KR100368218B1 - A manufacturing process of a high strength steel with high temper soften resistance - Google Patents

A manufacturing process of a high strength steel with high temper soften resistance Download PDF

Info

Publication number
KR100368218B1
KR100368218B1 KR10-1998-0029682A KR19980029682A KR100368218B1 KR 100368218 B1 KR100368218 B1 KR 100368218B1 KR 19980029682 A KR19980029682 A KR 19980029682A KR 100368218 B1 KR100368218 B1 KR 100368218B1
Authority
KR
South Korea
Prior art keywords
steel
strength
tensile strength
toughness
present
Prior art date
Application number
KR10-1998-0029682A
Other languages
Korean (ko)
Other versions
KR20000009350A (en
Inventor
서인식
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-1998-0029682A priority Critical patent/KR100368218B1/en
Publication of KR20000009350A publication Critical patent/KR20000009350A/en
Application granted granted Critical
Publication of KR100368218B1 publication Critical patent/KR100368218B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명은 인장강도 110kgf/㎟급 고장력강의 제조방법에 관한 것이며; 그 목적은 종래 90kgf/㎟급 강과 유사한 화학조성의 강에 탄질화물 형성원소를 미량 첨가하고 직접소입 공정을 적용하여 소려연화저항성이 우수한 인장강도 110kgf/㎟급 고장력강판의 제조방법을 제공함에 있다.The present invention relates to a method of producing a tensile strength 110kgf / mm2 high tensile steel; The purpose of the present invention is to provide a method for producing a tensile strength 110kgf / mm2 high tensile strength steel sheet having excellent softening resistance by adding a small amount of carbonitride forming elements to the steel of chemical composition similar to the conventional 90kgf / mm2 grade steel and applying a direct quenching process.

상기 목적을 달성하기 위한 본 발명은, 중량%로 C:0.13-0.18%, Mn:0.2-1.5%, Si:0.15-0.35%, P:0.02%이하, S:0.008% 이하, Ni:2.0-4.0%, Cr:0.5-2.0%, Mo:0.3-1.0%, Nb:0.02-0.06%, Ti:0.02-0.06%, Sol-Al: 0.02-0.06%와 나머지 Fe 및 기타 불가피한 불순물로 이루어진 슬라브를 1150-1300℃ 온도에서 가열하여 열간압연한 다음, 30초 이내에 냉각을 개시하여 10-50℃/sec의 냉각속도로 상온까지 냉각한 후 550-700℃에서 소려처리하는 소려연화저항성이 우수한 고장력강의 제조방법에 관한 것을 그 기술적요지로 한다.The present invention for achieving the above object, in the weight% C: 0.13-0.18%, Mn: 0.2-1.5%, Si: 0.15-0.35%, P: 0.02% or less, S: 0.008% or less, Ni: 2.0- A slab consisting of 4.0%, Cr: 0.5-2.0%, Mo: 0.3-1.0%, Nb: 0.02-0.06%, Ti: 0.02-0.06%, Sol-Al: 0.02-0.06% and the remaining Fe and other unavoidable impurities Hot-rolled steel with high softening resistance, which is heated at 1150-1300 ℃ and hot rolled, then starts cooling within 30 seconds, cooled to room temperature at a cooling rate of 10-50 ℃ / sec, and then treated at 550-700 ℃. The technical subject matter is a manufacturing method.

Description

소려연화 저항성이 우수한 고장력강의 제조방법{A manufacturing process of a high strength steel with high temper soften resistance}A manufacturing process of a high strength steel with high temper soften resistance}

본 발명은 인장강도 110kgf/㎟급 고장력강의 제조방법에 관한 것으로, 보다 상세하게는, 종래 90kgf/㎟급 강과 유사한 화학조성의 강에 탄질화물 형성원소를 미량 첨가하고 직접소입 공정을 적용하여 소려연화저항성이 우수한 인장강도 110kgf/㎟급 고장력강판을 제조하는 방법에 관한 것이다.The present invention relates to a method of manufacturing a tensile strength 110kgf / mm2 high tensile strength steel, more specifically, a small amount of carbonitride forming element in a chemical composition similar to the conventional 90kgf / mm2 grade steel and softened by applying the direct hardening process It relates to a method of manufacturing a high tensile strength 110kgf / mm2 high tensile strength steel sheet.

일반적으로 인장강도 90kgf/㎟급 이상의 고장력강은 마르텐사이트 조직을 확보하기 위해서 소입소려 열처리에 의해 제조하고 있으며, 이때의 소려처리는 550℃이상의 고온에서 행하고 있으며, 특히 충격인성등의 특성이 중요한 경우에 행해지고 있다.In general, high tensile steels with a tensile strength of 90kgf / mm2 or more are manufactured by hardening and annealing heat treatment to secure martensitic structure. At this time, the antireflection treatment is performed at a high temperature of 550 ° C or higher. It is done.

