KR100328042B1 - A Method of Manufacturing High strength steel - Google Patents
A Method of Manufacturing High strength steel Download PDFInfo
- Publication number
- KR100328042B1 KR100328042B1 KR1019970058003A KR19970058003A KR100328042B1 KR 100328042 B1 KR100328042 B1 KR 100328042B1 KR 1019970058003 A KR1019970058003 A KR 1019970058003A KR 19970058003 A KR19970058003 A KR 19970058003A KR 100328042 B1 KR100328042 B1 KR 100328042B1
- Authority
- KR
- South Korea
- Prior art keywords
- rolling
- steel
- strength
- toughness
- temperature
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 48
- 239000010959 steel Substances 0.000 title claims abstract description 48
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 238000005096 rolling process Methods 0.000 claims abstract description 35
- 238000001816 cooling Methods 0.000 claims abstract description 14
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 8
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 8
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 5
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 4
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 4
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 3
- 230000001186 cumulative effect Effects 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 3
- 238000010791 quenching Methods 0.000 abstract description 23
- 230000000171 quenching effect Effects 0.000 abstract description 23
- 238000000034 method Methods 0.000 abstract description 16
- 230000008569 process Effects 0.000 abstract description 5
- 230000009467 reduction Effects 0.000 abstract description 5
- 238000003303 reheating Methods 0.000 abstract description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 3
- 238000009825 accumulation Methods 0.000 abstract 1
- 239000010960 cold rolled steel Substances 0.000 abstract 1
- 238000002161 passivation Methods 0.000 abstract 1
- 238000005496 tempering Methods 0.000 abstract 1
- 239000000463 material Substances 0.000 description 32
- 230000000052 comparative effect Effects 0.000 description 20
- 229910000734 martensite Inorganic materials 0.000 description 14
- 229910001566 austenite Inorganic materials 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000000137 annealing Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 238000005098 hot rolling Methods 0.000 description 4
- 238000001953 recrystallisation Methods 0.000 description 4
- 238000005275 alloying Methods 0.000 description 2
- 229910001567 cementite Inorganic materials 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000879 optical micrograph Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
- B21B3/02—Rolling special iron alloys, e.g. stainless steel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/22—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/16—Control of thickness, width, diameter or other transverse dimensions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/74—Temperature control, e.g. by cooling or heating the rolls or the product
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B2261/00—Product parameters
- B21B2261/20—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B2265/00—Forming parameters
- B21B2265/14—Reduction rate
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
본 발명은 육상전투차량 등의 장갑소재로 사용되는 고장력강판의 제조방법에 관한 것으로, 보다 상세하게는, 종래 125kgf/㎟급 강과 유사한 화학조성의 강에 제어압연 및 직접소입 공정을 적용하여 저온충격인성이 우수한 인장강도 150kgf/㎟급 고장력강판을 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing high tensile strength steel sheet used as armor material for land combat vehicles, and more specifically, to low temperature impact by applying a control rolling and direct quenching process to a chemical composition steel similar to conventional 125kgf / mm2 grade steel. It relates to a method of manufacturing a high tensile strength 150kgf / mm2 high tensile strength steel sheet.
최근, 육상 전투차량의 기동력 향상이 중요하게 인식되면서, 장갑소재의 고강도화에 의한 차량 경량화가 필연적으로 요구되고 있다. 또한, 장갑소재의 방호력 향상을 위해서 소재의 고강도와 함께 고인성이 요구되고 있다.In recent years, as the maneuverability improvement of land combat vehicles is recognized as important, vehicle weight reduction is inevitably required by increasing the strength of armor materials. In addition, high strength and high toughness of the material are required to improve the protection of the glove material.
