JPH0453940B2 - - Google Patents

Info

Publication number
JPH0453940B2
JPH0453940B2 JP57120564A JP12056482A JPH0453940B2 JP H0453940 B2 JPH0453940 B2 JP H0453940B2 JP 57120564 A JP57120564 A JP 57120564A JP 12056482 A JP12056482 A JP 12056482A JP H0453940 B2 JPH0453940 B2 JP H0453940B2
Authority
JP
Japan
Prior art keywords
less
steel
stainless steel
following
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57120564A
Other languages
Japanese (ja)
Other versions
JPS5913055A (en
Inventor
Terutaka Tsumura
Yasuo Ootani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP12056482A priority Critical patent/JPS5913055A/en
Publication of JPS5913055A publication Critical patent/JPS5913055A/en
Publication of JPH0453940B2 publication Critical patent/JPH0453940B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、焼入れ−焼戻しあるいは焼ならし−
焼戻しの熱処理をして使用されるマルテンサイト
系クロムステンレス鋼およびその製造方法に関
し、更に詳細には、高温での焼戻しを行なつても
優れた軟化抵抗を示して大きな強度を有するマル
テンサイト系クロムステンレス鋼およびこれを廉
価に製造する方法に関するものである。 マルテンサイト系クロムステンレス鋼は、強度
および耐食性の要求される種々の用途に広く使用
されており、そのステンレス鋼全体の生産に於け
る割合もかなり大きい。また、このマルテンサイ
ト系クロムステンレス鋼はいわゆる構造用鋼とし
て用いられることが多いが、その場合一般に焼入
れ−焼戻しあるいは焼ならし−焼戻しをしてから
使用される。 しかし、マルテンサイト系ステンレス鋼は焼入
れのまゝ、あるいは素材の寸法、形状によつては
焼ならしのままの状態で強度及び耐食性は高い
が、切欠靭性が低く且つ応力腐食割れ等の問題を
生じ易い。したがつて、耐食性に加えて構造用鋼
として切欠靭性等衝撃性能などの面でも優れた性
能を付与するためには焼戻し処理が必要となる。 ところで、マルテンサイト系ステンレス鋼の焼
戻し処理は刃物類、食卓用金物類等に対しては
150〜180℃、バネ類等に対しては400〜450℃でい
わゆる低温焼戻しが施されることが多いが、上述
のような構造用部材に対しては特に靭性に重点が
おかれるために少なくとも600℃以上、望ましく
は650℃以上での高温焼戻しが必要である。 しかしながら、このような高温度で焼戻しを施
した場合、従来の通常のマルテンサイト系ステン
レス鋼では、強度低下が著しく、これは焼戻し軟
化と呼ばれている。したがつて、所望の強度と靭
性を具備させるためには焼戻し軟化抵抗を付与す
ることが必要である。従来は、この焼戻し軟化抵
抗を与えるために、MoやV等の元素を格別に添
加したり(例:Mo≧0.2%、V≧0.15%)、また
Nの固溶強化作用を利用するために意識的に高N
鋼とすることが必要不可欠のことと考えられてい
た。 しかしながら、いたずらに合金元素の含有量を
高めることは、焼戻し軟化抵抗の向上のためには
効果があつても、省資源コスト低減などの観点か
らは問題である。また、MoやVはいわゆるフエ
ライト形成元素であるゆえに、これの多量添加は
δ−フエライトの生成をきたして熱間加工性を損
なう場合がある。一方、意識的なNの多量添加も
分塊、圧延時あるいは熱処理時に鋼材に割れを発
生させる場合があつて歩留り低下をもたらすなど
やはり問題がないとは言い難いものである。 かくして、本発明の目的とするところは、合金
元素の添加を極力控えた、特に650℃以上での高
温焼戻しによつても優れた強度、靭性および耐食
性を有し、且つ歩留りの良いマルテンサイト系ク
ロムステンレス鋼およびそれを廉価に製造する方
法を提供することを目的とする。 ここに、本発明者らは、かかる目的を達成すべ
く鋭意研究を続けたところ、鋼自身の化学成分を
調整し、好ましくはさらに焼入れあるいは焼なら
しの条件を制限することによつて現状の問題点が
解決されることを知見し、本発明を完成した。 すなわち、本発明は、重量%で、C:0.10〜
0.40%、Si:1.0%以下、Mn:0.1%〜1.0%、
Ni:1.0%以下、Cr:11.0%超16.0%以下、V:
0.01〜0.10%、Ti:0.050%以下、Al:0.10%以下
を含み、更に必要により上記組成にMo:0.02〜
0.15%、Nb:0.005〜0.050%およびCu:0.5%以
下のいずれか1種を含み、残部Feおよび不可避
的不純物から成り、次の2式: Ti(%)−3.5×N(%)+0.0070、および 25×C(%)−Cr(%)−Ti(%)+9.50 を満足する組成を有することを特徴とする、高温
での焼戻し軟化抵抗の優れたマルテンサイト系ク
ロムステンレス鋼である。 さらにまた、本発明は上記組成の鋼を好ましく
は925℃以上1100℃以下の加熱温度から焼入れあ
るいは焼ならしを行ない、続いて650℃以上Ac1
点以下の温度で焼戻すことを特徴とする、高温で
の焼戻し軟化抵抗の優れたマルテンサイト系クロ
ムステンレス鋼の廉価な製造方法である。 本発明は、要約すれば、Nを固定するために
Tiを添加した高Cr鋼に微量のVを添加したこと、
およびさらに必要により焼入れあるいは焼ならし
に際しての加熱温度を制限したことを主たる特徴
とするものである。すなわち、本発明者らの知見
によれば、マルテンサイト系クロムステンレス鋼
が微量のVを含むとき、遊離N含有量を低く抑え
且つフエライト生成も抑えることにより強度を確
保するとともに熱間加工性を改善するために、次
の2式を満足するとき; Ti(%)−3.5×N(%)+0.0070、および 25×C(%)−Cr(%)−Ti(%)+9.50 焼入れ後あるいは寸法形状によつては焼ならし
後の焼戻しの際、特に650℃以上での高温焼戻し
に対して大きな焼戻し軟化抵抗が得られる。した
がつて、本発明によればこの優れた焼戻し軟化抵
抗を利用して特に強度に優れた鋼が得られるもの
であつて、後述の実施例に示す如く著しい効果が
認められるものである。 次に本発明において各添加元素の組成割合を限
定した理由は次の通りである。 C:Cは鋼の強度増加に対して、またδ−フエラ
イトの生成を抑制するのに有効な元素である
が、0.40%を超えると炭酸ガス腐食感受性が著
しく大きくなり、また低温靭性の劣化をもたら
す。更に0.40%を超えると分塊、圧延熱処理工
程で割れを発生することが多くなり、歩留りの
低下をきたすので好ましくない。一方、0.10%
未満にすると焼入れあるいは焼ならし時に出現
するδ−フエライトの生成割合が多くなるため
材料の均質化が困難となり、熱間加工性も悪く
なるので、C含有量の下限は0.10%とする。 Si:Siは脱酸剤として有効であるほか、鋼の強度
上昇にも有効である。しかしながら、Siを多量
に含有するとδ−フエライトが生じやすいため
Ac3点以上に加熱しても鋼を均質化しにくくな
り、またSiの多量の添加は靭性も劣化するので
1.0%以下に抑えることが必要である。 Mn:Mnはオーステナイト域を広げまた強度・
靭性の向上にも有効であるが、0.1%未満では
その効果が十分上がらず、一方、1.0%を超え
る範囲で添加してもその効果は飽和の状態とな
り特に効果がないので1.0%を上限とした。 Ni:Niはδ−フエライトを抑制して組織を改善
するのに有効であるほか、強度および靭性の向
上に有効な元素であるが、高価なため必ずしも
多量に添加する必要はなく経済的理由から上限
を1.0%とした。 Cr:Crはクロムステンレス鋼としての本来の耐
銹性を満足させるほか炭酸ガス腐食速度を減少
させるのに11.0%超含有することが必要であ
る。一方、16.0%を超えると、焼入れあるいは
焼ならし温度に加熱した際にδ−フエライトが
多量に生成して不均一組織となり、熱間加工性
が劣化するので好ましくないし、強度も低下す
る。したがつて、本発明においてCr含有量は
11.0%超16.0%以下とする。 V:Vは遊離Nの少ないマルテンサイト系クロム
ステンレス鋼において特に強度の向上に有効で
ある。しかしながら、0.01%未満ではその効果
は小さく、また0.10%を超えると、δ−フエラ
イト生成傾向が大きくなり、且つ靭性が劣化す
るので上限を0.10%とする。 Ti:Tiは遊離Nを少なくするために、換言すれ
ば鋼中NをTiNとして固定するために添加さ
れるものであるが、0.050%を超えると靭性が
劣化し、またδ−フエライト生成傾向が大きく
なるので、Ti添加の上限は0.050%に制限する。 Al:Alは脱酸剤として有効であるが、0.10%を
超えるとその効果は飽和し、むしろ介在物の増
大による疵が発生し、靭性も劣化するから、
0.10%以下とするが、焼入れあるいは焼ならし
時のδ−フエライト抑制のために脱酸に必要十
分な量に抑えるのが望ましい。 Mo、Nb、Cu:Mo、Nb、Cuはいずれも強度の
向上に有効であつて、固溶強化が著しい。Mo
は高価であるため必ずしも多量に添加する必要
はなく、また多量の添加はδ−フエライトの生
成を助長して強度に対する効果を飽和あるいは
減少せしめる。したがつて、Moは添加する場
合の上限を0.15%とした。一方、0.02%未満で
は強度向上に対する効果が小さい。Nbについ
ても多量の添加はδ−フエライトの生成を助長
して強度に対する効果を飽和あるいは減少せし
めるためその上限は0.05%とする。一方、
0.005%未満では強度向上に対する効果が小さ
い。さらに、Mo、Nbは焼戻し時に炭化物を微
細析出させる効果も奏する。Cuは強度向上の
他にフエライト抑制にも有効であるが0.5%を
超えると靭性が劣化するため上限を0.5%とす
る。なお、Cu自体が焼戻し時に析出して析出
強化する。 これらの添加元素Mo、Nb、Cuに関してはMo
およびNbのいずれか1種を添加するかまたはCu
を添加する。さらに、Ti、Nについて式:Ti
(%)−3.5×N(%)+0.007が負の値となるとき微