그런데, 이와 같이 고온에서 소려처리할때의 문제점은 강의 강도가 급격히 감소한다는 것이다.However, the problem with the soaking treatment at high temperatures is that the strength of the steel is drastically reduced.

그 일례로 90kgf/㎟급 고장력강으로 널리 알려진 HY100강종은, 소입소려처리에 의해서 제조되고 있으며 그 대표적인 제조방법은 다음과 같다(MIL-S-16116K(SH)). 즉, 중량%로, C:0.15-0.20%, Mn:0.2-1.5%, Si:0.15-0.38%, P:0.015%이하, S:0.008%이하, Ni:2.75-3.5%, Cr:1.3-1.7%, Mo:0.35-0.45%, V:0.03%이하 및 나머지 Fe와 기타 불가피한 원소로 구성되는 슬라브를 1150-1300℃에서 충분히 가열하고, 각 압연패스(pass)당 10-30%의 압하율 및 900℃이상의 압연 마무리온도의 조건으로 열간압연을 한 다음, 공냉한 후 다시 900℃이상으로 재가열하여 소입한후 550-650℃에서 소려처리하여 제조하고 있다.As an example, HY100 steel, widely known as a 90kgf / mm2 high tensile steel, is manufactured by hardening annealing and the typical manufacturing method is as follows (MIL-S-16116K (SH)). Namely, by weight%, C: 0.15-0.20%, Mn: 0.2-1.5%, Si: 0.15-0.38%, P: 0.015% or less, S: 0.008% or less, Ni: 2.75-3.5%, Cr: 1.3- The slab composed of 1.7%, Mo: 0.35-0.45%, V: 0.03% or less and the remaining Fe and other unavoidable elements is sufficiently heated at 1150-1300 ° C., and a reduction ratio of 10-30% per each rolling pass is obtained. And hot rolling under a rolling finishing temperature of 900 ° C. or higher, followed by air cooling and reheating to 900 ° C. or higher, followed by annealing at 550-650 ° C.

최근에는 국방산업을 필두로 강의 고강도화가 요구되고 있어 상기한 종래강의 강도를 개선할 것이 요구되고 있다. 이를 위해 종래강을 보다 낮은 온도에서 소려열처리를 실시하면 고강도는 얻을 수 있다. 그러나, 소려열처리 온도가 낮아지는 경우에는 소려마르텐사이트 취화(tempered martensite embrittlement) 현상에 의한 인성감소를 일으키는 문제점이 있다(출처-저자 :G.Krauss, 서명:Principles of Treatment of steel). 따라서, 인성을 해치지 않고 강도를 증가시키기 위한 다른 방법으로, C의 증가와 함께 고가인 Ni, Cr, Mo, Co 등의 합금원소를 크게 증가시키는 방법이 고려되고 있으나, 이러한 방법은 탄소당량 증가에 따른 용접성 저하는 물론, 생산비용의 큰 증가를 초래하는 문제점이 있다.In recent years, the strength of steel has been demanded, especially in the defense industry, and there is a demand for improving the strength of the conventional steel. For this purpose, high strength can be obtained by performing heat treatment of conventional steel at a lower temperature. However, when the sour heat treatment temperature is lowered, there is a problem of reducing the toughness due to tempered martensite embrittlement (Source-author: G. Krauss, signature: Principles of Treatment of steel). Therefore, as another method for increasing the strength without harming the toughness, a method of increasing the alloying elements, such as Ni, Cr, Mo, Co, etc., which is expensive with the increase of C, is considered. Decreased weldability, of course, there is a problem that causes a large increase in production costs.

이에, 본 발명자는 고장력강에서 합금원소의 큰 증가와 인성의 큰 감소없이 강도를 증가시키는 방법에 대하여 심도있는 연구와 실험을 행하고, 그 결과에 근거하여 본 발명을 제안하게 이르렀다.Accordingly, the present inventors have conducted in-depth studies and experiments on the method of increasing the strength of the high tensile steel without a large increase in the alloying elements and a great decrease in the toughness, and have come to propose the present invention based on the results.

즉, 본 발명은 종래의 90kgf/㎟급 강과 유사한 화학조성의 강에 탄질화물 형성원소를 미량첨가하고, 직접소입 공정을 적용함으로서 소려연화저항성이 우수한 인장강도 110kgf/㎟급 고장력강의 제조방법을 제공하는데, 그 목적이 있다.That is, the present invention provides a method for producing high tensile strength 110kgf / mm2 high tensile strength steel by adding a small amount of carbonitride forming elements to a chemical composition steel similar to the conventional 90kgf / mm2 grade steel and applying a direct quenching process. There is a purpose.