지금까지 전투차량 장갑소재용에 이용되는 강판은 인장강도 125kgf/㎟급까지의 고장력강판으로, 그 대표적인 제조방법은 다음과 같다. 중량%로, C:0.15-0.20%, Mn:0.1-0.4%, Si:0.15-0.38%, P:0.015%이하, S:0.008%이하, Ni:2.75-3.5%, Cr:1.3-1.7%, Mo:0.35-0.45%, V:0.03%이하 및 나머지 Fe와 기타 불가피한 원소로 구성되는슬라브를 1150-1300℃에서 충분히 가열하고, 각 압연패스(pass)당 10-30%의 압하율 및 900℃이상의 압연 마무리온도의 조건으로 열간압연을 한 다음, 공냉한 후 다시 900℃이상으로 재가열하여 소입하고, 이어 350-600℃에서 소려처리하여 인장강도 125kgf/㎟급까지의 고장력강판을 얻고 있다(MIL-A-12560G(MR), 31 August 1988).Until now, the steel plate used for the combat vehicle armor material is a high tensile steel plate with a tensile strength of 125kgf / ㎜ class, the typical manufacturing method is as follows. By weight%, C: 0.15-0.20%, Mn: 0.1-0.4%, Si: 0.15-0.38%, P: 0.015% or less, S: 0.008% or less, Ni: 2.75-3.5%, Cr: 1.3-1.7% Slab composed of Mo: 0.35-0.45%, V: 0.03% or less and the rest of Fe and other unavoidable elements are sufficiently heated at 1150-1300 ° C., with a reduction ratio of 10-30% and 900 for each rolling pass. After hot rolling under the condition of rolling finish temperature above ℃, it is cooled by air and then reheated to 900 ℃ or higher, and then quenched and then treated at 350-600 ℃ to obtain high tensile steel with tensile strength up to 125kgf / mm2. MIL-A-12560G (MR), 31 August 1988).
그런데, 상기한 종래방법에 의해 제공되는 고장력강판은 전투차량에 요구되는 소재의 특성을 감안할 때, 강도특성이 낮다는 문제가 있다. 이 문제는 C의 증가와 함께 고가인 Ni, Cr, Mo, Co 등의 합금원소를 증가시키는 방법에 의해 상기 종래강판의 인성을 해치지 않으면서 강도를 증가시킬 수는 있다. 하지만, 이러한 방법은 탄소당량 증가에 따른 용접성 저하는 물론 생산 비용의 증가를 초래하는 문제점이 뒤따른다.However, the high tensile strength steel sheet provided by the conventional method has a problem that the strength characteristics are low in view of the characteristics of the material required for the combat vehicle. This problem can be increased without increasing the toughness of the conventional steel sheet by a method of increasing the alloying elements such as Ni, Cr, Mo, Co, etc., which is expensive with increasing C. However, this method is accompanied by a problem of lowering the weldability according to the increase in the carbon equivalent, as well as an increase in the production cost.
이에, 본 발명자는 고장력강에서 합금원소의 큰 증가없이 강도와 인성을 동시에 향상시키는 방법에 대해서 깊이 있게 연구와 실험을 행한 결과, 제어압연 및 직접소입 조건을 제어하면 마르텐사이트의 유효결정립의 미세화 및 전위강화 효과에 의해 그 해결이 가능하다는 것을 확인하고, 본 발명을 제안하게 이르렀다.Therefore, the present inventors have conducted in-depth research and experiment on the method of simultaneously improving the strength and toughness without increasing the alloying elements in high tensile steel, and as a result of controlling the rolling and direct quenching conditions, the effective grain size and potential of the martensite were refined. It confirmed that the solution was possible by the reinforcement effect, and came to propose this invention.
즉, 본 발명은 종래의 고장력강과 거의 유사한 강을 제어압연 및 직접소입 공정을 적용하여 저온충격인성이 우수한 150kgf/㎟급 고장력강판의 제조방법을 제공하는데, 그 목적이 있다.That is, the present invention is to provide a method of manufacturing a 150kgf / mm2 high tensile strength steel sheet excellent in low-temperature impact toughness by applying a control rolling and direct quenching process of a steel almost similar to the conventional high-tensile steel.
도 1은 발명재와 비교재의 인장강도-충격인성 관계를 나타내는 그래프이고,1 is a graph showing the tensile strength-impact toughness relationship between the invention and the comparative material,
도 2는 발명재와 비교재의 미세조직을 나타내는 광학현미경 사진이다.2 is an optical micrograph showing the microstructure of the invention and the comparative material.
상기 목적을 달성하기 위한 본 발명의 고장력강판의 제조방법은, 중량%로C:0.14-0.18%, Mn:0.5-1.5%, Si:0.15-0.35%, P:0.02%이하, S:0.008%이하, Ni:2.5-3.5%, Cr:0.5-1.0%, Mo:0.15-0.45%, Nb:0.01-0.04%, Sol-Al: 0.02-0.06% 및 나머지 Fe와 기타 불가피한 불순물로 이루어진 슬라브를 1150-1300℃ 온도에서 가열한 후, 미재결정온도 영역에서 누적압하율 50% 이상이 되는 조건으로 제어압연한 다음, 30초 이내에 냉각을 개시하여 10-50℃/sec의 냉각속도로 상온까지 수냉한 후 150-350℃에서 소려처리하는 것을 포함하여 구성된다.Method for producing a high tensile strength steel sheet of the present invention for achieving the above object, by weight% C: 0.14-0.18%, Mn: 0.5-1.5%, Si: 0.15-0.35%, P: 0.02% or less, S: 0.008% The slab of Ni: 2.5-3.5%, Cr: 0.5-1.0%, Mo: 0.15-0.45%, Nb: 0.01-0.04%, Sol-Al: 0.02-0.06% and the remaining Fe and other unavoidable impurities is 1150 After heating at a temperature of -1300 ℃, controlled rolling under the condition that the cumulative reduction rate of 50% or more in the unrecrystallized temperature region, starting cooling within 30 seconds and cooled to room temperature at a cooling rate of 10-50 ℃ / sec It is then configured to include a soaking treatment at 150-350 ℃.
이하, 상기 성분범위 및 제조조건 한정 이유에 대해서 설명한다.Hereinafter, the above-mentioned ingredient range and the reason for limitation of manufacturing conditions are demonstrated.
상기 C는 고장력강에서 주요 강화원소로서 그 함량이 증가하면 소입성 및 강도가 증가되지만 용접성 및 인성을 해치고 반대로 그 함량이 감소하면 소입성 및 강도가 감소하여 강도확보가 불가능하므로 0.14-0.18%로 제한하는 것이 바람직하다.The C is a major reinforcing element in high tensile steel, and its content is increased to increase the hardenability and strength. On the contrary, if the content is decreased, the hardening steel is hard to secure the strength due to the decrease of hardenability and strength, so it is limited to 0.14-0.18%. It is desirable to.
상기 Mn도 소입성을 향상시켜 강도를 증가시키나 과도하게 첨가될 경우에 용접성을 해치므로 0.5-1.5%로 제한하는 것이 바람직하다.The Mn also improves the hardenability to increase the strength, but when added excessively, the weldability is deteriorated, so it is preferable to limit the Mn to 0.5-1.5%.
상기 Si 는 탈산제로 첨가되는 성분인데, 그 함량이 증가하면 항복강도는 증가하지만 연성-취성 천이온도를 높여 인성을 해치고 용접성에도 유해하므로 0.15-0.35%로 제한하는 것이 바람직하다.The Si is a component to be added as a deoxidizer, but if its content is increased, the yield strength is increased, but it is preferable to limit it to 0.15-0.35% because it increases the ductile-brittle transition temperature, thereby deteriorating toughness and harmful to weldability.
상기 P과 S는 제강과정에서 피할수 없는 불순물 원소로서 인성 및 용접성에 유해한 원소이므로 그 함량을 P는 0.02%, S 는 0.008% 이하로 각각 제한하는 것이 바람직하다.Since P and S are inevitable impurity elements in the steelmaking process, they are harmful to toughness and weldability, and therefore, P and S are preferably limited to 0.02% and S to 0.008% or less, respectively.
