JPS5949482B2 - Steam generator operation control device - Google Patents

Steam generator operation control device

Info

Publication number
JPS5949482B2
JPS5949482B2 JP50085758A JP8575875A JPS5949482B2 JP S5949482 B2 JPS5949482 B2 JP S5949482B2 JP 50085758 A JP50085758 A JP 50085758A JP 8575875 A JP8575875 A JP 8575875A JP S5949482 B2 JPS5949482 B2 JP S5949482B2
Authority
JP
Japan
Prior art keywords
steam
load
steam generator
flow rate
steam generators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50085758A
Other languages
Japanese (ja)
Other versions
JPS5211303A (en
Inventor
昭 鈴置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP50085758A priority Critical patent/JPS5949482B2/en
Publication of JPS5211303A publication Critical patent/JPS5211303A/en
Publication of JPS5949482B2 publication Critical patent/JPS5949482B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Control Of Turbines (AREA)

Description

【発明の詳細な説明】 本発明は、主として原子炉などの冷却系に設けられる蒸
気発生装置の運転制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an operation control device for a steam generator mainly installed in a cooling system of a nuclear reactor or the like.

原子炉の冷却系は高度の信頼性が要求されるため、一般
に並列に設けられた複数個の冷却系により構成されてい
る、炉心で発生した熱は前記各冷却系を循環する冷却材
に伝達され、各冷却系の蒸気発生器により高圧高温蒸気
のエネルギーに変換される。
Because a nuclear reactor cooling system requires a high degree of reliability, it generally consists of multiple cooling systems installed in parallel.The heat generated in the reactor core is transferred to the coolant circulating in each of the cooling systems. This is converted into high-pressure, high-temperature steam energy by the steam generators in each cooling system.

この場合、各冷却系の蒸気発生器は水、蒸気系の流れに
対して主給水管および主蒸気管を共有する並列流路を形
成するため、流動不安定現象を発生する可能性がある。
In this case, since the steam generators of each cooling system form a parallel flow path sharing the main water supply pipe and the main steam pipe for the flow of water and steam, an unstable flow phenomenon may occur.

このような流動不安定現象としては、各蒸気発生器に供
給される給水流量にきわめて大きなアンバランスを生ず
るような逸走形不安定および前記給水流量に周期的な振
動が現われるような脈動形不安定がある。
Such flow instability phenomena include escape-type instability, which causes an extremely large imbalance in the feed water flow rate supplied to each steam generator, and pulsation-type instability, where periodic vibrations appear in the feed water flow rate. There is.

蒸気発生器に前記不安定現象が発生すれば、原子炉の冷
却系全体に熱衝撃を与えると同時に、冷却系の調節制御
系に大きなかく乱を与えるので、冷却系の破損事故およ
び制御系の誤動作事故を発生する恐れがある。
If the above-mentioned instability phenomenon occurs in the steam generator, it will cause a thermal shock to the entire cooling system of the reactor and at the same time cause a large disturbance to the regulation control system of the cooling system, resulting in damage to the cooling system and malfunction of the control system. There is a risk of an accident occurring.

前記流動不安定現象を防止するため、火力ボイラおよび
原子炉蒸気発生器では給水入口部に固定絞りを設ける方
式が採用されている。
In order to prevent the flow instability phenomenon described above, thermal power boilers and nuclear reactor steam generators employ a system in which a fixed throttle is provided at the feed water inlet.

しかしこの方式では本来、最も安定性の劣る最低負荷運
転条件において固定絞りの度合を決定することが必要で
あるから、最高負荷運転条件においてはきわめて大きな
付加的圧力損失を招くことになるらこのこのため給水ポ
ンプの容量増加および駆動力増加、給水配管およびこれ
に付随した各種補機の耐圧増加などが要求される。
However, since this method originally requires determining the degree of fixed throttling at the lowest load operating condition, which is the least stable, this method would result in an extremely large additional pressure loss at the highest load operating condition. Therefore, it is necessary to increase the capacity and driving force of the water supply pump, and to increase the pressure resistance of the water supply piping and various auxiliary equipment associated with it.