도 1은 발명재와 비교재의 소려온도에 따른 경도변화를 나타내는 그래프1 is a graph showing the change in hardness according to the considered temperature of the invention and the comparative material

도 2는 발명재 및 비교재의 미세한 석출물을 보여주는 투과전자 현미경사진Figure 2 is a transmission electron micrograph showing the fine precipitate of the invention and the comparative material

도 3은 발명재와 비교재의 인장강도-충격인성 관계를 나타내는 그래프3 is a graph showing the tensile strength-impact toughness relationship between the invention material and the comparative material

상기 목적을 달성하기 위한 본 발명의 고장력강의 제조방법은, 중량%로 C:0.13-0.18%, Mn:0.2-1.5%, Si:0.15-0.35%, P:0.02%이하, S:0.008% 이하, Ni:2.0-4.0%, Cr:0.5-2.0%, Mo:0.3-1.0%, Nb:0.02-0.06%, Ti:0.02-0.06%, Sol-Al: 0.02-0.06%, 나머지 Fe 및 기타 불가피한 불순물로 이루어진 강 슬라브를 1150-1300℃ 온도에서 가열하여 열간압연한 다음, 30초 이내에 냉각을 개시하여 10-50℃/sec의 냉각속도로 상온까지 냉각한 후 550-700℃에서 소려처리하는 것을 포함하여 구성된다.The method for producing high tensile steel of the present invention for achieving the above object, by weight% C: 0.13-0.18%, Mn: 0.2-1.5%, Si: 0.15-0.35%, P: 0.02% or less, S: 0.008% or less , Ni: 2.0-4.0%, Cr: 0.5-2.0%, Mo: 0.3-1.0%, Nb: 0.02-0.06%, Ti: 0.02-0.06%, Sol-Al: 0.02-0.06%, remaining Fe and other unavoidable The steel slab made of impurity was heated at 1150-1300 ℃ and hot rolled, and then started cooling within 30 seconds, cooled to room temperature at a cooling rate of 10-50 ℃ / sec, and then treated at 550-700 ℃. It is configured to include.

이하, 상기 성분범위 및 제조조건 한정 이유에 대해서 설명한다.Hereinafter, the above-mentioned ingredient range and the reason for limitation of manufacturing conditions are demonstrated.

상기 C는 고장력강에서 주요 강화원소로서 그 함량이 증가하면 소입성 및 강도가 증가되지만 용접성 및 인성을 해치고 반대로 그 함량이 감소하면 소입성 및 강도가 감소하여 강도확보가 불가능하므로, 그 함량은 0.13-0.18%로 제한하는 것이 바람직하다.The C is a major reinforcing element in high tensile steel, and its content increases as hardening and toughness increase, but on the contrary, when weldable and toughness decreases, hardening and hardening are not possible because its content decreases. It is desirable to limit it to 0.18%.

상기 Mn도 소입성을 향상시켜 강도를 증가시키는 효과가 있으나 과도하게 첨가될 경우에 용접성에 유해하므로, 그 함량은 0.2-1.5%로 제한하는 것이 바람직하다.The Mn also has an effect of increasing the hardenability by increasing the hardenability, but when excessively added, it is harmful to weldability, and therefore, the content thereof is preferably limited to 0.2-1.5%.

상기 Si 는 탈산제로 첨가되는 성분이며, 그 함량이 증가하면 항복강도는 증가하지만 연성-취성 천이온도를 높여 인성을 해치고 용접성에도 유해하므로, 그 함량은0.15-0.35%로 제한하는 것이 바람직하다.The Si is a component to be added as a deoxidizer, the yield strength increases but the increase in the ductile-brittle transition temperature to reduce toughness and also harmful to weldability, the content is preferably limited to 0.15-0.35%.

상기 P과 S는 제강과정에서 피할수 없는 불순물 원소로서 인성 및 용접성에 유해한 원소이므로 P와 S함량은 각각 0.02%이하 및 0.008% 이하로 제한하는 것이 바람직하다.Since P and S are inevitable impurity elements in the steelmaking process, they are harmful to toughness and weldability, so P and S contents are preferably limited to 0.02% or less and 0.008% or less, respectively.

상기 Ni은 강의 소입성을 증가시키는 한편, 연성-취성 천이온도를 낮춰 인성을 개선시키는 고장력강의 필수원소이지만, 고가인 관계로, 그 함량은 2.0-4.0%로 제한하는 것이 바람직하다.Ni is an essential element of high tensile strength steel which increases the hardenability of the steel and improves the toughness by lowering the ductile-brittle transition temperature. However, the Ni content is preferably limited to 2.0-4.0%.