量Vの焼戻し軟化抵抗に対する効果がなくなり、
またC、Cr、Tiについて式:25×C(%)−Cr
(%)−Ti(%)+9.5が負と値となるときδ−フエ
ライトが多量に生成して不均一組織となり、また
熱間加工性が損なわれるので Ti(%)−3.5×N(%)+0.0070 且つ25×C(%)−Cr(%)−Ti(%)+9.50と
する 以上の成分で構成された鋼を溶製した後、鋼
板、鋼管等に加工後焼入れ−焼戻しまたは焼なら
し−焼戻し処理を施こす。 この際の焼入れあるいは焼ならしの加熱温度は
好ましくは925℃以上、1100℃以下、さらに好ま
しくは950〜1050℃とする。これはこの温度範囲
でδ−フエライトの生成傾向が減少することに基
づく、一方1100℃を超える加熱では結晶粒の粗大
化をも生じ、強度の低下、靭性の劣化を招く。 さらに、上記温度域に加熱保持した後、適当な
冷却媒体に焼入れし、あるいは焼ならしすればδ
−フエライトの生成が抑制され且つ成分系として
特に高温域での焼戻し軟化抵抗に優れるべく調整
したため、その後の650℃以上、Ac1点以下の高
い温度での焼戻しでも高強度が得られる。 また、このようにして得られる均質微細な焼戻
しマルテンサイトを主体とする組織は、低温靭性
に優れ、したがつて耐銹性に加えて、高強度、高
靭性且つ優れた耐炭酸ガス腐食性能をも有する。 かくして、本発明によれば、650℃以上の高温
焼戻しによつてもすぐれた軟化抵抗を示して大き
な強度を有するマルテンサイト系クロムステンレ
ス鋼が安価にしかも歩留りよく製造することがで
きる。 次に実施例により本発明の効果をさらに具体的
に説明する。 実施例 1 下記第1表に示す化学組成を有する各鋼種につ
いて、加熱圧延後975℃から油焼入れし、600〜
760℃で焼戻しして、引張り強度を調べた。その
試験結果を第2表にまとめて示す。 この第2表に示した結果によれば、本発明に係
る鋼は高温焼戻しに際して優れた軟化抵抗を示
し、したがつて、高強度が得られることが明らか
である。 このような結果は、合金元素を低減した廉価な
成分系であつても特に650℃以上の高温焼戻しに
よつて高靭性、高強度さらに、高耐食性のマルテ
ンサイト系クロムステンレス鋼を製造することが
可能なことを示すものであり、したがつて本発明
はその工業的価値が非常に高いものである。
The present invention is characterized by quenching, tempering or normalizing.
Regarding martensitic chromium stainless steel used after tempering heat treatment and its manufacturing method, more specifically, martensitic chromium stainless steel that exhibits excellent softening resistance and high strength even when tempered at high temperatures. The present invention relates to stainless steel and a method for producing the same at low cost. Martensitic chromium stainless steel is widely used in various applications requiring strength and corrosion resistance, and its proportion in the overall production of stainless steel is quite large. Further, this martensitic chromium stainless steel is often used as a so-called structural steel, but in that case, it is generally used after being quenched and tempered or normalized and tempered. However, although martensitic stainless steel has high strength and corrosion resistance in the as-hardened state or, depending on the size and shape of the material, in the normalized state, it has low notch toughness and is prone to problems such as stress corrosion cracking. Easy to occur. Therefore, in order to impart excellent performance in terms of notch toughness and other impact performance as a structural steel in addition to corrosion resistance, a tempering treatment is required. By the way, tempering treatment of martensitic stainless steel is not suitable for cutlery, tableware, etc.
So-called low-temperature tempering is often performed at 150 to 180℃, and 400 to 450℃ for springs, etc., but for structural members such as those mentioned above, emphasis is placed on toughness, so at least High temperature tempering at 600°C or higher, preferably 650°C or higher is required. However, when tempering is performed at such a high temperature, the strength of conventional martensitic stainless steel is significantly reduced, and this is called temper softening. Therefore, in order to provide the desired strength and toughness, it is necessary to impart temper softening resistance. Conventionally, in order to provide this resistance to temper softening, elements such as Mo and V were specifically added (e.g., Mo≧0.2%, V≧0.15%), and in order to utilize the solid solution strengthening effect of N. Consciously high N
It was considered essential to use steel. However, unnecessarily increasing the content of alloying elements is a problem from the viewpoint of resource saving and cost reduction, although it is effective for improving temper softening resistance. Further, since Mo and V are so-called ferrite-forming elements, adding a large amount of them may cause the formation of δ-ferrite, which may impair hot workability. On the other hand, intentional addition of a large amount of N may also cause cracks in the steel material during blooming, rolling, or heat treatment, resulting in a reduction in yield, and it is difficult to say that there are no problems. Thus, the object of the present invention is to create a martensitic material that has excellent strength, toughness, and corrosion resistance even when tempered at a high temperature of 650°C or higher, and has a good yield, with the addition of alloying elements being minimized. The purpose of the present invention is to provide chrome stainless steel and a method for manufacturing it at low cost. The present inventors have continued their intensive research to achieve this objective, and have found that the current state of the art can be improved by adjusting the chemical composition of the steel itself, and preferably by further restricting the quenching or normalizing conditions. They found that the problem was solved and completed the present invention. That is, in the present invention, C: 0.10 to 0.10 by weight%