第1図は発電出力100万KWのナトリウム冷却高速増
殖炉における蒸気発生器の流動安定性に及ぼす固定絞り
の効果を定量的に示したもので、図中のハツチングを施
した実線Aは安定な運転を行うことができる最大流量比
(安定限界流量比)を示す。
Figure 1 quantitatively shows the effect of a fixed throttle on the flow stability of a steam generator in a sodium-cooled fast breeder reactor with a power output of 1 million kW. Indicates the maximum flow rate ratio (stability limit flow rate ratio) that allows operation.

パラメータ△P100は100係熱負荷時の固定絞りに
よる付加的圧力損失の大きさを意味しており、圧力損失
の大きい固定絞りを設けるほど安定限界流量比は増大し
、安定領域が拡大する傾向にあることは明白である。
The parameter △P100 means the amount of additional pressure loss due to the fixed throttle at a thermal coefficient of 100%, and the stability limit flow rate ratio increases and the stable region tends to expand as a fixed throttle with a larger pressure loss is installed. One thing is clear.

一方、曲線Bは蒸気発生器の運転中に生ずるナトリウム
と水の最大流量比(安定運転流量比)で、この最大運転
流量比が安定限界流量比を越える熱負荷領域で流動不安
定現象が発生する可能性がある。
On the other hand, curve B is the maximum flow rate ratio (stable operating flow rate ratio) of sodium and water that occurs during operation of the steam generator, and an unstable flow phenomenon occurs in the heat load region where this maximum operating flow rate ratio exceeds the stable limit flow rate ratio. there's a possibility that.

したがって例えば最低熱負荷20係まで安定な運転を行
うことができるためには、100%流量時に約14 k
g/crtt2の圧力損失を発生する固定絞りを設ける
ことが必要である。
Therefore, for example, in order to be able to perform stable operation up to a minimum heat load of 20, approximately 14 k at 100% flow rate is required.
It is necessary to provide a fixed throttle which generates a pressure loss of g/crtt2.

この付加的圧力損失を補償するためのポンプ駆動々力の
増加は発電出力の約0.2 %に相当し、無駄なエネル
ギーが消費される。
The increase in pump driving force to compensate for this additional pressure loss is equivalent to about 0.2% of the power generation output, and wasteful energy is consumed.

蒸気発生器の運転中に生じる流動不安定現象を防止する
ために、負荷の増加とともに自動的に流路抵抗が軽減さ
れて負荷低下とともに絞り効果が現われる特殊絞り弁、
すなわちスタビライザを用いることが知られている。
In order to prevent unstable flow phenomena that occur during steam generator operation, a special throttle valve is used that automatically reduces flow path resistance as the load increases and creates a throttling effect as the load decreases.
In other words, it is known to use a stabilizer.

しかし、並列に配置された個々の蒸気発生器内に生じる
流動不安定現象は、上記特殊絞り弁を単に用いただけで
は完全に解消しない。
However, the flow instability phenomenon that occurs in the individual steam generators arranged in parallel cannot be completely eliminated simply by using the above-mentioned special throttle valve.

本発明の目的は、上記した事項を考慮し、負荷変動によ
って並列に配置された複数の蒸気発生器内に生じる流動
不安定現象を抑制できる蒸気発生装置の運転制御装置を
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an operation control device for a steam generator that can suppress flow instability phenomenon that occurs in a plurality of steam generators arranged in parallel due to load fluctuations, taking the above-mentioned matters into consideration.

本発明の特徴は、並列に配置された2つの蒸気発生器に
対応して設けられた各々の蒸気温度検出手段の出力信号
に基づいて両者の蒸気発生器にて得られる蒸気の温度差
を解消するように一方の蒸気発生器の被加熱媒体流量調
節手段を制御し、各各の蒸気発生器に被加熱媒体を導く
各々の分配管に設けられた各可変絞り手段の開度を、負
荷信号に基づいて各々の蒸気発生器内の流動不安定現象
を抑制するように負荷増加時には太きくし、また負荷減
少時には小さくすることにある。
The feature of the present invention is to eliminate the temperature difference between the steam obtained by both steam generators based on the output signal of each steam temperature detection means provided corresponding to the two steam generators arranged in parallel. The heated medium flow rate adjusting means of one of the steam generators is controlled so that the opening degree of each variable restricting means provided in each distribution pipe that guides the heated medium to each steam generator is controlled based on the load signal. Based on this, the diameter is increased when the load increases, and decreased when the load decreases, in order to suppress the unstable flow phenomenon within each steam generator.