상기 Cr 과 Mo은 강의 소입성 향상을 위해서 필수적인 원소일뿐만 아니라 550℃이상의 고온소려처리시 소려연화를 억제하여 강도를 현저히 증가시키는 원소이며 그 첨가량이 증가할수록 고온소려처리시 소려연화를 억제하는 효과는 증가한다. 한편 550℃이상의 고온에서 소려연화를 억제하기 위한 목적으로 Cr과 Mo를 첨가할 경우에는 Cr은 5.0%, Mo는 1.0%이상을 첨가해야 효과적인 것으로 알려져 있다(출처-저자 :G.Krauss, 서명:Principles of Treatment of steel). 그러나, Cr과 Mo의 첨가량이 과도하게 증가함에 따라 용접성을 해치며 또한 제조원가가 크게 증가하기 때문에 바람직하지 않다. 따라서, 본 발명에서는 주로 소입성 증가를 목적으로 첨가하였으며 Cr은 0.5-2.0%, Mo은 0.3-1.0%로 각각 제한한다.The Cr and Mo are not only essential elements for improving the hardenability of steel, but also significantly increase the strength by suppressing softening at high temperatures of more than 550 ° C. and suppressing softening at high temperatures when the amount is added. Increases. On the other hand, when Cr and Mo are added for the purpose of suppressing softening at high temperature above 550 ° C, it is known that 5.0% of Cr and 1.0% of Mo should be added (Source-Author: G.Krauss, Signature: Principles of Treatment of steel). However, it is not preferable because the addition amount of Cr and Mo impairs weldability and the manufacturing cost increases significantly. Therefore, in the present invention, mainly added for the purpose of increasing the hardenability, Cr is 0.5-2.0%, Mo is limited to 0.3-1.0%, respectively.

상기 Ti과 Nb의 첨가량이 작은 경우에는 첨가된 Ti과 Nb이 주조와 압연과정을 통하여 상당히 큰 제2상으로 석출하며 압연완료 후에 강에 고용상태로 존재하는 함량이 거의 없게 되며 이 경우에는 600℃ 부근에서 소려처리하는 동안 강도가 급격히 감소하는 종래강과 유사한 소려연화거동을 보인다. 한편, Ti과 Nb의 첨가량이 증가할수록 압연완료후에 고용상태로 존재하는 Ti과 Nb의 함량이 증가하여 600℃ 부근에서의 소려연화저항성이 증가하지만 과도하게 첨가할 경우에 연속주조중의 노즐막힘 및 산화물과 유화물 등의 형성에 의한 인성감소의 문제점이 있으며 또한, 제조원가가 증가하기 때문에 그 첨가량은 각각 0.02-0.06%로 제한하는 것이 바람직하다.When the addition amount of Ti and Nb is small, the added Ti and Nb precipitate into a considerably large second phase through casting and rolling, and there is almost no content in solid solution in the steel after the rolling is completed. It exhibits a soothing softening behavior similar to that of conventional steels, in which the strength sharply decreases during the souring treatment in the vicinity. On the other hand, as the amount of Ti and Nb is increased, the content of Ti and Nb in solid solution after rolling is increased to increase the softening resistance at around 600 ° C, but when excessively added, the nozzle clogging during continuous casting and There is a problem of reducing the toughness due to the formation of oxides, emulsions, and the like, and since the manufacturing cost increases, the amount of addition is preferably limited to 0.02-0.06%.

상기 Sol-Al은 탈산을 위해서 필수적인 원소로서 인성을 개선시키는 효과가 있으나 그 함량이 과도하게 증가할 경우에 강중의 알루미늄 산화물 증가로 오히려 인성을 해치게 되므로, 그 함량은 0.02-0.06%로 제한하는 것이 바람직하다.Sol-Al has an effect of improving toughness as an essential element for deoxidation, but when the content is excessively increased, the toughness is rather deteriorated due to the increase of aluminum oxide in the steel, so the content is limited to 0.02-0.06%. desirable.

본 발명에서는 상기와 같은 조성으로 이루어진 강 슬라브를 1150-1300℃로 가열하는 것이 바람직한데, 그 이유는 가열온도가 1150℃이하인 경우에는 압연시 변형저항의 증가로 과도한 압연부하를 초래하며, 1300℃이상의 경우에는 오스테나이트 결정립의 이상성장에 의한 조직의 불균일을 초래하여 결과적으로 인성을 해치게 되기 때문이다.In the present invention, it is preferable to heat the steel slab having the composition as described above to 1150-1300 ℃, the reason is that when the heating temperature is less than 1150 ℃ causes an excessive rolling load due to an increase in deformation resistance during rolling, 1300 ℃ This is because in the above case, unevenness of the tissue due to abnormal growth of the austenite crystal grains is caused and the toughness is subsequently damaged.

상기와 같이 가열된 슬라브를 열간압연한 다음 냉각하는데, 이때의 냉각개시까지의 유지시간은 그 시간이 짧을수록 제어압연 및 직접소입에 의한 강도와 인성증가 효과를 충분히 확보할 수 있으며, 그 유지시간이 너무 길면 오스테나이트의 재결정에 의해서 제어압연 효과가 줄어들게 되므로 30초 이하로 제한하는 것이 바람직하다.The slab heated as described above is hot rolled and then cooled, and the holding time until the start of cooling at this time can sufficiently secure the effect of increasing strength and toughness by control rolling and direct quenching, and the holding time If it is too long, the control rolling effect is reduced by recrystallization of austenite, so it is preferable to limit it to 30 seconds or less.

