JPS5949284B2 - Method for producing high-strength oil well steel with excellent delayed fracture resistance - Google Patents

Method for producing high-strength oil well steel with excellent delayed fracture resistance

Info

Publication number
JPS5949284B2
JPS5949284B2 JP11014780A JP11014780A JPS5949284B2 JP S5949284 B2 JPS5949284 B2 JP S5949284B2 JP 11014780 A JP11014780 A JP 11014780A JP 11014780 A JP11014780 A JP 11014780A JP S5949284 B2 JPS5949284 B2 JP S5949284B2
Authority
JP
Japan
Prior art keywords
less
delayed fracture
steel
fracture resistance
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11014780A
Other languages
Japanese (ja)
Other versions
JPS5735622A (en
Inventor
史朗 向井
昭夫 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11014780A priority Critical patent/JPS5949284B2/en
Publication of JPS5735622A publication Critical patent/JPS5735622A/en
Publication of JPS5949284B2 publication Critical patent/JPS5949284B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation

Description

【発明の詳細な説明】 本発明は耐遅れ破壊性のすぐれた高強度油井用鋼の製
造方法、特に微量のH2Sを含んだ高温(60〜170
℃)アルカリ中で発生する遅れ破壊に対してすぐれた抵
抗性を有する高強度の油井用鋼の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing high-strength oil well steel with excellent delayed fracture resistance, particularly at high temperatures (60 to 170
℃) This invention relates to a method for manufacturing high-strength oil well steel that has excellent resistance to delayed fracture that occurs in alkali.

従来、オイルフィールドでは最小降伏強度が150k
siを有する材料の需要が多くAPI規格はされていな
いが通称V−150といわれている材料が使用されてい
る。
Conventionally, the minimum yield strength in oil fields is 150k.
There is a great demand for materials having si, and a material commonly known as V-150 is used, although it is not an API standard.

この材料はMo、V、Nbが低く、そのため強度などの
必要な機械的性質を得るためには低温焼戻しが必要であ
り、又耐遅れ破壊性が悪くなる欠陥を:有している。本
発明は斯る欠陥を解決するため、鋼自身の化学成分を調
整するとともに熱処理条件を適正に選ぶことにより現状
の問題点を解決せんとするもので、高温アルカリ中での
耐遅れ破壊性のすぐれた鋼として強度上限を制限して最
大引張強さを125陽/閣2以下とし、而もγ粒を細粒
にするとともに不純物、P,Sを減らしかつ高温焼戻し
して粒界強度を強めることにより耐遅れ破壊性を改善す
るものである。すなわち、本発明は (1)CO.27〜0.50係、SiO.O8〜0.3
0係、MnO.9O〜1.30%、CrO.5〜0.9
%、NiO.O3係以下、VO.O4〜0、11係、N
bO.Ol〜0.10%、MOO.6O〜0.80%、
AIO.lO係以下、残部Fe及び不可避的不純物から
なり、不純物中のPO.OO5%以下、80.003%
以下である鋼、(2)上記(1)において、その化学成
分にほかにさらにTiO.OO2〜0.020係、BO
.OOO2〜0.00zs%の一方又は双方を含む鋼、
(3)上記(1)において、その化学成分のほかにさら
にCO3%以下を含む鋼、(4)上記(1)において、
その化学成分のほかにさらにTiO.OO2〜0.02
0%、BO.OOO2〜0.0025%の一方又は双方
及びCO3%以下を含む鋼を880〜980℃で焼入れ
し、次いで650〜700℃で焼戻すことを特徴とする
耐遅れ破壊性のすぐれた高強度油井用鋼の製造方法を要
旨とするものである。
This material has low Mo, V, and Nb content, so low-temperature tempering is required to obtain the necessary mechanical properties such as strength, and it also has defects that deteriorate delayed fracture resistance. In order to solve these defects, the present invention attempts to solve the current problems by adjusting the chemical composition of the steel itself and appropriately selecting the heat treatment conditions. As an excellent steel, the upper limit of strength is limited to a maximum tensile strength of 125 Y/K2 or less, and the γ grains are made finer, impurities, P, and S are reduced, and the grain boundary strength is strengthened by high-temperature tempering. This improves delayed fracture resistance. That is, the present invention provides (1) CO. 27-0.50 section, SiO. O8~0.3
Section 0, MnO. 9O to 1.30%, CrO. 5-0.9
%, NiO. O3 section and below, VO. O4~0, 11th Section, N
bO. Ol~0.10%, MOO. 6O~0.80%,
AIO. The balance consists of Fe and unavoidable impurities, and the PO. OO5% or less, 80.003%
(2) In the above (1), in addition to its chemical composition, TiO. OO2~0.020 Section, BO
.. Steel containing one or both of OOO2 to 0.00zs%,
(3) In (1) above, steel that further contains 3% or less CO in addition to its chemical components; (4) In (1) above,
In addition to its chemical components, TiO. OO2~0.02
0%, BO. A high-strength oil well product with excellent delayed fracture resistance characterized by quenching steel containing one or both of 2 to 0.0025% OOO and 3% or less of CO at 880 to 980°C and then tempering at 650 to 700°C. The gist is the method of manufacturing steel.

次に本発明において、各添加元素の組成割合を限定した
理由を説明する。
Next, the reason why the composition ratio of each additive element is limited in the present invention will be explained.

C:Cは強度の向上に有効であるが、0.50%を超え
ると熱処理時焼割れが発生し、又急速加熱する際オース
テナイト中の均一な固溶が困難となり、焼むらの原因と
なる。
C: C is effective in improving strength, but if it exceeds 0.50%, quench cracking occurs during heat treatment, and when rapidly heated, it becomes difficult to form a uniform solid solution in austenite, causing uneven quenching. .

又0.27%未満では強度低下、焼入性悪化を生ずるた
め0.27〜0.50%に限定した。Si:Siぱ鋼の
脱酸と強度増加のために0.0s%以上を必要とするが
0.30%を超えると、耐遅れ破壊性が劣化するので0
.08〜0.30%とした。
Further, if it is less than 0.27%, strength decreases and hardenability deteriorates, so it is limited to 0.27 to 0.50%. Si: 0.0s% or more is required to deoxidize Si steel and increase its strength, but if it exceeds 0.30%, delayed fracture resistance deteriorates, so 0.0s% or more is required.
.. 08 to 0.30%.

Mn:Mnは脱酸剤として有効であり、かつ焼入性を向
上させる添加元素であり、かつ焼入性を向上させるが、
0.90%未満ではその効果は少なすぎる。
Mn: Mn is an additive element that is effective as a deoxidizing agent and improves hardenability, and improves hardenability, but
If it is less than 0.90%, the effect is too small.

1だ1.30%を超えると耐遅れ破壊性を劣化させるた
め0.90〜1.30%とした。
If the content exceeds 1.30%, delayed fracture resistance deteriorates, so the content was set at 0.90 to 1.30%.

Cr:Crは耐食性と焼戻し抵抗性を高めるために0.
5%以上を必要とするが、0.9係を超えると耐遅れ破
壊性を劣化させるため0.5〜0,9係とした。
Cr: Cr is 0.0% to improve corrosion resistance and tempering resistance.
A ratio of 5% or more is required, but if the ratio exceeds 0.9, the delayed fracture resistance deteriorates, so the ratio was set at 0.5 to 0.9.

Ni:Niは強度、靭性の向上に有効であるが、0.0
3%を超えると遅れ破壊性が増すため0.03係以下と
した。
Ni: Ni is effective in improving strength and toughness, but 0.0
If it exceeds 3%, the delayed fracture property increases, so the coefficient was set to be 0.03 or less.

v:Vは強度の向上に有効であるが、0.04%未満で
はその効果が得られず、又0.11%を超えると靭性が
劣化するため0.04〜0.11%とした。
v: V is effective in improving strength, but if it is less than 0.04%, this effect cannot be obtained, and if it exceeds 0.11%, toughness deteriorates, so it is set to 0.04 to 0.11%.

Nb: Nbは焼入れ温度で加熱時のオーステナイト粒
の細分化を得るのに有効であり、C量の高い材料の急冷
時の焼割れ発生防止に効果的な元素であるが、0,1チ
を超えると靭性の劣化をもたらすため0.1%以下とし
た。
Nb: Nb is an element that is effective in obtaining finer austenite grains during heating at the quenching temperature and is effective in preventing quench cracking during rapid cooling of materials with a high carbon content. If it exceeds the content, the toughness deteriorates, so the content was set to 0.1% or less.

MO:MOは強度、耐食性の向上に有効であるが、0.
60%未満では650℃以上の焼戻し温度で耐食性劣化
を招かずに所定の強度を満たすことは難しい。
MO: MO is effective in improving strength and corrosion resistance, but 0.
If it is less than 60%, it is difficult to satisfy a predetermined strength without causing corrosion resistance deterioration at a tempering temperature of 650° C. or higher.

一方0.s0%を超えると耐遅れ破壊性の劣化をもたら
すため0.60〜0.80%とした。AI:AIは脱酸
剤として有効であり、0.10%を超えるとその効果は
飽和し靭件の劣化をもたらすため、0.t0%以下とし
た。
On the other hand, 0. If s exceeds 0%, delayed fracture resistance deteriorates, so it was set at 0.60 to 0.80%. AI: AI is effective as a deoxidizing agent, and if it exceeds 0.10%, its effect will become saturated and cause deterioration of toughness. It was set to t0% or less.

P,s:靭性の向上及び耐割れ性の向上を計るため、P
,Sは不純物として可及的に少なくするのが望ましく、
上限を夫々0.005%、0.003%とする。
P,s: In order to improve toughness and crack resistance, P
, S are desirable to be reduced as much as possible as impurities.
The upper limits are 0.005% and 0.003%, respectively.

Ti:Ti4dBの焼入性効果を助け、材料強度の均一
性向上に有効であり、0.00z%以上を必要とするが
、0.02%を超えると靭性の劣化をもたらすため0.
002〜0.02%とした。
Ti: Helps the hardenability effect of Ti4dB and is effective in improving the uniformity of material strength, and requires 0.00z% or more, but if it exceeds 0.02%, the toughness deteriorates, so 0.
0.002% to 0.02%.

B:Bは焼入性に有効で0.0002%以上を必要とす
るが、0.0025%を超えると靭性の劣化をもたらす
ため0.0002〜0.0025係とした。CO: C
Oは耐遅れ破壊性に有効であるが、3%を超えて添加し
ても効果は飽和し、又経済性の点からも不利となるので
3係以下とした。
B: B is effective for hardenability and requires a content of 0.0002% or more, but if it exceeds 0.0025%, it causes deterioration of toughness, so it was set to a ratio of 0.0002 to 0.0025. CO: C
O is effective for delayed fracture resistance, but if it is added in an amount exceeding 3%, the effect will be saturated and it will also be disadvantageous from an economic point of view, so it is set at a factor of 3 or less.

本発明は化学成分と熱処理との組合せにより所定の性能
を有する油井用鋼を製造するものであるが、上記理由に
基いて構成された鋼はまず880〜980℃に加熱して
焼入れられる。
The present invention manufactures oil well steel having predetermined performance by combining chemical components and heat treatment, and the steel constructed based on the above reasons is first heated and quenched to 880 to 980°C.

この温度範囲はオーステナイト相から焼入れマルテンサ
イト相の焼入れ組織を得るのに十分なオーステナイト粒
の発達と、一方でオーステナイト粒の粗大化による耐遅
れ破壊性の劣化を防ぐのに必要な温度範囲である。次い
で本発明においては650〜700℃で焼戻しするが、
これは前記オーステナイト粒界への不純物の偏在を防ぎ
かつ球状炭化物の均一析出をはかることにより必要な強
度を満たしつ\耐遅れ破壊性を向上せしめるためであり
、又650℃未満の焼戻しでは化学成分の調整のみで耐
遅れ破喰性を確保することは困難であるが、降伏強度1
25bi( S7.9ky/0n2)以上の材料を確保
しようとする場合、700℃を超えると当成分系では必
要強度の確保ができなくなる。次に本発明の効果を実施
例により説明する。
This temperature range is necessary for sufficient development of austenite grains to obtain a hardened structure from austenite phase to hardened martensite phase, and at the same time to prevent deterioration of delayed fracture resistance due to coarsening of austenite grains. . Next, in the present invention, it is tempered at 650 to 700°C.
This is to prevent the uneven distribution of impurities in the austenite grain boundaries and to uniformly precipitate spheroidal carbides to meet the required strength and improve delayed fracture resistance. It is difficult to ensure delayed erosion resistance only by adjusting the yield strength 1
When trying to secure a material with a strength of 25bi (S7.9ky/0n2) or more, if the temperature exceeds 700°C, the required strength cannot be secured with this component system. Next, the effects of the present invention will be explained using examples.

実施例 1耐遅れ破壊性の試験をするため、下記第1表
に示す化学成分を有する100k9鋼塊を高周波溶製し
、1250℃で厚さ60■の板状に鍛造を行っ(た後、
平均温度1000℃で熱間圧延を行なって板厚12mm
0熱延鋼板とし、第1表に示す各温度で焼入れ、焼戻し
を行った鋼板を素材として、厚さ2W,ri11011
DI1、長さ75籠の試験片を作成した。
Example 1 In order to test delayed fracture resistance, a 100k9 steel ingot having the chemical composition shown in Table 1 below was produced by induction welding and forged into a plate shape with a thickness of 60cm at 1250°C (after that,
Hot rolled at an average temperature of 1000℃ to a plate thickness of 12mm.
0 hot-rolled steel plate, quenched and tempered at each temperature shown in Table 1, with a thickness of 2W and ri11011.
A test piece with a DI of 1 and a length of 75 cages was prepared.

各試験片を320番エメリ一紙で研磨し、脱脂、乾燥を
行った後U字状に曲げUベンド試験片にし、300F,
1%NaCl( PHはNaOHで調整)溶液の高温ア
ルカリ中に浸漬する200時間の沸騰試験を行った。試
験後各試験片の割れ発生の有無を観察し、その結果を第
2表に示す。実施例 2 実施例1と同じ各条件で製造した鋼板より厚さ1.7m
,巾4.5am,長さ75mの試験片を作成し、320
番エメリ一紙で研磨し、脱脂、乾燥を行なった後、シェ
ルタイプ試験を行なった。
Each test piece was polished with No. 320 emery paper, degreased and dried, then bent into a U-shape to make a U-bend test piece.
A 200 hour boiling test was conducted by immersing the sample in a high temperature alkaline solution of 1% NaCl (PH adjusted with NaOH). After the test, each test piece was observed for cracking, and the results are shown in Table 2. Example 2 1.7 m thicker than the steel plate manufactured under the same conditions as Example 1
, a test piece with a width of 4.5 am and a length of 75 m was prepared, and 320
After polishing with emery paper, degreasing and drying, a shell type test was conducted.

即ち、20℃のH2S飽和状態ノ0.5%CH3COO
H水溶液に96時間浸漬した後4点支持式ホルダーによ
り試験片に曲げ応力をかけ。割れ発生の限界応力〔SO
値( KsiXlO−4)〕を求めた。その結果は第2
表に示す通りである。○ 実施例1、2の結果を示す第2表より明らかなように、
本発明の方法では、高温アルカリ環境及び硫化水素を含
む環境における耐遅れ破壊性が著しくすぐれている。
That is, 0.5% CH3COO under H2S saturation at 20°C.
After being immersed in an H aqueous solution for 96 hours, bending stress was applied to the test piece using a four-point support type holder. Critical stress for crack initiation [SO
(KsiXlO-4)] was determined. The result is the second
As shown in the table. ○ As is clear from Table 2 showing the results of Examples 1 and 2,
The method of the present invention has extremely excellent delayed fracture resistance in high-temperature alkaline environments and environments containing hydrogen sulfide.

一方、比較法の鋼番6〜10の結果にみられるように本
発明対象鋼と同成分の鋼であっても熱処理条件が異なる
と割れが発生している。以上説明した如く本発明方法に
より、高強度であって高温アルカリ環境下での耐遅れ破
壊性にすぐれた鋼を製造することができる。
On the other hand, as seen in the results of comparative steel Nos. 6 to 10, even steels with the same composition as the steels subject to the present invention cracked when heat treatment conditions were different. As explained above, by the method of the present invention, it is possible to produce steel that has high strength and excellent delayed fracture resistance in a high-temperature alkaline environment.

Claims (1)

【特許請求の範囲】 1 C0.27〜0.50%、Si0.08〜0.30
%、Mn0.90〜1.30%、Cr0.5〜0.9%
、Ni0.03%以下、V0.04〜0.11%、Nb
0.01〜0.10%、Mo0.60〜0.80%、A
l0.1以下、残部Fe及び不可避的不純物からなり、
不純物中のP0.005%以下、S0.003%以下で
ある鋼を880〜980℃で焼入れし、次いで650〜
700℃で焼戻すことを特徴とする耐遅れ破壊性のすぐ
れた高強度油井用鋼の製造方法。 2 C0.27〜0.50%、Si0.08〜0.30
%、Mn0.90〜1.30%、Cr0.5〜0.9%
、Ni0.03%以下、V0.04〜0.11%、Nb
0.01〜0.10%、Mo0.60〜0.80%、A
l0.1%以下、及びTi0.002〜0.020%、
B0.0002〜0.0025%の一方又は双方、残部
Fe及び不可避的不純物からなり、不純物中のP0.0
05%以下、S0.003%以下である鋼を880〜9
80℃で焼入れし、次いで650〜700℃で焼戻すこ
とを特徴とする耐遅れ破壊性のすぐれた高強度油井用鋼
の製造方法。 3 C0.27〜0.50%、Si0.08〜0.30
%、Mn0.90〜1.30%、Cr0.5〜0.9%
、Ni0.03%以下、V0.04〜0.11%、Nb
0.01〜0.10%、Mo0.60〜0.80%、A
l0.1%以下、及びCo3%以下、残部Fe及び不可
避的不純物からなり、不純物中のP0.005%以下、
S0.003%以下である鋼を880〜980℃で焼入
れし、次いで650〜700℃で焼戻すことを特徴とす
る耐遅れ破壊性のすぐれた高強度油井用鋼の製造方法。 4 C0.27〜0.50%、Si0.08〜0.30
%、Mn0.9〜1.30%、Cr0.5〜0.9%、
Ni0.03%以下、V0.04〜0.11%、Nb0
.01〜0.10%、Mo0.60〜0.80%、Al
0.1%以下、及びTi0.002〜0.020%、B
0.0002〜0.0025%の一方又は双方、並びに
Co3%以下、残物Fe及び不可避的不純物からなり、
不純物中のP0.005%以下、S0.003%以下で
ある鋼を880〜980℃で焼入れし、次いで650〜
700℃で焼戻すことを特徴とする耐遅れ破壊性のすぐ
れた高強度油井用鋼の製造方法。
[Claims] 1 C0.27-0.50%, Si0.08-0.30
%, Mn0.90-1.30%, Cr0.5-0.9%
, Ni 0.03% or less, V 0.04-0.11%, Nb
0.01-0.10%, Mo0.60-0.80%, A
l0.1 or less, the balance consists of Fe and unavoidable impurities,
Steel containing impurities of P 0.005% or less and S 0.003% or less is quenched at 880 to 980°C, and then quenched at 650 to 980°C.
A method for producing high-strength oil well steel with excellent delayed fracture resistance, characterized by tempering at 700°C. 2 C0.27-0.50%, Si0.08-0.30
%, Mn0.90-1.30%, Cr0.5-0.9%
, Ni 0.03% or less, V 0.04-0.11%, Nb
0.01-0.10%, Mo0.60-0.80%, A
l0.1% or less, and Ti0.002 to 0.020%,
Consisting of one or both of B0.0002 to 0.0025%, the balance Fe and unavoidable impurities, P0.0 in the impurities
0.05% or less, S0.003% or less steel is 880-9
A method for producing high-strength oil well steel with excellent delayed fracture resistance, which comprises quenching at 80°C and then tempering at 650 to 700°C. 3 C0.27-0.50%, Si0.08-0.30
%, Mn0.90-1.30%, Cr0.5-0.9%
, Ni 0.03% or less, V 0.04-0.11%, Nb
0.01-0.10%, Mo0.60-0.80%, A
L0.1% or less, Co3% or less, the balance consisting of Fe and unavoidable impurities, P0.005% or less in the impurities,
A method for producing high-strength steel for oil wells with excellent delayed fracture resistance, characterized by quenching steel having S0.003% or less at 880-980°C and then tempering at 650-700°C. 4 C0.27-0.50%, Si0.08-0.30
%, Mn0.9-1.30%, Cr0.5-0.9%,
Ni 0.03% or less, V 0.04-0.11%, Nb0
.. 01-0.10%, Mo0.60-0.80%, Al
0.1% or less, and Ti0.002-0.020%, B
Consisting of one or both of 0.0002 to 0.0025%, and 3% or less of Co, residual Fe and unavoidable impurities,
Steel containing impurities of P 0.005% or less and S 0.003% or less is quenched at 880 to 980°C, and then quenched at 650 to 980°C.
A method for producing high-strength oil well steel with excellent delayed fracture resistance, characterized by tempering at 700°C.
JP11014780A 1980-08-11 1980-08-11 Method for producing high-strength oil well steel with excellent delayed fracture resistance Expired JPS5949284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11014780A JPS5949284B2 (en) 1980-08-11 1980-08-11 Method for producing high-strength oil well steel with excellent delayed fracture resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11014780A JPS5949284B2 (en) 1980-08-11 1980-08-11 Method for producing high-strength oil well steel with excellent delayed fracture resistance