以下本発明の好適な一実施例すなわちナトリウム冷却高
速増殖炉に使用される蒸気発生装置を第2図〜第5図に
ついて説明する。
A preferred embodiment of the present invention, ie, a steam generator used in a sodium-cooled fast breeder reactor, will be described below with reference to FIGS. 2 to 5.

第2図において23は過熱器1および蒸発器6からなる
蒸気発生器で、液体ナトリウムを熱担体とする2次冷却
系ループに複数個(図では3個)並列に設けられている
In FIG. 2, reference numeral 23 denotes a steam generator consisting of a superheater 1 and an evaporator 6, and a plurality of steam generators (three in the figure) are provided in parallel in a secondary cooling system loop using liquid sodium as a heat carrier.

これらの蒸気発生器23を介して2次冷却系の熱は被熱
媒体である水に伝えられる。
The heat of the secondary cooling system is transferred to water, which is a medium to be heated, through these steam generators 23.

水は高温高圧蒸気に変換され、蒸気タービンに送られる
Water is converted to high temperature, high pressure steam and sent to a steam turbine.

過熱器1はシェル2、伝熱管3、シェル2にナトリウム
を供給する2次冷却系に接続された管4、シェル2内の
ナトリウムを排出する管5および伝熱管3より排出され
る過熱蒸気を主蒸気管15に導く合流管14から構成さ
れている。
The superheater 1 includes a shell 2, a heat exchanger tube 3, a tube 4 connected to a secondary cooling system that supplies sodium to the shell 2, a tube 5 that discharges sodium from the shell 2, and a superheated steam discharged from the heat exchanger tube 3. It consists of a confluence pipe 14 leading to a main steam pipe 15.

蒸発器6はシェルフ、伝熱管8、シェルフ内のナトリウ
ムを排出する管9、伝熱管8より排出される蒸気をシェ
ル2内の伝熱管3に導く蒸気管22およびポンプ10に
より加圧され主給水管12を経て供給される水を分岐し
て伝熱管8に導く分岐管13から構成され、この分岐管
13には流量調整弁16および可変絞り弁17が設けら
れている。
The evaporator 6 is pressurized by a shelf, a heat exchanger tube 8, a tube 9 for discharging sodium in the shelf, a steam tube 22 that guides the steam discharged from the heat exchanger tube 8 to the heat exchanger tube 3 in the shell 2, and a pump 10, and is pressurized by the main water supply. It is composed of a branch pipe 13 that branches water supplied through a pipe 12 and guides it to the heat transfer tube 8, and this branch pipe 13 is provided with a flow rate adjustment valve 16 and a variable throttle valve 17.

主蒸気管15には蒸気の温度を測定する温度計18が付
設されており、この温度計18の出力はポンプ駆動装置
11に導かへポンプ10の回転数を調節することにより
温度計18で測定される蒸気温度が500℃になるよう
にフィードバック制御が行われている。
A thermometer 18 is attached to the main steam pipe 15 to measure the temperature of the steam, and the output of this thermometer 18 is guided to the pump drive device 11 and measured by the thermometer 18 by adjusting the rotation speed of the pump 10. Feedback control is performed so that the steam temperature is 500°C.

また3系統の各蒸発器6の蒸発管22には温度計19が
付設され、蒸発器6で気化された蒸気の温度を測定して
いる。
Further, a thermometer 19 is attached to the evaporation tube 22 of each evaporator 6 of the three systems, and measures the temperature of the vapor vaporized by the evaporator 6.

温度計19の信号は各分岐管13に設けた流量調整弁1
6の操作用に用いられ、任意の系統の温度計19により
測定された蒸気温度と隣りの系統の温度計19により測
定された蒸気温度の差の信号を流量調整弁16の制御信
号として用いることにより全系統の各蒸発器6の出口蒸
気温度が等しくなるように制御される。
The signal from the thermometer 19 is transmitted through the flow rate adjustment valve 1 provided in each branch pipe 13.
6, and use the signal of the difference between the steam temperature measured by the thermometer 19 of any system and the steam temperature measured by the thermometer 19 of the adjacent system as a control signal for the flow rate adjustment valve 16. The outlet steam temperature of each evaporator 6 in the entire system is controlled to be equal.