상기와 열연강판을 냉각하는 경우 냉각속도는 10-50℃/sec로 설정하는 것이 바람직한데, 그 이유는 냉각속도가 빠를수록 마르텐사이트 조직확보에 의한 마르텐사이트의 강도증가의 측면에서 유리하지만 너무 과도하게 빠르면 심한 판변형을 유발하고, 냉각속도가 너무 느리면 상부 베이나이트 등의 연질조직 발생으로 강도의 저하를 초래하기 때문이다.In the case of cooling the hot rolled steel sheet, it is preferable to set the cooling rate to 10-50 ° C./sec, because the faster the cooling rate, the more advantageous in terms of increasing the strength of martensite by securing martensite structure. If it is too fast to cause severe plate deformation, if the cooling rate is too slow because the soft tissues such as the upper bainite causes a decrease in strength.

상기와 같이 상온으로 냉각한 다음, 550-700℃의 온도범위에서 소려처리 한다. 소려온도는 강도와 인성에 중요한 인자로서 그 온도가 550℃이하이면 강도는 증가하나 소려마르텐사이트 취화 현상에 의해서 인성이 현저히 감소하며, 700℃이상이면 인성은 크게 증가하나 강도가 급격히 감소하여 110gf/㎟의 강도 확보가 불가능하게 된다.After cooling to room temperature as described above, it is treated in a temperature range of 550-700 ℃. Sour temperature is an important factor for strength and toughness.The temperature increases below 550 ℃, but the toughness decreases significantly due to the sour martensite embrittlement. It is impossible to secure the strength of mm 2.

이하, 본 발명을 실시예를 통하여 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예]EXAMPLE

아래 표 1과 같이 조성되는 강슬라브를 1250℃에서 충분히 가열하여 아래 표 2의 조건으로 압연 및 열처리하여 제조한 다음, 제조된 각 시편에 대하여 기계적 성질을 측정하고 그 측정결과를 아래 표 3에 나타내었다.Steel slabs composed as shown in Table 1 below are sufficiently heated at 1250 ° C., rolled and heat treated under the conditions shown in Table 2 below, and then the mechanical properties of the prepared specimens are measured and the results are shown in Table 3 below. It was.

강종Steel grade 화 학 성 분 (중량%)Chemical component (% by weight) CC MnMn SiSi PP SS NiNi CrCr MoMo VV NbNb TiTi Sol.AlSol.Al 발명강Invention steel 0.150.15 0.600.60 0.260.26 0.0030.003 0.0040.004 3.083.08 1.501.50 0.780.78 -- 0.040.04 0.040.04 0.0240.024 비교강Comparative steel 0.170.17 0.270.27 0.250.25 0.0040.004 0.0050.005 2.922.92 1.531.53 0.390.39 0.0260.026 -- -- 0.0200.020

시편번호Psalm Number 미재결정 온도영역에서의 압하율(%)Reduction rate in the unrecrystallized temperature range (%) 소입방법Hardening Method 냉각속도 (℃/sec)Cooling rate (℃ / sec) 소려온도 (℃)Consideration temperature (℃) 강 종River bell 발 명 재Invention aa 5050 압연후 직접수냉Direct water cooling after rolling 3535 600600 발명강Invention steel bb 5050 압연후 직접수냉Direct water cooling after rolling 3535 650650 발명강Invention steel cc 00 압연후 직접수냉Direct water cooling after rolling 3535 600600 발명강Invention steel dd 00 압연후 직접수냉Direct water cooling after rolling 3535 650650 발명강Invention steel 비교재Comparative material 1One 00 재가열후 수냉Water cooling after reheating 3535 600600 발명강Invention steel 22 00 재가열후 수냉Water cooling after reheating 3535 650650 발명강Invention steel 33 00 재가열후 수냉Water cooling after reheating 3535 450450 비교강Comparative steel 44 00 재가열후 수냉Water cooling after reheating 3535 500500 비교강Comparative steel 55 00 재가열후 수냉Water cooling after reheating 3535 600600 비교강Comparative steel 66 00 재가열후 수냉Water cooling after reheating 3535 650650 비교강Comparative steel 77 5050 압연후 직접수냉Direct water cooling after rolling 3535 600600 비교강Comparative steel 88 5050 압연후 직접수냉Direct water cooling after rolling 3535 650650 비교강Comparative steel

기계적성질시편번호Mechanical Property Specimen Number 항복강도 (kgf/㎟)Yield strength (kgf / ㎡) 인장강도 (kgf/㎟)Tensile Strength (kgf / ㎡) 연신율Elongation 상온충격인성 (Joule)Room Temperature Shock Toughness (Joule) 발명재Invention aa 112.4112.4 127.5127.5 16.616.6 8989 bb 103.9103.9 118.1118.1 17.917.9 113113 cc 110.6110.6 125.7125.7 18.818.8 8585 dd 103.2103.2 117.4117.4 17.717.7 107107 비교재Comparative material 1One 90.490.4 102.7102.7 17.017.0 115115 22 83.983.9 95.395.3 19.319.3 136136 33 109.0109.0 124.5124.5 17.917.9 7272 44 106.0106.0 118.0118.0 19.419.4 9494 55 96.596.5 107.5107.5 22.022.0 156156 66 81.581.5 92.592.5 23.523.5 204204 77 97.197.1 108.4108.4 22.822.8 161161 88 84.284.2 95.695.6 23.723.7 207207