0.40%, Si: 1.0% or less, Mn: 0.1% to 1.0%,
Ni: 1.0% or less, Cr: over 11.0% and 16.0% or less, V:
0.01-0.10%, Ti: 0.050% or less, Al: 0.10% or less, and if necessary, Mo: 0.02-0.02% or less in the above composition.
0.15%, Nb: 0.005 to 0.050%, and Cu: 0.5% or less, with the balance consisting of Fe and unavoidable impurities, and the following two formulas: Ti (%) - 3.5 × N (%) + 0. 0070, and 25×C (%) - Cr (%) - Ti (%) + 9.50. A martensitic chromium stainless steel with excellent resistance to temper softening at high temperatures. be. Furthermore, the present invention preferably quenches or normalizes the steel having the above composition at a heating temperature of 925°C or higher and 1100°C or lower, and then heats the steel at a heating temperature of 650°C or higher and Ac 1
This is an inexpensive method for producing martensitic chromium stainless steel that has excellent resistance to temper softening at high temperatures, and is characterized by tempering at a temperature below 100%. In summary, the present invention can be summarized as follows:
Adding a small amount of V to high Cr steel with Ti added;
Furthermore, the main feature is that the heating temperature during quenching or normalizing is limited if necessary. That is, according to the findings of the present inventors, when martensitic chromium stainless steel contains a trace amount of V, strength is ensured and hot workability is improved by keeping the free N content low and suppressing ferrite formation. In order to improve, when the following two formulas are satisfied; Ti (%) - 3.5 x N (%) + 0.0070, and 25 x C (%) - Cr (%) - Ti (%) + 9.50. During tempering after normalization, depending on the size and shape, a large resistance to temper softening can be obtained, especially against high-temperature tempering at 650° C. or higher. Therefore, according to the present invention, a steel with particularly excellent strength can be obtained by utilizing this excellent temper softening resistance, and remarkable effects can be seen as shown in the Examples below. Next, the reason why the composition ratio of each additive element is limited in the present invention is as follows. C: C is an effective element for increasing the strength of steel and suppressing the formation of δ-ferrite, but if it exceeds 0.40%, carbon dioxide corrosion susceptibility increases significantly and it also causes deterioration of low temperature toughness. bring. Further, if the content exceeds 0.40%, cracks are likely to occur during the blooming and rolling heat treatment processes, resulting in a decrease in yield, which is not preferable. On the other hand, 0.10%
If it is less than this, the proportion of δ-ferrite that appears during quenching or normalizing increases, making it difficult to homogenize the material and impairing hot workability, so the lower limit of the C content is set to 0.10%. Si: In addition to being effective as a deoxidizer, Si is also effective in increasing the strength of steel. However, if a large amount of Si is contained, δ-ferrite is likely to occur.
Even if heated above 3 points of Ac, it becomes difficult to homogenize the steel, and addition of a large amount of Si also deteriorates toughness.
It is necessary to keep it below 1.0%. Mn: Mn expands the austenite region and increases strength and
It is also effective in improving toughness, but if it is less than 0.1%, the effect will not be sufficiently increased.On the other hand, if it is added in an amount exceeding 1.0%, the effect will be saturated and there will be no particular effect, so 1.0% is the upper limit. did. Ni: Ni is an element that is effective in suppressing δ-ferrite and improving the structure, as well as improving strength and toughness, but it is expensive and does not necessarily need to be added in large amounts for economic reasons. The upper limit was set at 1.0%. Cr: It is necessary to contain more than 11.0% Cr in order to satisfy the inherent rust resistance of chromium stainless steel and to reduce the carbon dioxide corrosion rate. On the other hand, if it exceeds 16.0%, a large amount of δ-ferrite is generated when heated to the quenching or normalizing temperature, resulting in a non-uniform structure, which is not preferable because hot workability deteriorates, and the strength also decreases. Therefore, in the present invention, the Cr content is
More than 11.0% and less than 16.0%. V: V is particularly effective in improving the strength of martensitic chromium stainless steel with low free N content. However, if it is less than 0.01%, the effect is small, and if it exceeds 0.10%, the tendency to form δ-ferrite increases and the toughness deteriorates, so the upper limit is set to 0.10%. Ti: Ti is added to reduce free N, in other words to fix N in steel as TiN, but if it exceeds 0.050%, toughness deteriorates and there is a tendency to form δ-ferrite. Therefore, the upper limit of Ti addition is limited to 0.050%. Al: Al is effective as a deoxidizing agent, but if it exceeds 0.10%, its effect will be saturated, and instead it will cause defects due to increased inclusions and deteriorate toughness.
The content should be 0.10% or less, but it is desirable to keep the content to a level necessary and sufficient for deoxidation to suppress δ-ferrite during quenching or normalizing. Mo, Nb, Cu: Mo, Nb, and Cu are all effective in improving strength, and solid solution strengthening is remarkable. Mo
Since it is expensive, it is not necessarily necessary to add it in a large amount, and addition of a large amount promotes the formation of δ-ferrite and saturates or reduces the effect on strength. Therefore, the upper limit when adding Mo was set at 0.15%. On the other hand, if it is less than 0.02%, the effect on improving strength is small. The upper limit of Nb is set at 0.05% since addition of a large amount of Nb promotes the formation of δ-ferrite and saturates or reduces the effect on strength. on the other hand,
If it is less than 0.005%, the effect on improving strength is small. Furthermore, Mo and Nb also have the effect of finely precipitating carbides during tempering. In addition to improving strength, Cu is also effective in suppressing ferrite, but if it exceeds 0.5%, toughness deteriorates, so the upper limit is set at 0.5%. Note that Cu itself precipitates during tempering and strengthens by precipitation. Regarding these additive elements Mo, Nb, and Cu, Mo
and Nb or Cu.
Add. Furthermore, regarding Ti and N, the formula: Ti
(%) - 3.5 × N (%) + 0.007 becomes a negative value, the effect of a small amount of V on tempering softening resistance disappears,
Also, for C, Cr, and Ti, the formula: 25 x C (%) - Cr
When (%) - Ti (%) + 9.5 becomes a negative value, a large amount of δ-ferrite is generated, resulting in a non-uniform structure, and hot workability is impaired, so Ti (%) - 3.5 × N ( %) +0.0070 and 25 x C (%) - Cr (%) - Ti (%) + 9.50 After melting the steel composed of the above ingredients, quenching after processing into steel plates, steel pipes, etc. Tempering or normalizing - subject to tempering treatment. The heating temperature for quenching or normalizing at this time is preferably 925°C or higher and 1100°C or lower, more preferably 950 to 1050°C. This is based on the fact that the tendency to form δ-ferrite decreases in this temperature range; on the other hand, heating above 1100°C also causes coarsening of crystal grains, leading to a decrease in strength and toughness. Furthermore, after heating and maintaining in the above temperature range, quenching in an appropriate cooling medium or normalizing will result in δ
- Since the formation of ferrite is suppressed and the composition has been adjusted to have excellent tempering softening resistance particularly in high temperature ranges, high strength can be obtained even during subsequent tempering at high temperatures of 650°C or higher and Ac 1 point or lower. In addition, the structure mainly composed of homogeneous fine tempered martensite obtained in this way has excellent low-temperature toughness, and therefore has high strength, high toughness, and excellent carbon dioxide corrosion resistance in addition to rust resistance. It also has Thus, according to the present invention, martensitic chromium stainless steel that exhibits excellent softening resistance and high strength even when tempered at a high temperature of 650° C. or higher can be produced at low cost and with a high yield. Next, the effects of the present invention will be explained in more detail with reference to Examples. Example 1 Each steel type having the chemical composition shown in Table 1 below was oil quenched at 975°C after hot rolling, and then heated at 600°C to
It was tempered at 760°C and its tensile strength was examined. The test results are summarized in Table 2. According to the results shown in Table 2, it is clear that the steel according to the present invention exhibits excellent softening resistance during high temperature tempering, and therefore high strength can be obtained. These results show that even with an inexpensive component system with reduced alloying elements, it is possible to produce martensitic chromium stainless steel with high toughness, high strength, and high corrosion resistance, especially through high-temperature tempering at 650°C or higher. This shows that it is possible, and therefore the present invention has very high industrial value.