このため通常運転条件における各蒸発器6の出口蒸気温
度はほぼ380℃に保持される。
Therefore, the outlet steam temperature of each evaporator 6 under normal operating conditions is maintained at approximately 380°C.

従って、並列に配置された各蒸気発生器の動特性が等し
くなる。
Therefore, the dynamic characteristics of each steam generator arranged in parallel are equal.

前記各分岐管13の可変絞り弁17の開度は負荷設定信
号21を入力とする関数発生器20により一律に設定さ
れ、この関数発生器20の特性は第3図に示した熱負荷
と可変絞り弁17の開度の関数関係で決められるが、第
3図の一点鎖線で示した屈折線Cのように曲線りの関数
関係よりも下側(安定領域側)に定められた簡単な関数
関係として与えることも可能である。
The opening degree of the variable throttle valve 17 of each of the branch pipes 13 is uniformly set by a function generator 20 which receives a load setting signal 21 as input, and the characteristics of this function generator 20 are variable with respect to the heat load shown in FIG. It is determined by the functional relationship of the opening degree of the throttle valve 17, but it is a simple function that is set below the curved functional relationship (on the stable region side), as shown by the refraction line C shown by the dashed line in Fig. 3. It is also possible to give it as a relation.

また熱負荷と給水側の全流量はほぼ比例関係にあるので
、負荷設定信号の代わりに全給水流量の信号を使用する
ことも可能である。
Furthermore, since the thermal load and the total flow rate on the water supply side are approximately proportional, it is also possible to use the signal of the total water supply flow rate instead of the load setting signal.

第4図は、蒸気発生器23を安定に運転するため、最低
限に必要な可変絞りの度合を△P100(100%流量
時の付加的圧力損失)で代表させて熱負荷の関数として
示したものである。
Figure 4 shows the minimum degree of variable throttling required for stable operation of the steam generator 23, represented by △P100 (additional pressure loss at 100% flow rate), as a function of heat load. It is something.

このような可変絞りの調節は第3図に示したように可変
絞り弁17の開度を熱負荷の関数として示した曲線り上
に調節することにより行うことができる。
Such adjustment of the variable throttle can be performed by adjusting the opening degree of the variable throttle valve 17 on a curve shown as a function of thermal load, as shown in FIG.

上述したこの発明の可変絞り方式および従来の固定絞り
方式における各熱負荷条件で発生する付加的圧力損失の
値△Pxを比較すると第5図に示すようになる。
A comparison of the value ΔPx of additional pressure loss generated under each heat load condition in the variable throttle system of the present invention and the conventional fixed throttle system described above is as shown in FIG.

これより可変絞り方式は固定絞り方式に比べて所要の付
加的圧力損失がきわめて小さいことがわかる。
It can be seen from this that the required additional pressure loss in the variable throttle system is extremely small compared to the fixed throttle system.

上述の実施例では、流量調整弁の制御番隣りの系統との
間の蒸発器出口温度差の信号を入力して行い、各蒸発器
の出口蒸気温度を同一になるようにしているので、各々
の蒸気発生器を同一の作動状態で運転することができる
In the above embodiment, the signal of the evaporator outlet temperature difference between the control number of the flow rate regulating valve and the adjacent system is inputted to make the outlet steam temperature of each evaporator the same. steam generators can be operated under the same operating conditions.

従って、各々の蒸気発生器は同一の動特性を有すること
になり、前述した各々の可変絞り手段の開度を負荷信号
に基づいて調節することによる流動不安定現象の抑制効
果を最大限に発揮させることができる。
Therefore, each steam generator has the same dynamic characteristics, and the effect of suppressing the flow instability phenomenon by adjusting the opening degree of each of the variable throttling means described above based on the load signal is maximized. can be done.

また、各々の蒸気発生器を同一の動特性を有する状態で
運転できるので、負荷変動に対する応答も同一となり、
蒸気発生装置全体に高い制御性を与えることができる。
In addition, since each steam generator can be operated with the same dynamic characteristics, the response to load fluctuations is also the same.
High controllability can be given to the entire steam generator.