상기 표 1, 2 및 3을 통해서 알 수 있듯이, 본 발명에 의해서 제조된 발명재(a,b,c,d)와 비교적 낮은 온도에서 소려처리를 행한 비교재(3,4)만이 110kgf/㎟이상의 인장강도를 만족함을 알 수 있었다. 그러나, 비교재(3,4)의 경우소려연화취성이 발생하였다.As can be seen from the above Tables 1, 2 and 3, only the inventive material (a, b, c, d) produced by the present invention and the comparative material (3, 4) subjected to the soaking treatment at a relatively low temperature were 110 kgf / mm 2. It can be seen that the above tensile strength is satisfied. However, in the case of the comparative materials 3 and 4, the softening brittleness occurred.

또한, 종래강을 재가열소입법으로 제조하고 소려처리를 600℃이상에서 실시한 비교재(5,6) 및 종래강을 발명재와 동일한 직접소입법으로 제조하고 600℃이상에서 소려처리한 비교재(7,8)은 발명재에 비해서 약 20kgf/㎟ 정도 낮은 강도를 보여주고 있다. 한편, 발명강을 종래의 제조법인 재가열소입법으로 제조한 비교재(1,2) 또한 발명재에 비해서 20kgf/㎟ 이상 낮은 강도를 보여주고 있다.In addition, the comparative materials (5, 6) manufactured by reheating and quenching the conventional steel and the soaking treatment at 600 ° C. or higher and the comparative materials manufactured by the same direct quenching method as the invention material and polished at 600 ° C. or higher ( 7,8) shows a strength about 20 kgf / mm 2 lower than the invention. On the other hand, the comparative materials (1, 2) produced by the reheating and quenching method, which is a conventional manufacturing method, also show a strength of 20 kgf / mm 2 or more lower than the inventive material.

위와 같이, 동일한 소려온도에서 소려처리를 실시하는 경우에 발명재가 비교재에 비해서 약 20kgf/㎟ 정도 높은 강도를 보인 것은, 야금학적으로 볼 때 탄질화물 형성원소인 Ti과 Nb를 적정량 첨가하고, 이러한 탄질화물이 미세하게 석출하도록 제조방법을 적절히 제어한 효과이다. 즉, 본 발명에서의 높은 강도확보는 합금성분과 제조방법을 제어함으로써 550℃이상의 고온소려처리 동안에 소려연화에 대한 저항성을 증대시킴으로써 달성되는 것이다.As described above, when the soaking treatment was performed at the same soaking temperature, the invention material showed about 20 kgf / mm2 higher strength than the comparative material, and in view of metallurgy, an appropriate amount of Ti and Nb, which are carbonitride forming elements, was added. It is an effect which controlled the manufacturing method suitably so that carbonitride may precipitate finely. That is, high strength is secured in the present invention by controlling the alloying component and the production method by increasing the resistance to softening during high temperature polishing at 550 占 폚 or higher.

이를 좀더 명확하게 보여주기 위한 결과를 도 1에 나타내었다. 도 1에 의하면 종래강에 직접소입을 적용하는 경우 소려온도범위에서 고른 강도증가를 나타내며 이는 잘 알려진 제어압연-직접소입 효과이다(출처-저자 :K.A. Tayloy외 2명, 서명:Physical Metallargy of Direct-Quenched Steels)The results for showing this more clearly are shown in FIG. 1. According to FIG. 1, when direct quenching is applied to conventional steels, the strength is evenly increased in the range of temperature, which is a well-known control rolling-direct quenching effect (source-author: KA Tayloy et al., Signature: Physical Metallargy of Direct-). Quenched Steels)

반면에 종래강에 Ti과 Nb를 미량 첨가한 발명강을 직접소입하는 경우에는 종래강에서 나타난 직접소입 효과이외에 550℃이상에서 강도감소가 현저히 억제되는 즉, 소려연화저항성이 현저히 향상되는 효과를 나타내고 있다. 이는 발명강에 새롭게 첨가된 Ti과 Nb이 직접소입에 의해서 강에 고용상태로 존재하다가 600℃부근에서 소려처리할 때 미세한 입자로 석출한 것에 기인한 석출강화의 효과이다.On the other hand, in the case of directly quenching the invention steel with a small amount of Ti and Nb added to the conventional steel, the strength reduction is significantly suppressed at 550 ° C. or more, in addition to the direct quenching effect shown in the conventional steel, that is, the soot softening resistance is remarkably improved. have. This is the effect of precipitation strengthening due to the precipitation of fine particles when Ti and Nb newly added to the inventive steel exist in solid solution in the steel by direct quenching and then treated at around 600 ℃.