상기 Ni은 강의 연성-취성 천이온도를 낮춰 저온인성을 개선시키는 고장력강의 필수원소이지만, 고가인 관계로 2.5-3.5%로 제한하는 것이 바람직하다. Ni의 첨가량이 2.5%이상되어야 요구하는 인성을 얻을 수 있으며, 3.5%를 초과하여 첨가하면 비경제적이다.Ni is an essential element of high tensile strength steel to improve the low temperature toughness by lowering the ductile-brittle transition temperature of the steel, but is preferably limited to 2.5-3.5% due to its high cost. When the added amount of Ni is 2.5% or more, the required toughness can be obtained, and when it exceeds 3.5%, it is uneconomical.
상기 Cr 과 Mo은 강의 소입성 향상을 위해서 필수적인 원소일뿐만 아니라 550℃이상의 고온소려처리시 소려연화를 억제하여 강도를 현저히 증가시키는 원소이며 그 첨가량이 증가할수록 고온소려처리시 소려연화를 억제하는 효과는 증가한다(출처-저자 : G. Krauss, 서명 : Principles of Heat Treatment of Steel), 한편 Cr과 Mo는 그 첨가량이 증가함에 따라 용접성을 해치는 것으로 알려져 있다. 따라서 350℃이하의 온도에서 소려처리함을 하나의 특징으로 하고 있는 본 발명의 경우에는 Cr과 Mo는 소입성 향상만을 위해서는 첨가되며 이와 같은 경우에는 Cr은 0.5-1.0%, Mo는 0.15-0.45%로 각각 제한하는 것이 바람직하다.The Cr and Mo are not only essential elements for improving the hardenability of steel, but also significantly increase the strength by suppressing softening at high temperatures of more than 550 ° C. and suppressing softening at high temperatures when the amount is added. (Source-author: G. Krauss, signature: Principles of Heat Treatment of Steel), while Cr and Mo are known to impair weldability as their content increases. Therefore, in the present invention, which is characterized by treating at a temperature of 350 ° C. or less, Cr and Mo are added only to improve the quenchability. In this case, Cr is 0.5-1.0% and Mo is 0.15-0.45%. It is preferable to restrict to each.
상기 Nb 은 열간압연시 오스테나이트 입도성장을 억제하는 한편, 미재결정 온도를 높여 제어압연시 압연 생산성을 높이는 효과가 있어 제어압연을 행하는 경우에 필수적인 원소지만, 그 함량이 증가함에 따라 용접성이 나빠짐으로 그 함량을 0.01-0.04%로 제한하는 것이 바람직하다.Nb suppresses austenite grain growth during hot rolling and increases the recrystallization temperature to increase rolling productivity during controlled rolling, which is an essential element when performing controlled rolling, but the weldability worsens as its content increases. It is desirable to limit the content to 0.01-0.04%.
상기 Sol-Al은 탈산을 위해서 필수적인 원소로서 인성을 개선시키는 효과가 있으나 그 함량이 과도하게 증가할 경우에 강중의 알루미늄 산화물 증가로 오히려 인성을 해치게 되므로 그 함량을 0.02-0.06%로 제한하는 것이 바람직하다.Sol-Al has an effect of improving toughness as an essential element for deoxidation, but when the content is excessively increased, the toughness is rather deteriorated due to an increase in aluminum oxide in the steel, so it is preferable to limit the content to 0.02-0.06%. Do.
상기와 같이 이루어진 슬라브를 1150-1300℃로 가열하는 것이 필요한데, 그 이유는 가열온도가 1150℃이하인 경우에는 압연시 변형저항의 증가로 과도한 압연부하를 초래하며, 1300℃이상의 경우에는 오스테나이트 결정립의 이상성장에 의한 조직의 불균일을 초래하여 결과적으로 인성을 해치게 되기 때문이다.It is necessary to heat the slabs made as described above to 1150-1300 ° C, because when the heating temperature is below 1150 ° C, the deformation resistance during rolling causes an excessive rolling load, and above 1300 ° C, This is because abnormal growth causes tissue non-uniformity, which in turn hurts toughness.