前述した実施例では複数の蒸気発生器に給水を分配する
分岐管13に流量調整弁16および可変絞り弁17の両
者を配置しているが、弁開度と流量抵抗の関係が広範囲
にわたって直線状になる調節弁を各分岐管13に設けて
も前述の効果を達成できる。
In the embodiment described above, both the flow rate adjustment valve 16 and the variable throttle valve 17 are arranged in the branch pipe 13 that distributes water supply to a plurality of steam generators, but the relationship between the valve opening degree and the flow resistance is linear over a wide range. The above effect can also be achieved by providing a control valve in each branch pipe 13.

すなわち、この調節弁は、前述の両方の弁の機能を有し
、負荷信号と蒸気温度信号に基づいて制御される。
That is, this control valve has the functions of both of the above-mentioned valves, and is controlled based on the load signal and the steam temperature signal.

本発明によれば、並列に配置された複数の蒸気発生器の
動特性を同じ状態にした上で負荷変動時に可変絞り手段
による流動不安定現象の抑制ができる。
According to the present invention, it is possible to make the dynamic characteristics of a plurality of steam generators arranged in parallel the same and to suppress the flow instability phenomenon by the variable throttling means during load fluctuations.

従って、負荷変動時における並列に配置された複数の蒸
気発生器の流動の安定性を著しく向上でき、高い制御性
が得られる。
Therefore, the stability of the flow of the plurality of steam generators arranged in parallel during load fluctuations can be significantly improved, and high controllability can be obtained.

本発明は、蒸発器と過熱器とが一体構造になった蒸気発
生装置にも適用できる。
The present invention can also be applied to a steam generator in which an evaporator and a superheater are integrated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はナトリウムと水の流量比と熱負荷との関係から
蒸気発生装置の不安定領域を説明した特性図、第2図は
本発明の好適な一実施例を適用する蒸気発生装置を示す
系統図、第3図は安定限界を熱負荷と絞り開度との関係
において示す特性図、第4図は熱負加と付加的圧力損失
との関係を示す特性図、第5図は熱負荷と付加的圧力損
失との関係を可変絞りと固定絞りの場合において示した
特性図である。 A・・・・・・蒸気発生器、1・・・・・・過熱器、6
・・・・・・蒸発器、13・・・・・・分岐管、14・
・・・・・合流管、16・・・・・・流量調整弁、17
・・・・・・可変絞り弁、19・・・・・・温度計、2
0・・・・・・関数発生器、21・・・・・・負荷設定
信号、22・・・・・・蒸発管。
Fig. 1 is a characteristic diagram explaining the unstable region of a steam generator from the relationship between the flow rate ratio of sodium and water and the heat load, and Fig. 2 shows a steam generator to which a preferred embodiment of the present invention is applied. System diagram, Figure 3 is a characteristic diagram showing the stability limit in relation to heat load and throttle opening, Figure 4 is a characteristic diagram showing the relationship between heat load and additional pressure loss, and Figure 5 is heat load. FIG. 3 is a characteristic diagram showing the relationship between the amount of pressure and the additional pressure loss in the case of a variable throttle and a fixed throttle. A...Steam generator, 1...Superheater, 6
...Evaporator, 13...Branch pipe, 14.
... Merging pipe, 16 ... Flow rate adjustment valve, 17
...Variable throttle valve, 19...Thermometer, 2
0...Function generator, 21...Load setting signal, 22...Evaporation tube.

Claims (1)