도 2에는 발명강을 직접소입법으로 제조한 발명재(a)와 재가열소입법으로 제조한 비교재(1)에서 형성된 Ti과 Nb의 복합탄질화물을 보여주는 투과전자현미경사진을 나타내었다. 비교재 1(도 2a)의 경우에는 상당히 큰 석출입자들이 분포하고 있는 반면 발명재(a)(도 2b)의 경우에는 매우 미세한 석출입자들이 분포하고 있음을 보여 주고 있다. 이와 같은 석출입자의 크기 차이는 비교재의 석출입자들은 900℃에서 재가열소입 열처리동안에 형성하였고 발명재의 석출입자들은 600℃에서 소려처리동안에 형성한 것에 기인하는 것이다. 이와 같이 온도가 낮아짐에 따라 석출입자가 미세해지는 것은 열역학적으로 잘 알려진 사실이다.2 shows a transmission electron micrograph showing the composite carbonitride of Ti and Nb formed from the inventive material (a) prepared by the direct quenching method and the comparative material (1) prepared by the reheat quenching method. In the case of Comparative Material 1 (FIG. 2A), very large precipitated particles were distributed, whereas in the case of Inventive Material (a) (FIG. 2B), very fine precipitated particles were distributed. The difference in size of the precipitated particles is due to the precipitated particles of the comparative material formed during the reheat quenching heat treatment at 900 ° C. and the precipitated particles of the inventive material formed during the soaking treatment at 600 ° C. It is well known thermodynamically that the precipitated particles become fine as the temperature is lowered.

또한, 석출강화이론에 의하면 석출입자가 미세할수록 강화효과는 증대되기 때문에 발명강을 직접소입법에 의해서 제조한 발명재(a, b, c, d)가 재가열소입법에 의해서 제조한 비교재(1, 2)보다 우수한 강도를 나타낸 이유가 된다.In addition, according to the precipitation strengthening theory, as the precipitated particles are finer, the reinforcing effect is increased, so that the comparative materials (a, b, c, d) manufactured by the direct quenching method of the inventive steel are manufactured by the reheat quenching method ( This is the reason for showing the strength superior to 1, 2).

한편, 인장강도 110kgf/㎟ 이상을 확보한 발명재와 비교재들에 대한 강도-인성의 관계를 도 3에 나타내었다, 도 3에 나타난 바와 같이, 발명재(a,b,c,d)들은 비교재(3,4)에 비해서 유사한 강도에서 인성이 우수함을 알 수 있다. 이는 야금학적인 관점에서 볼 때 450℃와 500℃의 온도에서 소려처리된 비교재의 경우에 소려마르텐사이트 취화현상에 의해서 낮은 인성을 보인 것에 기인하며 따라서 소려온도감소에 의한 강도증가는 인성감소를 수반하는 문제점이 있음을 알 수 있다.On the other hand, the strength-toughness relationship between the invention material and the comparative material securing a tensile strength of 110kgf / mm 2 or more is shown in Figure 3, as shown in Figure 3, the invention materials (a, b, c, d) are It can be seen that the toughness is excellent at a similar strength compared to the comparative materials (3, 4). This is due to the low toughness of the sour martensite embrittlement in the case of comparative material treated at 450 ℃ and 500 ℃ from the metallurgical point of view. Therefore, the increase in strength due to decrease of sour temperature is accompanied by the decrease of toughness. It can be seen that there is a problem.

상술한 바와 같이, 본 발명은 Ti과 Nb의 미량첨가와 직접소입공정의 적용에 의해서550℃이상의 고온에서 소려연화저항성이 현저히 억제되는 110kgf/㎟ 급 고장력강을 경제적으로 생산할 수 있는 효과가 있는 것이다.As described above, the present invention has the effect of economically producing 110kgf / mm2 high-tensile strength steel which is significantly suppressed sour softening resistance at a high temperature of more than 550 ℃ by the addition of a small amount of Ti and Nb and the direct quenching process.

Claims (1)

고장력강의 제조방법에 있어서,In the manufacturing method of high strength steel, 중량%로 C:0.13-0.18%, Mn:0.2-1.5%, Si:0.15-0.35%, P:0.02%이하, S:0.008% 이하, Ni:2.0-4.0%, Cr:0.5-2.0%, Mo:0.3-1.0%, Nb:0.02-0.06%, Ti:0.02-0.06%, Sol-Al: 0.02-0.06%, 나머지 Fe 및 기타 불가피한 불순물로 이루어진 강 슬라브를 1150 ∼ 1300℃ 온도에서 가열하여 열간압연한 다음, 30초 이내에 냉각을 개시하여 10-50℃/sec의 냉각속도로 상온까지 냉각한 후 550-700℃에서 소려처리하는 것을 특징으로 하는 소려연화 저항성이 우수한 고장력강의 제조방법.By weight% C: 0.13-0.18%, Mn: 0.2-1.5%, Si: 0.15-0.35%, P: 0.02% or less, S: 0.008% or less, Ni: 2.0-4.0%, Cr: 0.5-2.0%, A steel slab consisting of Mo: 0.3-1.0%, Nb: 0.02-0.06%, Ti: 0.02-0.06%, Sol-Al: 0.02-0.06%, remaining Fe and other unavoidable impurities is heated at a temperature of 1150 to 1300 ° C. After rolling, cooling is started within 30 seconds, cooled to room temperature at a cooling rate of 10-50 ° C./sec, and then treated at 550-700 ° C. for high softening resistance.
KR10-1998-0029682A 1998-07-23 1998-07-23 A manufacturing process of a high strength steel with high temper soften resistance KR100368218B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1998-0029682A KR100368218B1 (en) 1998-07-23 1998-07-23 A manufacturing process of a high strength steel with high temper soften resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1998-0029682A KR100368218B1 (en) 1998-07-23 1998-07-23 A manufacturing process of a high strength steel with high temper soften resistance