【表】【table】

【表】【table】

【表】【table】

【表】 実施例 2 下記第3表に示す化学組成を有する各鋼種につ
いて加熱圧延後1000℃から鋼成分に応じて水また
は油焼入れした後710〜740℃の温度範囲で焼戻し
処理して供試材を得、それぞれについて引張試験
と衝撃試験を行なつた。 その試験結果を第4表にまとめて記す。 この第4表に示す結果によれば本発明に係る鋼
が焼戻し軟化抵抗付与のための元素を格別多量に
添加することなく大きな強度が得られ且つ強度−
靭性のバランスの面で極めて優れたものであるこ
とが明らかである。
[Table] Example 2 Each steel type having the chemical composition shown in Table 3 below was heated and rolled, then quenched in water or oil depending on the steel composition from 1000°C, and then tempered in a temperature range of 710 to 740°C. A tensile test and an impact test were conducted on each material. The test results are summarized in Table 4. According to the results shown in Table 4, the steel according to the present invention can obtain high strength without adding particularly large amounts of elements for imparting resistance to temper softening, and
It is clear that the material has an extremely good balance of toughness.

【表】【table】

【表】【table】

【表】 ズシヤルピー試験片
実施例 3 第5表に示す化学組成を有する各鋼種につい
て、加熱圧延後、鋼成分に応じて900〜1000℃の
温度から水または油焼入れした後、700℃で焼戻
し処理して供試材を得、これから厚さ3mm、幅40
mm、長さ50mmの試験片を切り出し320番エメリー
で研磨して、次の条件で腐食試験を行なつた。 すなわち、上記の研磨した試験片を脱脂、乾燥
させ、次いでオートクレーブに入れ真空脱気後、
オートクレーブ内に脱気済みの人工海水を加え
た。その後、炭酸ガスで30気圧に加圧し液温を
120℃とし500時間維持した。この間試料表面に約
1.5m/秒の流速を与えるように撹拌を行なつた。 試験後は付着物を除いて試験前後の重量差を求
めた。 なお腐食特性値としては、比較鋼である鋼番22
の試験片の腐食量を100とした時の腐食率で表わ
した。 試験結果を第6表にまとめて示す。これによれ
ば本発明に係わる鋼種が耐炭酸ガス腐食性能にも
優れていることが明らかである。
[Table] Example 3 of Zshyarupy test piece For each steel type having the chemical composition shown in Table 5, after hot rolling, water or oil quenching was performed at a temperature of 900 to 1000°C depending on the steel composition, and then tempering treatment was performed at 700°C. A sample material was obtained, with a thickness of 3 mm and a width of 40 mm.
A test piece with a length of 50 mm was cut out, polished with No. 320 emery, and subjected to a corrosion test under the following conditions. That is, the polished test piece was degreased and dried, then placed in an autoclave and degassed under vacuum.
Degassed artificial seawater was added to the autoclave. After that, pressurize to 30 atmospheres with carbon dioxide gas and lower the liquid temperature.
The temperature was maintained at 120°C for 500 hours. During this time, approximately
Stirring was carried out to give a flow rate of 1.5 m/sec. After the test, the weight difference before and after the test was determined after removing the deposits. Furthermore, as for the corrosion characteristic values, steel number 22, which is a comparative steel,
It is expressed as the corrosion rate when the amount of corrosion of the test piece is set as 100. The test results are summarized in Table 6. According to this, it is clear that the steel type according to the present invention also has excellent carbon dioxide corrosion resistance.

【表】【table】

【表】【table】

【表】 実施例 4 下記第7表に示す本発明に係る鋼を加熱圧延
後、種々の温度から油焼入れしてδ−フエライト
量を測定した。その結果を第8表に示す。この結
果、δ−フエライトの生成を抑えて組織を均質化
するためには、925〜1100℃好ましくは950〜1050
℃の温度域からの焼入れあるいは焼ならしが効果
のあることが明らかである。
[Table] Example 4 Steels according to the present invention shown in Table 7 below were heated and rolled, then oil quenched at various temperatures, and the amount of δ-ferrite was measured. The results are shown in Table 8. As a result, in order to suppress the formation of δ-ferrite and homogenize the structure, the temperature must be 925-1100℃, preferably 950-1050
It is clear that quenching or normalizing from a temperature range of °C is effective.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 重量%で、C:0.10〜0.40%、Si:1.0%以
下、Mn:0.1〜1.0%、Ni:1.0%以下、Cr:11.0
%超16.0%以下、V:0.01〜0.10%、Ti:0.050%
以下、Al:0.10%以下を含み、残部Feおよび不
可避的不純物から成り、次の2式: Ti(%)−3.5×N(%)+0.007≧0、および 25×C(%)−Cr(%)−Ti(%)+9.5≧0 を満足する組成を有することを特徴とする、高温
での焼戻し軟化抵抗の優れたマルテンサイト系ク
ロムステンレス鋼。 2 重量%で、C:0.10〜0.40%、Si:1.0%以
下、Mn:0.1〜1.0%、Ni:1.0%以下、Cr:11.0
%超16.0%以下、V:0.01〜0.10%、Ti:0.050%
以下、Al:0.10%以下、Cu:0.5%以下を含み、
残部Feおよび不可避的不純物から成り、次の2
式: Ti(%)−3.5×N(%)+0.007≧0、および 25×C(%)−Cr(%)−Ti(%)+9.5≧0 を満足する組成を有することを特徴とする、高温
での焼戻し軟化抵抗の優れたマルテンサイト系ク
ロムステンレス鋼。 3 重量%で、C:0.10〜0.40%、Si:1.0%以
下、Mn:0.1〜1.0%、Ni:1.0%以下、Cr:11.0
%超16.0%以下、V:0.01〜0.10%、Ti:0.05%
以下、Al:0.10%以下に加えて、Mo:0.02〜0.15
%およびNb:0.005〜0.050%のいずれか1種を含
み、残部Feおよび不可避的不純物から成り、次
の2式: Ti(%)−3.5×N(%)+0.007≧0、および 25×C(%)−Cr(%)−Ti(%)+9.5≧0 を満足する組成を有することを特徴とする、高温
での焼戻し軟化抵抗の優れたマルテンサイト系ク
ロムステンレス鋼。 4 重量%で、C:0.10〜0.40%、Si:1.0%以
下、Mn:0.1〜1.0%、Ni:1.0%以下、Cr:11.0
%超16.0%以下、V:0.01〜0.10%、Ti:0.050%
以下、Al:0.10%以下を含み、残部Feおよび不
可避的不純物から成り、次の2式: Ti(%)−3.5×N(%)+0.007≧0、および 25×C(%)−Cr(%)−Ti(%)+9.5≧0 を満足する組成の鋼を925℃以上、1100℃以下の
加熱温度から焼入れあるいは焼きならしを行い、
続いて650℃以上Ac1点以下の温度で焼戻すこと
を特徴とする、高温での焼戻し軟化抵抗の優れた
マルテンサイト系クロムステンレス鋼の製造方
法。 5 重量%で、C:0.10〜0.40%、Si:1.0%以
下、Mn:0.1〜1.0%、Ni:1.0%以下、Cr:11.0
%超16.0%以下、V:0.01〜0.10%、Ti:0.050%
以下、Al:0.10%以下、Cu:0.5%以下を含み、
残部Feおよび不可避的不純物から成り、次の2
式: Ti(%)−3.5×N(%)+0.007≧0、および 25×C(%)−Cr(%)−Ti(%)+9.5≧0 を満足する組成の鋼を925℃以上、1100℃以下の
加熱温度から焼入れあるいは焼きならしを行い、
続いて650℃以上Ac1点以下の温度で焼戻すこと
を特徴とする、高温での焼戻し軟化抵抗の優れた
マルテンサイト系クロムステンレス鋼の製造方
法。 6 重量%で、C:0.10〜0.40%、Si:1.0%以
下、Mn:0.1〜1.0%、Ni:1.0%以下、Cr:11.0
%超16.0%以下、V:0.01〜0.10%、Ti:0.050%
以下、Al:0.10%以下に加えて、Mo:0.02〜0.15
%およびNb:0.005〜0.050%のいずれか1種を含
み、残部Feおよび不可避的不純物から成り、次
の2式: Ti(%)−3.5×N(%)+0.007≧0、および 25×C(%)−Cr(%)−Ti(%)+9.5≧0 を満足する組成の鋼を925℃以上、1100℃以下の
加熱温度から焼入れあるいは焼きならしを行い、
続いて650℃以上Ac1点以下の温度で焼戻すこと
を特徴とする、高温での焼戻し軟化抵抗の優れた
マルテンサイト系クロムステンレス鋼の製造方
法。
[Claims] 1% by weight: C: 0.10 to 0.40%, Si: 1.0% or less, Mn: 0.1 to 1.0%, Ni: 1.0% or less, Cr: 11.0
% over 16.0%, V: 0.01-0.10%, Ti: 0.050%
The following contains Al: 0.10% or less, the balance consists of Fe and unavoidable impurities, and the following two formulas: Ti (%) - 3.5 × N (%) + 0.007 ≧ 0, and 25 × C (%) - Cr (%) - Ti (%) + 9.5≧0 A martensitic chromium stainless steel with excellent resistance to temper softening at high temperatures, characterized by having a composition that satisfies the following. 2 In weight%, C: 0.10 to 0.40%, Si: 1.0% or less, Mn: 0.1 to 1.0%, Ni: 1.0% or less, Cr: 11.0
% over 16.0%, V: 0.01-0.10%, Ti: 0.050%
Below, Al: 0.10% or less, Cu: 0.5% or less,
The remainder consists of Fe and unavoidable impurities, and the following two