Publications (2)

Publication Number Publication Date
JPS5735622A JPS5735622A (en) 1982-02-26
JPS5949284B2 true JPS5949284B2 (en) 1984-12-01

Family

ID=14528230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11014780A Expired JPS5949284B2 (en) 1980-08-11 1980-08-11 Method for producing high-strength oil well steel with excellent delayed fracture resistance

Country Status (1)

Country Link
JP (1) JPS5949284B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2954216B2 (en) * 1987-08-19 1999-09-27 大同特殊鋼株式会社 Steel for high strength parts
BR112018017036B1 (en) * 2016-03-04 2022-09-06 Nippon Steel Corporation STEEL MATERIAL AND OIL WELL STEEL PIPE
ES2807000T3 (en) * 2016-03-04 2021-02-19 Nippon Steel Corp Steel Material and Steel Tube for Oil Wells
US10655200B2 (en) 2016-09-01 2020-05-19 Nippon Steel Corporation Steel material and oil-well steel pipe
CN111471926B (en) * 2020-04-09 2021-06-15 烟台大学 Pipe joint and preparation method thereof

Also Published As

Publication number Publication date
JPS5735622A (en) 1982-02-26

Similar Documents

Publication Publication Date Title
KR100682802B1 (en) Ultra-high strength metastable austenitic stainless steel containing Ti and a method of producing the same
CN107148488B (en) Ultra-high strength plated steel sheet having tensile strength of 1300MPa or more and method for producing same
JP2017179596A (en) High carbon steel sheet and manufacturing method therefor
CN109576569A (en) A kind of torsion beam of automobile steel and preparation method thereof
JPS5949284B2 (en) Method for producing high-strength oil well steel with excellent delayed fracture resistance
JP4212132B2 (en) Ferritic heat resistant steel having martensitic structure and method for producing the same
JPH0320408A (en) Production of high tensile steel stock excellent in toughness at low temperature
JPS6053108B2 (en) Manufacturing method of nickel-based high chromium alloy with excellent stress corrosion cracking resistance
JP2715033B2 (en) Non-magnetic PC steel wire and method of manufacturing the same
JPS58107474A (en) Hot forging steel for machine structure
US4049432A (en) High strength ferritic alloy-D53
JPH11279713A (en) Martensitic stainless steel for disk brake excellent in rust resistance and heat degradation resistance
JP4465490B2 (en) Precipitation hardened ferritic heat resistant steel
JPH0553859B2 (en)
JPS62278251A (en) Low-alloy steel excellent in stress corrosion cracking resistance
JPH1068050A (en) Stainless steel for spring excellent in thermal settling resistance
JP2003321752A (en) High strength ferritic heat resistant steel and production method thereof
KR102170945B1 (en) Austenitic stainless steels excellent in fatigue life and manufacturing method thereof
KR102531730B1 (en) Austenitic stainless steel with excellent high temperature anti-oxidation and method of manufacturing the same
KR920008136B1 (en) Making process for ferrite stainless steel
JPH0672282B2 (en) Low decarburized spring steel
JP2689864B2 (en) High toughness steel pipe
JP3685282B2 (en) Soft magnetic stainless steel with excellent maximum permeability
JPS594487B2 (en) Manufacturing method for strong steel with excellent SR embrittlement resistance
JP2719916B2 (en) Martensitic stainless steel for cold forging and its manufacturing method