【特許請求の範囲】 1 被加熱媒体が流れる伝熱管および加熱媒体が流れる
流路を内蔵してしかも並列に配置された複。 数の蒸気発生器と、各々の前記蒸気発生器の前記伝熱管
の入口に一端が接続されてしかも他端が合流している複
数の被加熱媒体分配管と、各々の前記蒸気発生器の前記
伝熱管の出口に一端が接続されてしかも他端が合流して
いる複数の蒸気管とからなる蒸気発生装置を運転制御す
る装置において、各々の前記被加熱媒体分配管にそれぞ
れ設けられた複数の被加熱媒体の流量調節手段と、各々
の前記蒸気発生器内に配置されてそれぞれの伝熱管内で
発生した蒸気の温度を検出する複数の手段と、2つの前
記蒸気発生器にそれぞれ配置された前記蒸気温度検出手
段の出力信号に基づいて両者の前記蒸気発生器にて得ら
れる蒸気の温度差を解消するように一方の前記蒸気発生
器の前記流量調節手段を制御する手段と、各々の前記被
加熱媒体分配管にそれぞれ設けられた複数の可変絞り手
段と、各々の前記可変絞り手段の開度を、負荷信号に基
づいて各々の蒸気発生器内の流動不安定現象を抑制する
ように負荷増加時には大きくし、また負荷減少時には小
さくする制御手段とを具備したことを特徴とする蒸気発
生装置の運転制御装置。
[Scope of Claims] 1. A heat exchanger tube through which a medium to be heated flows and a flow path through which a heating medium flows, which are arranged in parallel. a plurality of heated medium distribution pipes connected at one end to the inlet of the heat transfer tube of each of the steam generators and merging at the other end; In a device for controlling the operation of a steam generator comprising a plurality of steam pipes, one end of which is connected to the outlet of a heat transfer tube and the other end of which joins, a plurality of steam generators each provided in each of the heated medium distribution pipes a means for adjusting the flow rate of the medium to be heated; a plurality of means arranged in each of the steam generators to detect the temperature of the steam generated in each heat transfer tube; and a plurality of means arranged in each of the two steam generators. means for controlling the flow rate adjusting means of one of the steam generators so as to eliminate the temperature difference between the steam obtained in both the steam generators based on the output signal of the steam temperature detecting means; A plurality of variable throttling means provided in each of the heated medium distribution pipes and the opening degree of each of the variable throttling means are controlled so as to suppress the flow instability phenomenon in each steam generator based on a load signal. 1. An operation control device for a steam generator, comprising a control means that increases the load when the load increases and decreases the load when the load decreases.
JP50085758A 1975-07-15 1975-07-15 Steam generator operation control device Expired JPS5949482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50085758A JPS5949482B2 (en) 1975-07-15 1975-07-15 Steam generator operation control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50085758A JPS5949482B2 (en) 1975-07-15 1975-07-15 Steam generator operation control device

Publications (2)

Publication Number Publication Date
JPS5211303A JPS5211303A (en) 1977-01-28
JPS5949482B2 true JPS5949482B2 (en) 1984-12-03

Family

ID=13867748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50085758A Expired JPS5949482B2 (en) 1975-07-15 1975-07-15 Steam generator operation control device

Country Status (1)

Country Link
JP (1) JPS5949482B2 (en)

Also Published As

Publication number Publication date
JPS5211303A (en) 1977-01-28

Similar Documents

Publication Publication Date Title
US10167743B2 (en) Method for controlling a steam generator and control circuit for a steam generator
US3286466A (en) Once-through vapor generator variable pressure start-up system
JPS6239648B2 (en)
JP2747543B2 (en) Method of operating a steam turbine device at low load level
JPS59231305A (en) Method and device for controlling flow rate of liquid to steam generator
US3213835A (en) Recirculating system having partial bypass around the center wall
JPH0942606A (en) Once-through boiler steam temperature control device
US5045272A (en) Fluid temperature balancing system
JPS5949482B2 (en) Steam generator operation control device
JPH01318802A (en) Steam temperature control system for re-heating type combined plant
US3561406A (en) Flow-through steam generator
US3255735A (en) Once-through, forced-flow boilers
US3183897A (en) Superheat control
JP2653798B2 (en) Boiler and turbine plant control equipment
US3942355A (en) Hot water generator and method for shock testing fabricated piping components
JP2625422B2 (en) Boiler control device
JPS6291703A (en) Steaming preventive device for fuel economizer
JPS5948696A (en) Steam distributing device of reactor plant
JPH04148895A (en) Speed controller for coolant recirculation pump
JPH0511092A (en) Method of protecting nuclear reactor
JPH07122485B2 (en) Steamer steam prevention device for once-through thermal power generation boiler system
JPH03282102A (en) Exhaust heat recovery boiler and controller of temperature reducing device used for it
JPS6390605A (en) Control device for steam generating plant
JPS5928803B2 (en) Nuclear plant steam temperature control device
JPH06229505A (en) Controlling device for feed water temperature of waste heat recovery heat exchanger