It is characterized by having a composition that satisfies the formula: Ti (%) - 3.5 × N (%) + 0.007≧0, and 25 × C (%) - Cr (%) - Ti (%) + 9.5≧0. A martensitic chromium stainless steel with excellent resistance to tempering and softening at high temperatures. 3 In weight%, C: 0.10 to 0.40%, Si: 1.0% or less, Mn: 0.1 to 1.0%, Ni: 1.0% or less, Cr: 11.0
% over 16.0%, V: 0.01-0.10%, Ti: 0.05%
Below, in addition to Al: 0.10% or less, Mo: 0.02 to 0.15
% and Nb: 0.005 to 0.050%, the balance consists of Fe and unavoidable impurities, and the following two formulas: Ti (%) - 3.5 × N (%) + 0.007 ≧ 0, and 25 × A martensitic chromium stainless steel with excellent resistance to temper softening at high temperatures, characterized by having a composition satisfying C (%) - Cr (%) - Ti (%) + 9.5≧0. 4 In weight%, C: 0.10 to 0.40%, Si: 1.0% or less, Mn: 0.1 to 1.0%, Ni: 1.0% or less, Cr: 11.0
% over 16.0%, V: 0.01-0.10%, Ti: 0.050%
The following contains Al: 0.10% or less, the balance consists of Fe and unavoidable impurities, and the following two formulas: Ti (%) - 3.5 × N (%) + 0.007 ≧ 0, and 25 × C (%) - Cr (%) - Ti (%) + 9.5≧0 Steel with a composition satisfying the following is quenched or normalized at a heating temperature of 925°C or higher and 1100°C or lower,
A method for producing martensitic chromium stainless steel having excellent resistance to temper softening at high temperatures, which is then tempered at a temperature of 650°C or higher and Ac 1 point or lower. 5 In weight%, C: 0.10 to 0.40%, Si: 1.0% or less, Mn: 0.1 to 1.0%, Ni: 1.0% or less, Cr: 11.0
% over 16.0%, V: 0.01-0.10%, Ti: 0.050%
Below, Al: 0.10% or less, Cu: 0.5% or less,
The remainder consists of Fe and unavoidable impurities, and the following two
Formula: Steel with a composition satisfying the formula: Ti (%) - 3.5 x N (%) + 0.007≧0 and 25 x C (%) - Cr (%) - Ti (%) + 9.5≧0 at 925℃ Above, quenching or normalizing is performed from a heating temperature of 1100℃ or less,
A method for producing martensitic chromium stainless steel having excellent resistance to temper softening at high temperatures, which is then tempered at a temperature of 650°C or higher and Ac 1 point or lower. 6 In weight%, C: 0.10 to 0.40%, Si: 1.0% or less, Mn: 0.1 to 1.0%, Ni: 1.0% or less, Cr: 11.0
% over 16.0%, V: 0.01-0.10%, Ti: 0.050%
Below, in addition to Al: 0.10% or less, Mo: 0.02 to 0.15
% and Nb: 0.005 to 0.050%, the balance consists of Fe and unavoidable impurities, and the following two formulas: Ti (%) - 3.5 × N (%) + 0.007 ≧ 0, and 25 × Harden or normalize steel with a composition satisfying C (%) - Cr (%) - Ti (%) + 9.5 ≧ 0 at a heating temperature of 925 ° C or higher and 1100 ° C or lower,
A method for producing martensitic chromium stainless steel having excellent resistance to temper softening at high temperatures, which is then tempered at a temperature of 650°C or higher and Ac 1 point or lower.
JP12056482A 1982-07-13 1982-07-13 Stainless steel and its manufacture Granted JPS5913055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12056482A JPS5913055A (en) 1982-07-13 1982-07-13 Stainless steel and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12056482A JPS5913055A (en) 1982-07-13 1982-07-13 Stainless steel and its manufacture

Publications (2)

Publication Number Publication Date
JPS5913055A JPS5913055A (en) 1984-01-23
JPH0453940B2 true JPH0453940B2 (en) 1992-08-28

Family

ID=14789424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12056482A Granted JPS5913055A (en) 1982-07-13 1982-07-13 Stainless steel and its manufacture

Country Status (1)

Country Link
JP (1) JPS5913055A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61276953A (en) * 1985-05-31 1986-12-06 Nippon Steel Corp Martensitic stainless steel not causing surface cracking by polishing
DZ2530A1 (en) * 1997-12-19 2003-02-01 Exxon Production Research Co Process for the preparation of a steel sheet, this steel sheet and process for strengthening the resistance to the propagation of cracks in a steel sheet.
US6254698B1 (en) 1997-12-19 2001-07-03 Exxonmobile Upstream Research Company Ultra-high strength ausaged steels with excellent cryogenic temperature toughness and method of making thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55128566A (en) * 1979-03-26 1980-10-04 Sumitomo Metal Ind Ltd Highly corrosion resistant steel for well pipe use

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55128566A (en) * 1979-03-26 1980-10-04 Sumitomo Metal Ind Ltd Highly corrosion resistant steel for well pipe use

Also Published As

Publication number Publication date
JPS5913055A (en) 1984-01-23

Similar Documents

Publication Publication Date Title
US6793744B1 (en) Martenstic stainless steel having high mechanical strength and corrosion
EP0081592B1 (en) Brake discs of low-carbon martensitic stainless steel
JPS63230851A (en) Low-alloy steel for oil well pipe excellent in corrosion resistance
CN113584407A (en) High-strength high-temperature corrosion resistant martensitic stainless steel and manufacturing method thereof
JPS63230847A (en) Low-alloy steel for oil well pipe excellent in corrosion resistance
JPS6048582B2 (en) Stainless steel for razor blades with high heat treatment hardness
JP3328967B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JPS5940901B2 (en) Corrosion-resistant austenitic stainless steel
JPH0453940B2 (en)
JPS625986B2 (en)
JPH07188840A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
GB2368849A (en) Martensitic stainless steel
JP3417016B2 (en) Manufacturing method of high toughness martensitic stainless steel seamless steel pipe with excellent hot workability and corrosion resistance
JP3201081B2 (en) Stainless steel for oil well and production method thereof
JP3620099B2 (en) Method for producing Cr-Mo steel excellent in strength and toughness
JPH07179943A (en) Production of high toughness martensitic strainless steel pipe excellent in corrosion resistance
JPH0860238A (en) Production of martensitic stainless steel excellent in hot workability and sulfide stress cracking resistance
JP3250263B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JPS6128003B2 (en)
KR100262440B1 (en) Cr-mo alloy steel and the manufacturing method of low-temperature bolt-nut
JPH11279713A (en) Martensitic stainless steel for disk brake excellent in rust resistance and heat degradation resistance
JP4010017B2 (en) Method for producing martensitic stainless steel pipe with excellent SSC resistance
JP2672430B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JPH073327A (en) Production of metastable austenitic stainless steel sheet excellent in season cracking resistance at the time of production
KR940007370B1 (en) Method of manufacturing steel pipe