JPS58107474A - Hot forging steel for machine structure - Google Patents
Hot forging steel for machine structureInfo
- Publication number
- JPS58107474A JPS58107474A JP20509081A JP20509081A JPS58107474A JP S58107474 A JPS58107474 A JP S58107474A JP 20509081 A JP20509081 A JP 20509081A JP 20509081 A JP20509081 A JP 20509081A JP S58107474 A JPS58107474 A JP S58107474A
- Authority
- JP
- Japan
- Prior art keywords
- hot forging
- less
- steel
- amount
- forging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は熱間鍛造@0直接焼入、熱間鍛造後の規準省略
を可能表らしめる鍛造用機械構造用鋼にかかわるもので
ある。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a forging machine structural steel that enables hot forging @ 0 direct quenching and omitting standards after hot forging.
機械構造用鋼は通常熱間鍛造後再加熱し焼入れされ使用
される。熱間鍛造後にさらに規準処理をしてから再加熱
焼入れされる場合も多い。近年省エネルギーの目的から
熱間鍛造後のこれらの熱処理を省略し、熱間鍛造後直接
焼入れする、いわゆる鍛造直接焼入法の採用が試みられ
ている。しかし、熱間鍛造温度は一般に1200℃以上
であシ、これまでの鋼ではこのような高温に加熱される
と結晶粒が著しく粗大化するため、鍛造直接焼入した機
械部品では優れ九靭性を得ることは離しい。Steel for machine structures is usually used after hot forging, reheating, and quenching. After hot forging, it is often further subjected to standard treatment and then reheated and quenched. In recent years, for the purpose of energy saving, attempts have been made to omit these heat treatments after hot forging and to directly quench the material after hot forging, a so-called forging direct quenching method. However, the hot forging temperature is generally 1200℃ or higher, and when conventional steels are heated to such high temperatures, the crystal grains become significantly coarsened, so machine parts that are forged and quenched directly have excellent toughness. It's hard to get anything.
また、機械構造用鋼は熱関鍛造後規準して用いられる場
合も多い。省エネルギーのため、この規準処理を省略す
る試みもある。しかし、鍛造直接焼入の場合と同様、熱
間鍛造温度が高温であるため、結晶粒が粗大化する。そ
のために、規準を省略した場合靭性が極めて低くなる。Furthermore, steel for machine structures is often used as a standard after hot forging. In order to save energy, there are attempts to omit this standard processing. However, as in the case of direct forging and quenching, the hot forging temperature is high, so the crystal grains become coarse. Therefore, if the standard is omitted, the toughness will be extremely low.
さらに、近年炭素鋼にVを適量添加し熱間鍛造ままで使
用される鋼が使用され始めている。しかし■の炭化物析
出強化によシ強度は得られるものの、熱間鍛造ままで使
用されるため、結晶粒が粗大化し優れた靭性が得にくく
、この種の鋼の適用範囲は限定されている。Furthermore, in recent years, carbon steel with an appropriate amount of V added thereto and used as hot-forged has begun to be used. However, although strength can be obtained through carbide precipitation strengthening in (2), since it is used as hot forged, the crystal grains become coarse and it is difficult to obtain excellent toughness, which limits the scope of application of this type of steel.
以上のごとく、熱間鍛造に供される機械構造用鋼は熱間
鍛造のための高温での加熱によ)結晶粒が粗大化するた
め、熱間鍛造後の種々の熱処理を省略した場合、機械部
品の靭性が低下する。この靭性低下は熱間鍛造のための
加熱温度を低下することによって解消出来るわけである
が、あまり温度を下けると成形出来なくなるか、あるい
は、型寿命が極端に短かくなる。したがって、低くとも
1150℃には加熱する必要がある。しかしながら、こ
れまでの鋼では、1000℃でもかなり結晶粒が粗くな
り、熱鍛後の熱処理省略による靭性低下は免れない。As mentioned above, the grains of mechanical structural steel subjected to hot forging become coarse due to heating at high temperatures for hot forging, so if various heat treatments after hot forging are omitted, The toughness of mechanical parts decreases. This decrease in toughness can be resolved by lowering the heating temperature for hot forging, but if the temperature is lowered too much, it will become impossible to form or the life of the mold will be extremely shortened. Therefore, it is necessary to heat to at least 1150°C. However, in conventional steels, the crystal grains become considerably coarse even at 1000°C, and a decrease in toughness is inevitable due to omission of heat treatment after hot forging.
以上のことから熱間鍛造での結晶粒成長を抑制する性能
の優れた機械構造用鋼を供給できれば、その加工工程で
のエネルギー消費節減に寄与するところが大きい。From the above, if we can supply a mechanical structural steel with excellent performance in suppressing grain growth during hot forging, it will greatly contribute to reducing energy consumption in the processing process.
さて、鋼の高温における結晶粒粗大化阻止は金属組織学
の大きな課題であシ、多くの研究がなされて来た。そし
てAj 、 Nb 、 T1等の析出物が結晶粒粗大化
阻止効果のあることがわかっている。とシわけ、klは
脱酸効果も強く、通常の再加熱焼入の加熱温度である9
00℃前後の温度で微細化効果が手軽に得られることか
ら広く利用されている。Now, prevention of grain coarsening in steel at high temperatures is a major challenge in metallography, and much research has been carried out. It is also known that precipitates of Aj, Nb, T1, etc. have an effect of inhibiting crystal grain coarsening. In other words, kl has a strong deoxidizing effect, and the heating temperature for normal reheating quenching is 9
It is widely used because it can easily achieve a finer graining effect at temperatures around 00°C.
しかし、従来のAtN利用による結晶粒度制御は、加熱
前に出来るだけ微細かつ多数のAtNを析出させておき
、この析出粒子が固溶しない温度範囲、すなわち900
℃前後までの比較的低温での細粒化を目的としていた。However, in the conventional grain size control using AtN, AtN is precipitated as finely and as much as possible before heating, and the temperature range at which the precipitated particles do not dissolve, that is, 900
The aim was to refine grains at relatively low temperatures, around ℃.
したがって、近年、熱間鍛造条件が低温化し短時間化し
ているとは言え、上記の微細なAtNは完全に固溶され
てしまい、結晶粒の粗大化防止には役立たなかった。Therefore, although hot forging conditions have become lower in temperature and shorter in time in recent years, the above-mentioned fine AtN has been completely dissolved into solid solution and has not been useful in preventing coarsening of crystal grains.
ところで、本発明者らはこの鋼中に通常添加されるAj
を有効利用し、熱間鍛造後での結晶粒成長を抑制する方
法はないかと種々検討を加えた結果、AtNの析出粒子
径および析出量を制御することによシ固溶終了までの過
渡段階を巧みに利用し、熱間鍛造後での結晶粒成長を抑
制できることを見出した。By the way, the present inventors added Aj which is usually added to this steel.
As a result of various investigations into whether there is a way to suppress grain growth after hot forging by making effective use of It was discovered that grain growth after hot forging can be suppressed by skillfully utilizing this.
すなわち本発明の要旨とするところは、C0,12〜o
、 s *、SiO,1〜1.On、Mn 0.3〜2
.5111、AtO,01〜0.1%、No、 0’
O’2〜0.012−を含み、且つこれらがAtN0形
で平均粒径O,OS〜1.0fiの吃ので0.01〜0
.03襲存在し、又はこれら基本成分に、さらにCr
2 flb以下、v O,5n以下、N129i以下、
Cu 0.3 III以下、Mo0.3−以下の1種又
は2種以上を含み、残部がF・および不純物からなる熱
間鍛造用機械構造用鋼にある。That is, the gist of the present invention is that C0,12~o
, s*, SiO, 1-1. On, Mn 0.3~2
.. 5111, AtO, 01-0.1%, No, 0'
O'2 ~ 0.012-, and since these are AtN0 type and have an average particle size of O,OS ~ 1.0 fi, it is 0.01 ~ 0.
.. 03, or in addition to these basic components, Cr
2 flb or less, v O, 5n or less, N129i or less,
The hot forging machine structural steel contains one or more of Cu 0.3 III or less and Mo 0.3 - or less, with the remainder being F and impurities.
以下に本発明をさらに詳細に説明する。The present invention will be explained in more detail below.
まずAANの平均粒径を0.08〜tonに限定したの
は以下に示す実験による。即ち0.45 % C−0,
25憾5i−0,75%M!1を基本成分とし、At、
N量および圧延加熱の昇温速度、温度、時間を変化させ
、AtNの平均粒径が0.01〜8μの鋼を作製し友。First, the average particle size of AAN was limited to 0.08 to ton based on the experiment shown below. i.e. 0.45% C-0,
25 regrets 5i-0,75%M! 1 as the basic component, At,
By changing the amount of N and the heating rate, temperature, and time of rolling heating, steel with an average grain size of AtN of 0.01 to 8 μm was produced.
これらの鋼片を1200℃に高周波加熱し、鍛造仕上直
後の鋼中のAtN量を絢定した。These steel pieces were high-frequency heated to 1200° C., and the amount of AtN in the steel immediately after forging was determined.
素材中のAjHの平均粒径と鍛造仕上直後のAAN量の
関係を第1図に示す。結晶粒粗大化防止に有効なAAN
は素材中のAtNの平均粒径がO,OSμ未満の場合に
はほとんど検出されない。すなわち、熱間鍛造後に、結
晶粒粗大化に有効なAANを鋼中に存在させるためには
素材中のAANの平均粒径は0、’081以上である必
要がある。さらに、AjNの平均粒径は1μを超えると
鍛造仕上後のAAN量が減少するため、1μ以下が適当
である。Figure 1 shows the relationship between the average grain size of AjH in the material and the amount of AAN immediately after forging. AAN effective in preventing crystal grain coarsening
is hardly detected when the average particle size of AtN in the material is less than O,OSμ. That is, in order for AAN, which is effective in coarsening grains, to exist in the steel after hot forging, the average grain size of AAN in the material must be 0.081 or more. Furthermore, if the average grain size of AjN exceeds 1 μ, the amount of AAN after forging decreases, so it is appropriate that the average grain size is 1 μ or less.
次にAtNの析出量を0601−〜0.03チに限定し
大理由について述べ′る′、嬉2図は0.31 C’
−0,25181−1,3516Mnを基本成分トじA
tNノ平均粒径が01〜0.15μの範囲中でAANの
析出量を変えた棒鋼を製造し鍛造仕上後の結晶粒度との
関係を示したものである。析出量が0.0111を未満
では結晶粒は急激に粗大化し本発明の効果は表われない
。0.01−以上では析出量が増す程結晶粒が微細化す
るか実用的な観点から003チて十分である。Next, we will discuss the main reason for limiting the amount of AtN precipitated to 0.601 - 0.03C.
-0,25181-1,3516Mn as basic component A
This figure shows the relationship between the grain size after forging and finishing of steel bars produced with varying amounts of AAN precipitation within the range of 01 to 0.15 μm in average grain size. If the amount of precipitation is less than 0.0111, the crystal grains will rapidly become coarse and the effects of the present invention will not be apparent. If it is 0.01- or more, the crystal grains become finer as the amount of precipitation increases, or 0.03- or more is sufficient from a practical point of view.
また他の成分の限定理由について詳述すると、まずAt
はムαを析出させる九めに6bt’な元素であるが00
11未満では不十分でお夛、o1チ超では添加に見合っ
た効果が得られないため0.01〜01嗟とした。In addition, to explain in detail the reasons for limiting other ingredients, first of all, At
is the ninth 6bt' element that precipitates mu α,
If it is less than 11, it is insufficient and should be added, and if it exceeds 1, the effect commensurate with the addition cannot be obtained, so it is set to be 0.01 to 0.01.
次にNはA/、と同様AtNを析出させるために必要な
元素であるが9.002−未満では不十分であシ、0.
01211超では鋼を脆化する危険があるため0.00
2〜0.0121とした。Next, N is a necessary element to precipitate AtN like A/, but if it is less than 9.002-, it is insufficient;
If it exceeds 01211, there is a risk of embrittlement of the steel, so 0.00
2 to 0.0121.
またCは機械構造用鋼で強度を得るために不可欠な元素
であるが、0.12−未満では機棹部品として強度が不
足であシ、08慢超では延靭性が極めて低くなるため0
.12〜0.8嗟とした。In addition, C is an essential element for obtaining strength in machine structural steel, but if it is less than 0.12, the strength will be insufficient as a machine rod part, and if it exceeds 0.08, the ductility will be extremely low.
.. The temperature was 12 to 0.8 minutes.
さらに、81は脱酸の目的で加えるが、0.1嘩未満で
は脱酸や)十分でなく、1.0襲超では添加量に見合う
効果が得られないので、その添加範囲を0、1−1.0
嘩とした。Furthermore, 81 is added for the purpose of deoxidizing, but if it is less than 0.1%, it is not sufficient (for deoxidation), and if it is more than 1.0%, the effect commensurate with the amount added cannot be obtained, so the addition range is limited to 0, 1. -1.0
It was a fight.
最後に、Mnは焼入性の増加、および脱硫、硫黄固定作
用のため添加するが、03嚢未満で社効果が不十分であ
り2.5参超では焼入性増加の効果が顕著でなくなるた
め0.3〜2.5膚とした。Finally, Mn is added to increase hardenability, as well as to desulfurize and fix sulfur, but if it is less than 03, the effect is insufficient, and if it is more than 2.5, the effect of increasing hardenability will not be noticeable. Therefore, it was set as 0.3 to 2.5 skin.
以上が本発明鋼の基本成分系であって、かかる成分系と
することによシ熱間鍛造後での結晶粒成長を抑制できる
が、なおこれに加えて強度向上効果を4期待する場合に
はCr l V I Nl l Cu 、 M。The above is the basic composition system of the steel of the present invention, and by using this composition system, grain growth after hot forging can be suppressed. is Cr l V I Nl l Cu, M.
の1種又は211以上を適量含有せしめることができる
。One type or 211 or more of these can be contained in an appropriate amount.
まず、Crは焼入性の増加、焼もどし軟化抵抗の増加に
よシ鋼を強化する効果がある。しかし2g!l超の添加
は高価となりtたKnとの共存で靭性の劣化がおこシや
すくなるため2Is以下とする。First, Cr has the effect of strengthening steel by increasing hardenability and temper softening resistance. But 2g! Addition of more than 1 is expensive and coexistence with Kn tends to cause deterioration of toughness, so the content is set to 2 Is or less.
次に、■は少量の添加で炭化物を析出し鋼材を強化する
働きのため有用な元素であるが、0.516超では膨化
物が粗大化し添加量に見合った強化が得られない、仁の
ため添加の上限を0.5−とした。Next, ■ is a useful element because it works to precipitate carbides and strengthen steel materials when added in small amounts; Therefore, the upper limit of addition was set at 0.5-.
また、Nlは鋼の基地を強靭化する効果がおる元素であ
るが、2−超ではその添加に見合った効果が得られない
ため2チ以下とした。Further, Nl is an element that has the effect of toughening the base of steel, but if it exceeds 2, the effect commensurate with its addition cannot be obtained, so it is set to 2 or less.
さらに、Caは鋼の素地を強化し耐食性を増す元素であ
るが、多量に添加すると製調圧延時の湯流れ、割れの原
因となるため03チ以下とした。Furthermore, Ca is an element that strengthens the base of steel and increases its corrosion resistance, but if added in a large amount, it causes melt flow and cracking during manufacturing and rolling, so it was set to 0.3 or less.
最後に、MOは鋼の焼入性、焼もどし軟化抵抗を増し、
鋼に強靭性を与える元素であるが、高価でありかつ03
チ超の添加では添加量に見合った効果が得られない九め
0.3−以下とした。Finally, MO increases the hardenability and temper softening resistance of steel,
It is an element that gives strength to steel, but it is expensive and
If the amount of addition exceeds 1, the effect commensurate with the amount added cannot be obtained.
以上説明したように、本発明の機械構造用鋼は高温短時
間加熱後の熱間鍛造による結晶粒成長を抑制する効果が
ある。As explained above, the mechanical structural steel of the present invention has the effect of suppressing grain growth due to hot forging after high-temperature short-time heating.
以下実施例によシ本発明の効果をさらに具体的に述べる
。The effects of the present invention will be described in more detail below with reference to Examples.
実施例
第1表に示す化学成分を有する鋼を溶製し、分塊の後程
々の温度で加熱後40φに圧延した。これより切り出し
た40φ×60tの鋼材を誘導加熱によシ第1表の昇温
時間の欄で示される時間で同表中の最高加熱源fまで加
熱し、20秒で15園厚さまで据え込み鍛造を行ない、
10秒後に水中に焼入れた。断面を検鏡し平均粒径を求
めた。Example Steel having the chemical composition shown in Table 1 was melted, heated at a moderate temperature after blooming, and then rolled to a diameter of 40 mm. A 40φ x 60t steel material cut out from this was heated by induction heating to the maximum heating source f in Table 1 for the time indicated in the heating time column in Table 1, and upturned to a thickness of 15 mm in 20 seconds. carry out forging,
After 10 seconds, it was quenched in water. The cross section was examined under a microscope to determine the average particle size.
同表結晶粒[11号の欄で示されるように記号末尾をA
で示し7た本発明鋼では、記号末尾Bの従来鋼よりも2
.5〜5倍細粒であし本発明の効果は明白である。Crystal grains in the same table [as shown in column No. 11, the end of the symbol is A
The steel of the present invention, indicated by 7, is 2
.. The effect of the present invention is obvious when the grains are 5 to 5 times finer.
以上述べた如く本発明鋼は熱間鍛造での結晶粒成長抑制
効果が大きく、機械部品の製造工程での省エネルギーが
可能となシ工業的にその価値は高い・As mentioned above, the steel of the present invention has a great effect of suppressing grain growth during hot forging, and has high industrial value as it enables energy saving in the manufacturing process of mechanical parts.
第1図は素材中のAtN平均粒径と熱間鍛造仕上直後で
のktN析出量の関係を表わす図、第2図は鍛造加熱前
のAAN析出量と鍛造仕上後での結晶粒度番号の関係を
示す図であゐ。
o/ 10
素材中I)AINnヰ均粒径、j
竿2面
0 6.0/Figure 1 shows the relationship between the average grain size of AtN in the material and the amount of ktN precipitated immediately after hot forging, and Figure 2 shows the relationship between the amount of AAN precipitated before forging and the grain size number after forging. This is a diagram showing this. o/ 10 Material I) AIN average grain size, j Rod 2 side 0 6.0/
Claims (2)
.01G、MlO93〜2.5嗟、AJ!0.01〜G
1惨、NO,002〜0.01!嘩を含み、且つこれら
がAtNの形で平均粒径0.08〜1.0μのもので0
.01〜0.03−存在し、残部がF・および不純−か
らなることを特徴とする熱間鍛造用機械構造用鋼(1) C0,12~o,s*, at O,1~1
.. 01G, MlO93~2.5min, AJ! 0.01~G
1 tragedy, NO, 002 ~ 0.01! 0.02, containing particles and having an average particle size of 0.08 to 1.0μ in the form of AtN.
.. 01 to 0.03- present, with the remainder consisting of F and impurities.
哄、M+aO,3〜2.5 Ill、A40.01〜0
1 %、NO,002〜9.01211を含み、且つこ
れらがムAHの形で平均粒@O,OS〜1.0μのもの
で、0.01〜0.03*存在し、さらにCr 2.0
gk以1;、vo、s−以下、N12Is以下、Cm
O,3嚢以7.Mo0.3−以下O1種又は2種以上
を含み、残部がF・および不純物からなることを特徴と
する熱間鍛造用機械構造用鋼。(2) CG, 12~0.81G, 810.1~1. O
哄, M+aO, 3~2.5 Ill, A40.01~0
1%, NO,002~9.01211, and these are present in the form of MUAH with average grain @O,OS~1.0μ, 0.01~0.03*, and further Cr2. 0
gk and above 1;, vo, s- and below, N12Is and below, Cm
O, 3 or more capsules 7. A steel for machine structural use for hot forging, characterized in that it contains one or more types of O below Mo0.3, and the remainder consists of F and impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20509081A JPS58107474A (en) | 1981-12-21 | 1981-12-21 | Hot forging steel for machine structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20509081A JPS58107474A (en) | 1981-12-21 | 1981-12-21 | Hot forging steel for machine structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58107474A true JPS58107474A (en) | 1983-06-27 |
Family
ID=16501257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20509081A Pending JPS58107474A (en) | 1981-12-21 | 1981-12-21 | Hot forging steel for machine structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58107474A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61166946A (en) * | 1985-01-18 | 1986-07-28 | Kobe Steel Ltd | Steel for warm forging |
EP0534164A2 (en) * | 1991-08-28 | 1993-03-31 | Hitachi, Ltd. | Heat-resistant nitride dispersion strengthened alloys |
CN106702263A (en) * | 2016-12-12 | 2017-05-24 | 中国长江三峡集团公司 | Large hydro-generator thrust runner forge piece |
CN108130476A (en) * | 2017-12-01 | 2018-06-08 | 宝鼎科技股份有限公司 | Large high-strength alloy steel hook forging and production method |
WO2019088190A1 (en) * | 2017-10-31 | 2019-05-09 | 日本製鉄株式会社 | Hot forged steel |
CN110218954A (en) * | 2019-04-18 | 2019-09-10 | 江油市长祥特殊钢制造有限公司 | A kind of preparation method of 4Cr13V plastic die steel |
-
1981
- 1981-12-21 JP JP20509081A patent/JPS58107474A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61166946A (en) * | 1985-01-18 | 1986-07-28 | Kobe Steel Ltd | Steel for warm forging |
JPH0465891B2 (en) * | 1985-01-18 | 1992-10-21 | Kobe Steel Ltd | |
EP0534164A2 (en) * | 1991-08-28 | 1993-03-31 | Hitachi, Ltd. | Heat-resistant nitride dispersion strengthened alloys |
CN106702263A (en) * | 2016-12-12 | 2017-05-24 | 中国长江三峡集团公司 | Large hydro-generator thrust runner forge piece |
WO2019088190A1 (en) * | 2017-10-31 | 2019-05-09 | 日本製鉄株式会社 | Hot forged steel |
CN111295457A (en) * | 2017-10-31 | 2020-06-16 | 日本制铁株式会社 | Hot forged steel material |
JPWO2019088190A1 (en) * | 2017-10-31 | 2020-11-12 | 日本製鉄株式会社 | Hot forged steel |
CN108130476A (en) * | 2017-12-01 | 2018-06-08 | 宝鼎科技股份有限公司 | Large high-strength alloy steel hook forging and production method |
CN110218954A (en) * | 2019-04-18 | 2019-09-10 | 江油市长祥特殊钢制造有限公司 | A kind of preparation method of 4Cr13V plastic die steel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3358135B2 (en) | High strength steel excellent in sulfide stress cracking resistance and method of manufacturing the same | |
JP4629816B2 (en) | High strength bolt excellent in delayed fracture resistance and method for producing the same | |
JP3544131B2 (en) | Manufacturing method of medium carbon steel | |
JPS58107474A (en) | Hot forging steel for machine structure | |
JPS62267420A (en) | Manufacture of high tension and high toughness wire rod having superior delayed fracture resistance | |
JPH039168B2 (en) | ||
JPH06271975A (en) | High strength steel excellent in hydrogen embrittlement resistance and its production | |
JPH01242761A (en) | Ultra high strength steel having low yield ratio and its manufacture | |
JPH07188840A (en) | High strength steel excellent in hydrogen embrittlement resistance and its production | |
JPS5914535B2 (en) | Non-heat treated high tensile strength steel line pipe thick plate with unstable ductility and good fracture resistance | |
JP3620099B2 (en) | Method for producing Cr-Mo steel excellent in strength and toughness | |
JPS589816B2 (en) | Manufacturing method of non-thermal rolled steel bar | |
JPS6369951A (en) | Nonmagnetic austenitic stainless steel having high hardness | |
JPH0813028A (en) | Production of precipitation hardening steel material having high tensile strength and high toughness | |
JPH0247240A (en) | Medium carbon tough and hard steel | |
KR100368218B1 (en) | A manufacturing process of a high strength steel with high temper soften resistance | |
Chaudhuri et al. | Influence of prior-austenite grain size and fracture mode on the fracture toughness of 12% Cr steel | |
JPH06104864B2 (en) | Manufacturing method of steel material for non-heat treated bolts with excellent toughness | |
JPH042644B2 (en) | ||
JPH0453940B2 (en) | ||
JP3620098B2 (en) | Method for producing Cr-Mo steel excellent in strength and toughness | |
JPH04193930A (en) | High strength steel for induction hardening | |
JPH073329A (en) | Production of high strength steel pipe low in hardness and yield ratio | |
JPS581020A (en) | Production of steel bar | |
JPH1171630A (en) | Steel for induction hardening |