Publications (2)

Publication Number Publication Date
KR20000009350A KR20000009350A (en) 2000-02-15
KR100368218B1 true KR100368218B1 (en) 2003-04-21

Family

ID=19544998

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1998-0029682A KR100368218B1 (en) 1998-07-23 1998-07-23 A manufacturing process of a high strength steel with high temper soften resistance

Country Status (1)

Country Link
KR (1) KR100368218B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112006002833T5 (en) 2005-11-03 2008-12-11 Hyun Sam Lee Overflow protection cover for a cooking vessel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115710675B (en) * 2022-11-29 2023-11-28 莱芜钢铁集团银山型钢有限公司 Anti-500-550 ℃ tempering softened steel plate and production method thereof
CN115747661B (en) * 2022-11-29 2023-11-24 莱芜钢铁集团银山型钢有限公司 Tempering softening steel plate resistant to 550-600 ℃ and production method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10121131A (en) * 1996-10-11 1998-05-12 Sumitomo Metal Ind Ltd Manufacture of thick high tensile steel plate excellent in brittle fracture propagation stop characteristic and weldability

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10121131A (en) * 1996-10-11 1998-05-12 Sumitomo Metal Ind Ltd Manufacture of thick high tensile steel plate excellent in brittle fracture propagation stop characteristic and weldability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112006002833T5 (en) 2005-11-03 2008-12-11 Hyun Sam Lee Overflow protection cover for a cooking vessel

Also Published As

Publication number Publication date
KR20000009350A (en) 2000-02-15

Similar Documents

Publication Publication Date Title
KR102276741B1 (en) High strength cold-rolled steel sheet and galvanized steel sheet having high hole expansion ratio and manufacturing method thereof
KR101232972B1 (en) Method of producing high-strength steel plates with excellent ductility and plates thus produced
KR101758497B1 (en) Steel Plate For Pressure Vessel With Excellent PWHT Resistance And Manufacturing Method Thereof
KR101736632B1 (en) Cold-rolled steel sheet and galvanized steel sheet having high yield strength and ductility and method for manufacturing thereof
KR101518571B1 (en) Non heat treated wire rod having excellent high strength and impact toughness and method for manafacturing the same
KR100368218B1 (en) A manufacturing process of a high strength steel with high temper soften resistance
KR100328051B1 (en) A Method of manufacturing high strength steel sheet
KR102164088B1 (en) High strength cold rolled steel sheet having excellent burring property and manufacturing method for the same
KR20030055537A (en) Deep Drawing Steel Plate with TS 1100MPa for Application at Low-temperature and High-pressure Vessel and Manufacturing Method thereof
KR100328042B1 (en) A Method of Manufacturing High strength steel
JP2756535B2 (en) Manufacturing method for strong steel bars
JPH0670248B2 (en) Manufacturing method of ultra-high-strength steel plate for welding with excellent homogeneity in the thickness direction
KR102478807B1 (en) Steel sheet having high strength and high formability and method for manufacturing the same
KR102404738B1 (en) Steel sheet having high strength and high formability and method for manufacturing the same
KR100419648B1 (en) A method for manufacturing ultra high tensile strenth steel
KR102493979B1 (en) High-strength steel plate for pressure vessels with excellent impact toughness and manufacturing method thereof
KR101009839B1 (en) Method for producing of steel sheet having high-strength and high-formability
KR100470643B1 (en) A high strength cold rolled steel sheet with excellent drawability and secondary working brittleness resistance, and a method for manufacturing it
KR100402007B1 (en) A METHOD FOR PRODUCING A HIGH TENSILE STEEL WITH 125kgf/㎟ TENSILE STRENGTH GRADE
KR100368222B1 (en) THE METHOD OF MANUFACTURING 58kgf/㎟ GRADE BUILDING STEEL SHEETS WITH HIGH TEMPREATURE STRENGTH
KR100355020B1 (en) Manufacturing method of high tensile strength steel with improved toughness
KR20230078898A (en) H-shaped steel and method of manufacturing the same
KR100268844B1 (en) The manufacturing method for high strength steel sheet
KR20240003376A (en) High-strength cold-rolled steel sheet having excellent formability and method of manufacturing the same
KR950003547B1 (en) Making method of low temperature ni-steel

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090106

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee