron containing 20% to 4.5% carbon forms a molten cast iron composition; Entropy increasing agents such as O,OO1% to lIO% boron in molten cast iron compositions Additives are added and the molten cast iron composition is heated to 12011°C (22007;') to 1 to a subcooling temperature of at least 5F below the equilibrium solidification temperature of 316°C (211007) The molten cast iron composition is cooled and then solidified into flat pieces that are smaller than conventional cast iron. Spherical carbides with a uniform particle size or carbides with an average particle diameter of 4 μ or less are produced.

発明を実施するための最良の形態 白鋳鉄は、鋳鉄からなる装置が受ける種々の摩耗条件ヲ満たすのに望ましい耐摩 耗特性を本来もっていると長い間認識されてきた。しかし1合金化鋳鉄の炭化物 の形態は耐摩耗性を保持させるために変えることができ、引張強さを増加するの みならず、さらに重要なことは塑性変形性の付与と共にしん件の著しい改善をす ることが今見出された。従来の鋳鉄においては、オーステナイト、パーライトま たはマルテンサイトのマトリックスに見られる過剰の遊離炭素はコーンフレーク に若干似たう次元の形状金とる黒鉛の形か、または板状まfc、は棒状の炭化物 の形であると認識されてきた。BEST MODE FOR CARRYING OUT THE INVENTION White cast iron has the desired wear resistance to meet the various wear conditions to which equipment made of cast iron is subjected. It has long been recognized that it has inherent wear properties. However, carbides in single-alloyed cast iron The form of can be changed to retain wear resistance and increase tensile strength. What is more important is that it not only imparts plastic deformability but also significantly improves the It has now been discovered that In conventional cast iron, austenite, pearlite or Excess free carbon found in the martensitic or martensitic matrix A dimensional shape somewhat similar to that of gold or graphite, or plate-shaped or fc, is a rod-shaped carbide. It has been recognized as a form of

いずれの形においても、砂型から通常の熱全取り出し。In either form, normal total heat extraction from the sand mold.

金属の断面寸法が10鰭以上と仮定すると1粒子は顕微鏡的な大きさであって、 普通平均粒径は10ミクロン以上である。Assuming that the cross-sectional dimension of the metal is 10 or more fins, one particle is microscopic in size, Usually the average particle size is 10 microns or more.

これう黒鉛のフレークはフレークの面に沿っり破壊の源であることが仰ら几てい る。典型的に、良品位の鋳鉄は引張り強さが約3500 Kg/cl (50, 000psi)。This graphite flake is said to be a source of fracture along the plane of the flake. Ru. Typically, good quality cast iron has a tensile strength of approximately 3500 kg/cl (50,000 kg/cl). 000psi).

伸びが0%で極めて脆いか、またはじん性がなくどんな変形もできない。適当に 合金化すると、遊離炭素は一般に板状または棒状の金属間化合の金属炭化物(普 通はクロム炭化物)に分離し、マトリックス内で連続または不連続であるが再び 10ミクロン以上の平均粒径になる。また、その炭化物粒子は針状を呈するが。Either it has 0% elongation and is extremely brittle, or it has no toughness and cannot undergo any deformation. Appropriately When alloyed, free carbon typically forms plate-like or rod-like intermetallic metal carbides (usually chromium carbide), continuous or discontinuous within the matrix, but again The average particle size is 10 microns or more. Moreover, the carbide particles exhibit a needle shape.

いずれの形状にしても、それらは顕微鏡的に見てそれらの平均長寸法が少なくと も10ミクロンあって、応力下での割れの開始傾向を高め、しばしば装置の最終 的破壊をもたらす。Whatever their shape, they microscopically have an average long dimension of at least 10 microns, which increases the tendency for crack initiation under stress and often reduces the final cause destruction.

本発明において、この炭化物の棒状または板状の形状全球形に近い球状に変えて 所望のしん性のみならず、引張り強さを著しく高めることができることが見出さ れた。この鋳鉄炭化物の形態変化は、過去の非延性。In the present invention, the rod-like or plate-like shape of this carbide is changed to a spherical shape that is close to a completely spherical shape. It has been found that not only the desired toughness but also the tensile strength can be significantly increased. It was. This morphological change of cast iron carbides is past non-ductile.

脆性、非変形性の鋳鉄を塑性加工性、高い引張り強さを有し、優れた耐摩耗性を 保持したものに変えた。The brittle, non-deformable cast iron has plastic workability, high tensile strength, and excellent wear resistance. I changed it to what I kept.

例えば5本発明の鋳鉄は破断する前に曲がり、受ける応力レベルが破壊すること な〈従来の周知鋳鉄に比べて極めて高いことがわかった。本発明の鋳鉄はクロム と合金化することが望ましいが、Q、001%〜50%のバナジウム、チタン、 ニオブ、タンタル、ニッケル、モリブデンまたは銅の種々の添加物に依存して。For example, the cast iron of the present invention bends before breaking, and the stress level it receives causes it to break. It was found that the material was extremely high compared to the conventional well-known cast iron. The cast iron of the present invention is chromium It is desirable to alloy with Q, 001% to 50% vanadium, titanium, Depending on various additives of niobium, tantalum, nickel, molybdenum or copper.

得られる鋳鉄の性質は変わる。The properties of the resulting cast iron vary.

一般に5本発明の鋳鉄は従来の周知鋳鉄の伝統的な引張強さう5 o o Kg / cl (50,000psi )〜1k200に9/ d (60,000 p s i ) に比へて8400 K9 / Crd (120,000ps i) と高い引張強さをもつことがわかった。代表的な鋳鉄の伸びは0%であっ たが、本発明の鋳鉄は3%の伸びを有する。例えば、採鉱用の破砕機、粉砕機。In general, the cast iron of the present invention has the traditional tensile strength of conventional well-known cast irons of 5 o Kg. /cl (50,000psi) ~ 1k200 to 9/d (60,000 ps i) 8400 K9/Crd (120,000 ps i) It was found that it has a high tensile strength. The typical elongation of cast iron is 0%. However, the cast iron of the present invention has an elongation of 3%. For example, crushers and crushers for mining.

また研磨性固体分を含む流体を送るポンプのような著しい摩耗および衝撃荷重を 受ける装置においては非常に重要であるしん性を提供するので、当業者は直ちに 伸びまたは塑性変形能の増加という重要な利点を認識されるであろう。鋳鉄にお ける炭化物の形状変化を達成することは、望ましいのみならず、あたかも炭化物 の形状が球状に変わり1粒径が従来の鋳鉄の平均粒径10〜11.1ミクロンよ りかなり小さい4ミクロンに減少するのと殆んど同じ位効果がある。炭化物粒径 のこの程度の減少によって、高引張強さ値、良好な耐摩耗性および変形能の増大 に寄与するために個々の小球状粒子間の平均自由行程を最小にすることができる 。このように1本発明によって、炭化物の形状が球状に変わるのみならず、その 球状粒子がUミクロン以下の平均粒径に減少された。It also handles significant wear and shock loads, such as pumps delivering fluids containing abrasive solids. A person skilled in the art will immediately understand that the An important advantage will be realized: increased elongation or plastic deformability. in cast iron It is not only desirable to achieve a shape change in carbides that The shape of the cast iron becomes spherical, and the average grain size of conventional cast iron is 10 to 11.1 microns. This is almost as effective as reducing the surface area to a much smaller 4 microns. Carbide particle size This degree of reduction results in high tensile strength values, good wear resistance and increased deformability. The mean free path between individual small spherical particles can be minimized to contribute to . In this way, the present invention not only changes the shape of the carbide into a spherical shape, but also changes the shape of the carbide into a spherical shape. The spherical particles were reduced to an average particle size of less than U microns.

鋳鉄は合金化された鉄−炭素の組成物であることは良く知られている。一般に、 鋳鉄と鋼とを分ける境界線は固体状態における鉄中の炭素の溶解度であることが 認識されている。高レベルの炭素において、炭素は合金化されない限り遊離黒鉛 の形で存在する。典型的に、鋳鉄中に炭化物を形成させて種々の性質を改良する ために使用する合金元素はクロムである。しかしながら、モリブデン、バナジウ ム、チタン、銅、ニッケル、ニオブおよびタンタルはいろんな組合せで任意にク ロムに添加することができるし、或いはクロムに代えることができる。クロムと 併用する場合には、これらの金属元素は普通約7%までの量で存在するが、望1 しくに、バナジウムとニオブは0001%〜5%の範囲、モリブデンと銅は00 01%〜11%、ニッケルi Q、 OO1%〜7%、チタンとタンタルは00 01%〜lI%の範囲であって、クロムと併用またはクロム単独知おける全体と しては0001%〜う0%の範囲内である。クロムは7%〜29%の範囲にある ことが望ましいが、さらに望ましい範囲は25〜28%または111%〜22% または7%〜12%(こ几らのクロムの範囲は商的合金日鉄のうつの主グループ を表わす)である。炭素の含量は20%以上約ヰ5%以下が望ましく、クロム2 5%〜28%および14%〜22%の含量の鋳鉄に対しては20%〜う%の範囲 、丑たはクロム7%〜12%の場合には2%〜35%の炭素含量が望ましい。It is well known that cast iron is an alloyed iron-carbon composition. in general, The dividing line between cast iron and steel is the solubility of carbon in iron in the solid state. Recognized. At high levels of carbon, carbon becomes free graphite unless alloyed. It exists in the form of Typically, carbides are formed in cast iron to improve various properties. The alloying element used for this purpose is chromium. However, molybdenum, vanadium aluminum, titanium, copper, nickel, niobium and tantalum can be optionally combined in various combinations. It can be added to chromium or can be substituted for chromium. chrome and When used in combination, these metal elements are usually present in amounts up to about 7%, but are optional. Specifically, vanadium and niobium range from 0001% to 5%, and molybdenum and copper range from 0001% to 5%. 01% to 11%, nickel iQ, OO1% to 7%, titanium and tantalum 00 In the range of 01% to 1I%, in combination with chromium or alone, it is known that It is within the range of 0001% to 0%. Chromium ranges from 7% to 29% A more desirable range is 25% to 28% or 111% to 22%. or 7% to 12% (this range of chromium is the main group of commercial alloys in Nippon Steel). ). The carbon content is desirably 20% or more and approximately 5% or less, and chromium 2 For cast iron with a content of 5% to 28% and 14% to 22%, a range of 20% to 2% , a carbon content of 2% to 35% is desirable for 7% to 12% of chromium.

以上概説した代表的な鋳鉄組成物は、ホウ素を一般に0001%〜lI%、望ま しくは0.01%〜1%、最適には0.01%〜OL1%の範囲内で添加するこ とによって炭化物の形態を変えることができる。このホウ素添加は球状炭化物粒 子全生成さすことがわかったが、合金化された鉄−炭素組成物が共晶温度に関係 する場合にさらにはつきりする。The typical cast iron compositions outlined above generally contain boron in the range of 0001% to 1I% as desired. or 0.01% to 1%, optimally 0.01% to OL1%. The form of carbide can be changed by This boron addition produces spherical carbide grains. However, the alloyed iron-carbon composition is related to the eutectic temperature. If you do, it will be even more expensive.

純鉄の凝固点は約1558℃(2gooF)である。The freezing point of pure iron is approximately 1558°C (2gooF).

そして炭素の添加に伴ってその凝固点は低くなる。ホウ素の添加、またはホウ素 無添加で合金化すると、凝固温度は、主として存在するクロムの量に従って12 014−1516℃(2200−21t OO’p)117)間を変化するが、 特定の合金元素の選択によっても変わる。さらに望ましいことに、鉄−炭素合金 系の凝固温度は1238−1260℃(2260−2300’/;”)ノ範囲内 、または約22g0’p(12119℃)±10−20’pにする必要があるこ とがわかった。本発明に従って所定量で存在する所定の合金元素を含む特定の鋳 鉄組成物は全て、そ几らの特定の合金元素で形成される鋳鉄系の共晶温度の15 ′F以内で凝固する。As carbon is added, the freezing point becomes lower. Addition of boron, or boron When alloyed without additives, the solidification temperature depends primarily on the amount of chromium present. 014-1516℃ (2200-21t OO'p)117), It also depends on the selection of specific alloying elements. More preferably, iron-carbon alloy The solidification temperature of the system is within the range of 1238-1260℃ (2260-2300'/;'') , or approximately 22g0'p (12119°C) ± 10-20'p. I found out. Certain castings containing a given alloying element present in a given amount in accordance with the present invention All iron compositions are formed by their specific alloying elements at 15% of the eutectic temperature of the cast iron system. Solidifies within 'F.

この合金化鋳鉄組成物およびホウ素の添加で、炭化物の形態を変えて、はソ球形 である球状炭化物粒子を生成できることがわかった。This alloyed cast iron composition and the addition of boron change the morphology of the carbides, making them spherical. It was found that spherical carbide particles can be produced.

この重要な粒径○改良をするためおよび球状炭化物粒子の実質的に均一な分布を 得るために、鋳鉄組成物を平衡、疑固篇度以下少なくとも5F、望1しくけ凝固 前に8〜lo’1’;またはそれ以上冷却すると、炭化物の粒径が通常の平均粒 径10ミクロ7以上から平均粒径11 ミクロン以下に激減することがわかった 。この通合21は達成が難しいことがわかった。そして問題の熱力学的解決法に 際してのみ、鋳鉄融液のエントロピーを高めることによって系の不規則、度が増 して融液を冷却下にさせることが見出された。高エントロピー値は液体−固体系 のギブス自由エネルギー値を下げる。そして最も低い自由エネルギーの相が最も 安定である。その関係ばG= E + P V T S = H−T Sで表わ さ几゛る。This important particle size ○ improves and substantially uniform distribution of spherical carbide particles. In order to obtain, the cast iron composition is equilibrated, pseudo-solidification degree is at least 5F, preferably one is solidified. If pre-cooled 8~lo'1'; or more, the carbide grain size will change to normal average grain size. It was found that the average particle size drastically decreased from 10 microns or more to 11 microns or less. . This goal of 21 turned out to be difficult to achieve. and a thermodynamic solution to the problem. In some cases, increasing the entropy of the cast iron melt increases the disorder and degree of the system. It has been found that the melt can be brought under cooling. High entropy value is liquid-solid system lowers the Gibbs free energy value of . and the phase with the lowest free energy is the most It is stable. The relationship is expressed as G = E + P V T S = H - T S It's so hot.

式中のGはギブス自由エネルギー、Tは給体温度そして;3はエントロピーであ る。さらに熱力学的関係式のH−T!3→−VPは、固体でばV P = Oで あるからH−’r Sとなる(式中のSはエツトロビー、Hは融解熱。In the formula, G is the Gibbs free energy, T is the feed temperature, and 3 is the entropy. Ru. Furthermore, the thermodynamic relation H-T! 3→-VP is VP = O if it is a solid. Therefore, H-'r S (in the formula, S is etrobi and H is heat of fusion.

ぞしてf、・」、絶佳凝固点である)。エントロピーの増加(は、系J)融ゼ執 が一定の場合:ては4’?固点O減少をもたらす。Therefore, f...'' is the perfect freezing point). Increase in entropy (is system J) If is constant: Is it 4'? This results in a decrease in solid point O.

ホウ素は鋳鉄組成物に添付されるとエントロピーを増して、系内の不規it高め て必要条件を冷却状態下にさせることがわかった。生じる正確な変化は完全に理 解できない、そして前述の説明は理論的なものであることを理解されたい。When boron is added to a cast iron composition, it increases entropy and increases the irregularity within the system. It has been found that the necessary conditions are under cooling conditions. The exact changes that occur are completely understandable. It should be understood that the above explanation is theoretical.

本発明の合金鋳鉄組成物が平衡凝固温度以下、平衡疑固篇度の少なくとも5FC 低い)過冷却範囲に冷却されると、凝固が生じないとさ、それは過冷却が生じな いときよりも瞬間的である。このように、過冷却は通常生じている長い時間7v u晶または粒子の成長を回避する。むしろ、その凝固は粒子が成長する前に生じ る。従って、微1組な炭化物粒子は、従来の鋳鉄において生じるような棒状まf C,は板状に集合する代りに本発明の合金鋳鉄組成物における急速凝固では集合 する機会をもたず、炭化物の分布における不均一性をもたらすへくこれらの粒子 が集合して板状または棒状になる機会がない。むしろ、炭化物の分布の均一性は 合金鋳鉄組成物の過冷却段階中でさえも融液相において本来もっているものであ るので、炭化物分布の均一性が凝固中に維持される。平衡凝固温度以下に過冷却 された融液の疑固ば、本発明の鋳鉄組成物の強さ、じん性、I−・よび耐摩耗性 に71する基本条件であるところこの〜径のかなりの減少および鋳鉄マドl)ノ クス全体If(渡って炭化物のより均一な分肴Jをも化りす。The alloy cast iron composition of the present invention has at least 5FC below the equilibrium solidification temperature and an equilibrium quasi-solidification degree. When cooled to the supercooling range (low), no solidification occurs, which means no supercooling occurs. It's more instantaneous than it is now. Thus, supercooling usually occurs for a long time 7v Avoid crystal or particle growth. Rather, the solidification occurs before the particles grow. Ru. Therefore, a set of fine carbide particles can be formed into rod-like or C, instead of agglomerating into a plate shape, it aggregates in the rapid solidification of the alloy cast iron composition of the present invention. These particles do not have the opportunity to There is no chance for them to aggregate into a plate or rod shape. Rather, the uniformity of the carbide distribution is It is inherent in the melt phase even during the supercooling stage of alloyed cast iron compositions. As a result, the uniformity of carbide distribution is maintained during solidification. Supercooled below the equilibrium solidification temperature The strength, toughness, I- and abrasion resistance of the cast iron composition of the present invention This is the basic condition for 71. This is a considerable reduction in the diameter and cast iron mud l) no. If the entire rice cake is covered with carbide, it also creates a more uniform serving of carbide.

特定例 272%クロム、2.011%炭素を含む典型的な鋳鉄組成物に約12′)9℃ (2263F)の共晶温度の上であるJ 2 ++ 9℃(2280F )の範 囲で凝固した合金組成物である。017%ホウ素の添加で、その合金月乎衡凝固 l晶度より5F低い温度、12116℃(2275F)の少し下の温度に過冷却 することができる。この〆1□A度の平衡凝固を温度との間で融府は過冷却され て液体ツ)゛ま−4−1ある。さらに冷却すると、はとんど球形で平均rや径が 4ミクロ7以下である球状の炭化物が生成する1、得ら′t′l−た鋳鉄の引張 強さば8ヰOOKり/ m (120,000・Gil、+・ のイ)負性にあ って、約5%の坤びを有する。そのLつな白鋳鉄は全く耐摩耗性であると共に、 高摩耗、高Lj:力作用下において特に有用にする優n fc引張強さおよびじ ん性を有する。specific example A typical cast iron composition containing 272% chromium and 2.011% carbon has a temperature of approximately 12') 9°C. J2++ range of 9℃ (2280F) which is above the eutectic temperature of (2263F) It is an alloy composition that solidifies in a surrounding area. With the addition of 0.17% boron, the alloy solidifies evenly. Supercooled to a temperature slightly below 12116°C (2275F), 5F below crystallinity. can do. Between this equilibrium solidification of 1□A degree and the temperature, the melt is supercooled. There is a liquid (4-1). When further cooled, it becomes mostly spherical with an average r and diameter. 1. The tensile strength of the obtained cast iron produces spherical carbides with a size of 4 microns or less. Strength 8ヰOOKri/m (120,000・Gil,+・ a) in negative Therefore, it has a weight of about 5%. Its L-shaped white cast iron is completely wear-resistant and High wear, high Lj: excellent tensile strength and It has the property of

同様の結果が、1255℃(2287F)なるはソ共品l’M iザに平衡凝固 llけ■するうう2%炭素、912%りo、t、、5.1!3%ニッケルおよび 0.17%ホウ素の1g成物で得られる。次に、12119℃(2280:p) への過冷却、は凝固が生じる前に起きる。Similar results were obtained for equilibrium solidification at 1255°C (2287F). 2% carbon, 912% phosphorus, t, 5.1!3% nickel and Obtained with 1 g composition of 0.17% boron. Next, 12119℃ (2280:p) Supercooling to occurs before solidification occurs.

本発明の目的は前述のように本発明によってaたさf″1.たが1本発明は次の 請求の範囲によってのみ限定されるものと考えられる。As mentioned above, the purpose of the present invention is to accomplish the following: It is believed to be limited only by the scope of the claims.

Claims (1)

【特許請求の範囲】 14 主成分の元素鉄と、0.001%〜50%のバナジウム、チタン、ニオブ 、タンタル、モリブデン、ニッケル、銅、またはクロム、またはそれらの混合物 。 および20%〜11.5%の炭素なる合金元素の1つ以上からなる合金鋳鉄組成 物であり、該組成物が前記所定元素で形成される鋳鉄の共晶温度の’15’F以 内の凝固点を有し:さらにQ、 001%〜40%のホウ素を含み、そ几によっ て所望の耐摩耗性、じん性2よび引張強−Jk有すること全特徴とする合金鋳鉄 組成物。 2 @記合金が120Lt℃(2200F)と、1516℃(21I00F)の 間の凝固点を有することを特徴とする請求の範囲第1項に記載の組成物。 5 前記バナジウム、チタン、ニオブまたはタンタルが7%までの量で存在する ことを特徴とする請求の範囲第1項に記載の組成物。 4 前記クロムが01%〜50%の量で存在すること全特徴とする請求の範囲第 1項に記載の組成物。 57%までのニッケル、4%捷でのモリブデンまたは4%までの銅またはそれら の混合物が添加さ几ることを特徴とする請求の範囲第1項に記載の組成物。 6 @記炭素が球状炭化物の形で少なくとも部分的に存在することを特徴とする 請求の範囲第1項5第2項、第う項、第4項または第5項に記載の組成物。 7 前記合金の凝固点が約1238℃(2260F)〜1260℃(2500’ p)であることを特徴とする請求の範囲第2項に記載の組成物。 8 前記合金の凝固点が約12119℃(22gO℃)であることを特徴とする 請求の範囲第7項に記載の組成物。 9 前記炭素が球状炭化物の形で少なくとも部分的に存在し、前記バナジウム、 チタン、ニオブ、ニッケル、銅、モリブデンまたはタンタルが7%までの量で存 在し、前記合金の凝固点が約1258℃(2260F)−1260℃(2500 F) ?あルコとを特徴とする請求の範囲第1項に記載の組成物。 10 前記炭素が球状炭化物の形で少なくとも部分的に存在し、前記合金が12 011℃(2200:p)と1516℃(21100F)の間の凝固点を有し、 前記バナジウム、チタン、ニオブ、ニッケル、銅、モリブデンまたはタンタルが 7%までの量で存在することを特徴とする請求の範囲第1項に記載の組成物。 珪 前記炭素が球状炭化物の形で少なくとも部分的に存在し、前記クロムが01 %〜50%の量で存在し。 前記合金の凝固点が約1238℃(2260’p)〜1260℃(2500F) であること全特徴とする請求の範囲第1項に記載の組成物。 55%であり、前記ホウ素がO,O1%〜10%であることを特徴とする請求の 範囲第1項に記載の組成物。 1う 前記クロムが25%〜28%であり、前記炭素が20%〜30%であり、 前記ホウ素が01%〜ol1%であることを特徴とする請求の範囲第1項に記載 の組成物。 1.11 前記炭素が、l1ミクロン以下の平均粒径を有する球状炭化物の形で 少なくとも部分的に存在すること全特徴とする請求の範囲第1項または第6項に 記載の組成物。 1.5. Q、 OO1%〜30%のバナジウム、チタン、ニオブ、モリブデン 、ニッケル5銅、タンタルまたはクロムまたはそれらの混合物と、20%〜lI 5%の炭素からなる合金鋳鉄にQ、 OO]%〜40%のホウ素を添加して溶融 鋳鉄組成物全生成し、該溶融鋳鉄組成物を平衡凝固温度以下の過冷却温度に冷却 し7該溶融鋳鉄組成物全凝固させて従来の鋳鉄炭化物粒子より小さい平均粒径を 有する球状炭化物を生成させることからなることを特徴とする鋳鉄に球状炭化物 を形成さす方法。 托 前記合金が12011℃(2200’p)と1316℃(21I00F)の 間の凝固点を有することを特徴とする請求の範囲第15項に記載の方法。 17 前記バナジウム、チタン、ニオブ、タンタル、モリブデン、銅またはニッ ケルが7%までの量で存在することを特徴とする請求の範囲第15項に記載の方 法。 1g 前記クロムが01%〜50%の量で存在することを特徴とする請求の範囲 第15項に記載の方法。 19、 7%までのニッケル、4%までのモリブデン、または4%までの銅また はそれらの混合物を添加することを特徴とする請求の範囲第15項に記載の方法 。 20 前記溶融鋳鉄組成物を平衡凝固温度より少なくとも5F低低吟過冷却度に 冷却することを特徴とする請求の範囲第15項に記載の方法。 21、前記溶融鋳鉄組成物を過冷却温度へ冷却し続けることによって該溶融鋳鉄 組成物を凝固させて、約4ミクロン以下の平均粒径會有する球状炭化物?形成さ すことを特徴とする請求の範囲第15項に記載の方法。 22 前記溶融鋳鉄組成物を平衡凝固温度より少なくとも5F低い過冷却温度に 冷却し、前記溶融鋳鉄組成物を過冷却温度へ冷却し続けることによって該溶融鋳 鉄組成物を凝固させて約4ミクロン以下の平均粒径を有する球状炭化物全形成き すことを特徴とする請求の範囲第15項に記載の方法。 23 前記平衡凝固点が12011℃(2200F)〜1516℃(2+10o F)であることを特徴とする請求の範囲第20項、第21項または第22項に記 載の方法。 211 前記平衡凝固点が1258℃(2260′F′)〜1260℃(2so oF)であることを特徴とする請求の範囲第20項、第21項または第22項に 記載の方法。 25 炭素と、鉄と、バナジウム、チタン、モリブデン。 ニッケル、′:同、タンタルまたはクロムまたはそれらの混合物との溶融鋳鉄混 合体のエントロピー全増大させて溶融鋳−決組成物?生成させ、該溶融鋳鉄組成 物を該溶融鋳鉄tl成物の平衡凝固温度以下の温度に過冷却し、従来の洟鉄炭化 物の平均粒径より小さい平均粒径全有する球状炭化物を生成させながら前記溶融 鋳鉄組成物を凝1□、1させることからなることを特徴とする。鋳鉄のしん1. 耐摩耗性および引張強さを改良するため溶融鋳鉄を過冷却する方法。 26 前記射融鋳鉄組成物ケー1衡凝固温度より少なくとも約5F低い過冷却温 度に冷却することを特徴とする請求の範囲第25項に記載の方法。 27 前記溶融鋳鉄組成物を過c′1却扁度へ冷却し続けることによって該溶融 鋳鉄組成物を凝固させて約11 ミ!ノロン(以下の平均粒径を有する球状炭化 物を形成さす二とか特徴とする請求の範囲第25項て記載の方法。 28 前;4己溶省斜鉄l111戎吻を平衡凝固温度より少なくとも約5′F低 い〕、%玲却1普度に、′テ却り、該G融鋳法組成物を過冷却高度へ冷却し続け ることによって該溶融鋳鉄組成物を凝固させて約4ミクロン以下の平均粒径全有 する球状炭化物を形成さすことを特徴とする請求の範囲第25項に記載の方法。 29.0.001%〜40%のホウ素を添加することによって、前記鋳鉄混合体 のエントロピーを増大させること全特徴とする請求の範囲第25項、第26項。 第27項または第28項に記載の方法。 30 前記ホウ素が01%〜Oヰ%の量で存在することを特徴とする請求の範囲 第29項の方法。 5L 前記ホウ素が01%〜O1I%の量で存在することを特徴とする請求の範 囲第1項または第15項に記載の方法。[Claims] 14 Main component element iron and 0.001% to 50% vanadium, titanium, niobium , tantalum, molybdenum, nickel, copper, or chromium, or mixtures thereof . Alloy cast iron composition consisting of one or more of the alloying elements: and 20% to 11.5% carbon. and the composition has a temperature of 15'F or higher than the eutectic temperature of the cast iron formed of the predetermined elements. It has a freezing point of: Alloy cast iron characterized by having the desired wear resistance, toughness 2 and tensile strength -Jk. Composition. 2 @ The alloy mentioned above has temperatures of 120Lt℃ (2200F) and 1516℃ (21I00F). A composition according to claim 1, characterized in that it has a freezing point between. 5. said vanadium, titanium, niobium or tantalum is present in an amount up to 7% The composition according to claim 1, characterized in that: 4. Claim No. 4 characterized in that said chromium is present in an amount of 0.1% to 50%. Composition according to item 1. Up to 57% nickel, 4% molybdenum or up to 4% copper or the like A composition according to claim 1, characterized in that a mixture of: 6. Characterized by the carbon at least partially existing in the form of spherical carbides The composition according to claim 1, 5, 2, 3, 4, or 5. 7 The solidification point of the alloy is approximately 1238°C (2260F) to 1260°C (2500' The composition according to claim 2, characterized in that p). 8. The alloy has a freezing point of about 12119°C (22gO°C). A composition according to claim 7. 9 said carbon is at least partially present in the form of spherical carbides, said vanadium; Titanium, niobium, nickel, copper, molybdenum or tantalum present in amounts up to 7% The freezing point of the alloy is approximately 1258°C (2260F) - 1260°C (2500F). F)? The composition according to claim 1, characterized by: 10 said carbon is present at least partially in the form of spheroidal carbides and said alloy is 12 having a freezing point between 011°C (2200:p) and 1516°C (21100F); The vanadium, titanium, niobium, nickel, copper, molybdenum or tantalum Composition according to claim 1, characterized in that it is present in an amount of up to 7%. silicon, the carbon is present at least partially in the form of spherical carbides, and the chromium is 01 % to 50%. The solidification point of the alloy is about 1238°C (2260'p) to 1260°C (2500F) A composition according to claim 1, characterized in that: 55%, and the boron is O, 1% to 10%. A composition according to scope 1. 1) The chromium is 25% to 28%, and the carbon is 20% to 30%, Claim 1, characterized in that the boron is 01% to 1%. Composition of. 1.11 The carbon is in the form of spherical carbides having an average particle size of 11 microns or less Claims 1 or 6 characterized in that at least in part Compositions as described. 1.5. Q, OO1%~30% vanadium, titanium, niobium, molybdenum , nickel 5 copper, tantalum or chromium or mixtures thereof and 20% to lI Q, OO]%~40% boron is added to alloy cast iron consisting of 5% carbon and melted. A cast iron composition is completely produced, and the molten cast iron composition is cooled to a supercooling temperature below the equilibrium solidification temperature. 7) The molten cast iron composition is completely solidified to have an average particle size smaller than that of conventional cast iron carbide particles. Spheroidal carbide in cast iron characterized by producing spheroidal carbide with How to form. 〘 The alloy has a temperature of 12011℃ (2200'p) 16. A method according to claim 15, characterized in that it has a freezing point between. 17 The vanadium, titanium, niobium, tantalum, molybdenum, copper or nickel The method according to claim 15, characterized in that Kel is present in an amount of up to 7%. Law. 1g Claim characterized in that said chromium is present in an amount of 01% to 50% The method according to paragraph 15. 19. up to 7% nickel, up to 4% molybdenum, or up to 4% copper or The method according to claim 15, characterized in that: is added a mixture thereof. . 20 The molten cast iron composition is brought to a degree of supercooling at least 5F below the equilibrium solidification temperature. 16. A method according to claim 15, characterized in that it is cooled. 21. By continuing to cool the molten cast iron composition to a supercooling temperature, The composition solidifies into a spherical carbide having an average particle size of about 4 microns or less? formed 16. The method according to claim 15, characterized in that: 22. Bringing the molten cast iron composition to a supercooling temperature that is at least 5 F below the equilibrium solidification temperature. cooling and continuing to cool the molten cast iron composition to a supercooling temperature. The iron composition is solidified to form entirely spherical carbides having an average particle size of about 4 microns or less. 16. The method according to claim 15, characterized in that: 23 The equilibrium freezing point is between 12011℃ (2200F) and 1516℃ (2+10oF) F) as set forth in claim 20, 21 or 22, characterized in that: How to put it on. 211 The equilibrium freezing point is between 1258°C (2260'F') and 1260°C (2so oF) according to claim 20, 21 or 22, Method described. 25 Carbon, iron, vanadium, titanium, and molybdenum. Nickel, ': molten cast iron mixed with tantalum or chromium or mixtures thereof. Does melt casting composition increase the total entropy of coalescence? Producing the molten cast iron composition The material is supercooled to a temperature below the equilibrium solidification temperature of the molten cast iron TL product, and then the conventional cast iron carbonization process is performed. The melting process produces spherical carbides having a total average particle size smaller than the average particle size of the material. It is characterized in that it consists of hardening a cast iron composition by 1□. Cast iron shin 1. A method of supercooling molten cast iron to improve wear resistance and tensile strength. 26. A supercooling temperature that is at least about 5 F lower than the equilibrium solidification temperature of the injection cast iron composition. 26. A method according to claim 25, characterized in that the method is cooled at a temperature of 100%. 27 By continuing to cool the molten cast iron composition to a degree of It takes about 11 minutes to solidify the cast iron composition! Noron (spheroidal carbonized with average particle size of 26. The method of claim 25, further comprising forming an object. 28 Before; 4 self-melting-saving oblique iron l111 at least about 5'F lower than the equilibrium solidification temperature. 〕, % cooling 1 degree, 〇〇, the G melt casting method composition continues to be cooled to a supercooling degree. The molten cast iron composition is solidified by solidifying the molten cast iron composition to have a total average particle size of about 4 microns or less. 26. A method according to claim 25, characterized in that a spherical carbide is formed. 29. The said cast iron mixture by adding 0.001% to 40% boron. Claims 25 and 26, all characterized by increasing the entropy of. The method according to paragraph 27 or paragraph 28. 30 Claim characterized in that the boron is present in an amount of 01% to 0%. The method of paragraph 29. 5L Claim characterized in that said boron is present in an amount of 01% to 01I% The method according to item 1 or item 15.
JP50253882A 1982-07-19 1982-07-19 Wear-resistant white cast iron Pending JPS59501551A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1982/000976 WO1984000385A1 (en) 1982-07-19 1982-07-19 Abrasive resistant white cast iron

Publications (1)

Publication Number Publication Date
JPS59501551A true JPS59501551A (en) 1984-08-30

Family

ID=22168102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50253882A Pending JPS59501551A (en) 1982-07-19 1982-07-19 Wear-resistant white cast iron

Country Status (8)

Country Link
EP (1) EP0113715A4 (en)
JP (1) JPS59501551A (en)
AU (1) AU557815B2 (en)
CH (2) CH660753A5 (en)
DE (1) DE3390167T1 (en)
GB (1) GB2134542B (en)
NL (1) NL8220290A (en)
WO (1) WO1984000385A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3390548T1 (en) * 1983-10-24 1985-11-28 GIW Industries, Inc., Grovetown, Ga. Abrasion-resistant white cast iron
GB8508622D0 (en) * 1985-04-02 1985-05-09 Nl Petroleum Prod Rotary drill bits
DE19901170B4 (en) * 1998-10-21 2006-11-23 Reiloy Metall Gmbh Use of an iron base age alloy
CA2861581C (en) 2011-12-30 2021-05-04 Scoperta, Inc. Coating compositions
US20150275341A1 (en) 2012-10-11 2015-10-01 Scoperta, Inc. Non-magnetic metal alloy compositions and applications
WO2015081209A1 (en) 2013-11-26 2015-06-04 Scoperta, Inc. Corrosion resistant hardfacing alloy
US20150284829A1 (en) * 2014-04-07 2015-10-08 Scoperta, Inc. Fine-grained high carbide cast iron alloys
CN106661702B (en) 2014-06-09 2019-06-04 斯克皮尔塔公司 Cracking resistance hard-facing alloys
CA2956382A1 (en) 2014-07-24 2016-01-28 Scoperta, Inc. Impact resistant hardfacing and alloys and methods for making the same
MY190226A (en) 2014-07-24 2022-04-06 Oerlikon Metco Us Inc Hardfacing alloys resistant to hot tearing and cracking
JP7002169B2 (en) 2014-12-16 2022-01-20 エリコン メテコ(ユーエス)インコーポレイテッド Multiple hard phase-containing iron alloys with toughness and wear resistance
AU2016317860B2 (en) 2015-09-04 2021-09-30 Scoperta, Inc. Chromium free and low-chromium wear resistant alloys
CA2996175C (en) 2015-09-08 2022-04-05 Scoperta, Inc. Non-magnetic, strong carbide forming alloys for powder manufacture
CA3003048C (en) 2015-11-10 2023-01-03 Scoperta, Inc. Oxidation controlled twin wire arc spray materials
ES2898832T3 (en) 2016-03-22 2022-03-09 Oerlikon Metco Us Inc Fully readable thermal spray coating
US11939646B2 (en) 2018-10-26 2024-03-26 Oerlikon Metco (Us) Inc. Corrosion and wear resistant nickel based alloys

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49106425A (en) * 1973-02-15 1974-10-09
JPS53140218A (en) * 1977-05-13 1978-12-07 Mitsubishi Heavy Ind Ltd Wear resistant white pig iron
JPS5693859A (en) * 1979-12-28 1981-07-29 Komatsu Ltd Ball alloy for grinding
JPS5751241A (en) * 1980-09-12 1982-03-26 Komatsu Ltd Ball alloy for pulverization

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH189692A (en) * 1935-05-17 1937-03-15 Ind Research Lab Ltd Very hard ferrous alloy.
FR1089531A (en) * 1953-07-03 1955-03-18 Cie De Pont A Mousson Cast iron resistant to chemical agents and, in particular, fumes
SU121467A2 (en) * 1958-06-05 1958-11-30 Б.М. Конторов Wear resistant alloy
US2978320A (en) * 1958-12-29 1961-04-04 Gen Motors Corp Method for producing a high strength ferrous metal
US3012880A (en) * 1960-11-28 1961-12-12 Union Carbide Corp Iron-base alloy
NL6516411A (en) * 1964-12-18 1966-06-20
FR1600084A (en) * 1968-12-30 1970-07-20
DE1946623B1 (en) * 1969-09-15 1971-06-24 Gontermann Peipers Gmbh USE OF A HIGH CHROME ALLOY IRON ALLOY AS A MATERIAL FOR ROLLING MILL ROLLS
US3658515A (en) * 1970-06-22 1972-04-25 Xaloy Inc Hard wear-resistant ferrous alloy
SU618444A1 (en) * 1976-04-12 1978-08-05 Предприятие П/Я М-5356 Iron
FR2405749A1 (en) * 1977-10-14 1979-05-11 Thome Cromback Acieries NEW FORGED CRUSHING BODIES, ESPECIALLY CRUSHING BALLS, AND THEIR MANUFACTURING PROCESS
SU729273A1 (en) * 1978-05-10 1980-04-25 Институт Проблем Литья Ан Украинской Сср Cast iron

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49106425A (en) * 1973-02-15 1974-10-09
JPS53140218A (en) * 1977-05-13 1978-12-07 Mitsubishi Heavy Ind Ltd Wear resistant white pig iron
JPS5693859A (en) * 1979-12-28 1981-07-29 Komatsu Ltd Ball alloy for grinding
JPS5751241A (en) * 1980-09-12 1982-03-26 Komatsu Ltd Ball alloy for pulverization

Also Published As

Publication number Publication date
WO1984000385A1 (en) 1984-02-02
NL8220290A (en) 1984-06-01
GB2134542A (en) 1984-08-15
AU8824982A (en) 1984-02-08
AU557815B2 (en) 1987-01-08
CH660753A5 (en) 1987-06-15
GB2134542B (en) 1987-06-03
EP0113715A4 (en) 1985-04-24
GB8406512D0 (en) 1984-04-18
EP0113715A1 (en) 1984-07-25
CH661286A5 (en) 1987-07-15
DE3390167T1 (en) 1984-11-29

Similar Documents

Publication Publication Date Title
JPS59501551A (en) Wear-resistant white cast iron
US2485760A (en) Cast ferrous alloy
AU698777B2 (en) Microstructurally refined multiphase castings
CN101787496B (en) Wear resistant cast steel and preparation method thereof
CN104164609B (en) A kind of hammer mill composite hammer
JP3257649B2 (en) High toughness high speed steel member and method of manufacturing the same
EP0147422A1 (en) Tough, wear- and abrasion-resistant, high chromium hypereutectic white iron
JP4548263B2 (en) Manufacturing method of cast iron products with excellent wear resistance
US4638847A (en) Method of forming abrasive resistant white cast iron
CN101954378B (en) Working roll for rolling medium-thickness plate with high grade and high strength and manufacture method thereof
CN1102669C (en) Grinding ball of martensite/bainite compounded cast iron and its production technology
CN101121993A (en) Method for producing high abrasion-proof austenitic manganese steel hammer
US2771358A (en) Machine elements for crushers
US2215740A (en) Alloy cast iron
JPS60501958A (en) Wear-resistant white cast iron
Colin-García et al. Influence of nickel addition and casting modulus on the properties of hypo-eutectic ductile cast iron
JPS59140318A (en) Manufacture of ferrite base ductile cast iron parts
Hathaway et al. Ferrous composites: a review
Fesomade et al. The effect of palm kernel shell ash on the mechanical and wear properties of white cast iron
US4547221A (en) Abrasion-resistant refrigeration-hardenable ferrous alloy
CA1237921A (en) Abrasive resistant white cast iron
Saka et al. CHILLING EFFECT OF IRON POWDER ON THE MICROSTRUCTURE AND HARDNESS PROPERTY OF STRONGLY HYPEREUTECTIC GREY CAST IRON
US6332938B1 (en) Process for producing Fe-based member having high young&#39;s modulus and high toughness
AU2263483A (en) Abrasive resistant white cast iron
Seidu et al. CHILLING TENDENCY OF IRON POWDER TREATED GREY CAST IRON