상기와 같이 가열된 슬라브를 열간압연하는데, 이때 미재결정온도 영역에서의 누적압하율이 50%이상이 되는 조건으로 열간압연하는 것이 필요하다. 그 이유는 미재결정온도 영역에서 누적압하율이 50%이하인 경우에는 오스테나이트로 부터 변태되는 마르텐사이트 유효결정립의 불충분한 미세화에 의해서 저온인성의 개선효과가 미미할 뿐만 아니라 오스테나이트로 부터 유기되는 가공전위 조직을 확보할 수 없기 때문이다.The slab heated as described above is hot rolled, and it is necessary to hot roll the slab under the condition that the cumulative reduction ratio in the unrecrystallized temperature range is 50% or more. The reason is that when the cumulative reduction ratio is less than 50% in the unrecrystallized temperature range, the improvement of low-temperature toughness is not only small due to insufficient refinement of the effective martensite grains transformed from austenite, and the processing potential induced from austenite. This is because organizations cannot be secured.
상기와 같이 열간압연한 후 이어 수냉하는데, 이때 수냉개시까지의 유지시간은 그 시간이 짧을수록 제어압연 및 직접소입에 의한 강도와 인성증가 효과를 충분히 확보할 수 있으며, 그 유지시간이 너무 길면 오스테나이트의 재결정에 의해서 제어압연 효과가 줄어들게 되므로 30초 이하로 제한하는 것이 바람직하다.After hot rolling as described above, the water is subsequently cooled. At this time, the holding time until the start of water cooling is sufficiently secured to increase the strength and toughness by control rolling and direct quenching. Since the control rolling effect is reduced by recrystallization of knight, it is preferable to limit it to 30 seconds or less.
상기와 같이 냉각을 개시하여 냉각하는 속도는 10-50℃/sec가 바람직하다. 그 이유는 냉각속도는 빠를수록 마르텐사이트 조직확보 및 미재결정압연에 의한 마르텐사이트의 강도증가의 측면에서 유리하지만, 50℃/sec이상으로 빠르면 심한 판변형을 유발하기 때문이다. 또한, 냉각속도가 너무 느리면 상부베이나이트 등의 연질조직 발생으로 강도가 저하하며 미재결정압연 효과가 감소하여 강도가 감소될 수 있기 때문이다.As mentioned above, 10-50 degreeC / sec is preferable for starting and cooling cooling. The reason is that the faster the cooling rate is advantageous in terms of securing the martensite structure and increasing the strength of martensite by uncrystallized rolling, but the higher the cooling rate above 50 ℃ / sec causes severe plate deformation. In addition, if the cooling rate is too slow, the strength is lowered due to the generation of soft tissues such as upper bainite, and the recrystallization rolling effect is reduced, thereby reducing the strength.
상기와 같이 상온으로 냉각한 다음, 150-350℃의 온도범위에서 소려처리 한다. 소려온도는 강도와 인성에 중요한 인자로서 그 온도가 450℃이상이면 인성은증가하나 세멘타이트 형성 및 제어압연에 의해서 생성된 전위의 소멸에 의해서 강도가 급격히 감소하여 150kgf/㎟의 강도 확보가 불가능하며, 350-450℃온도 영역에서는 소려마르텐사이트 취화현상이 발생하여 인성이 급격히 저하하므로 그 상한은 350℃로 하는 것이 바람직하다. 또한 소려온도가 너무 낮으면 강도는 우수하지만 인성의 확보가 힘들기 때문에 그 하한은 150℃로 하는 것이 바람직하다.After cooling to room temperature as described above, it is treated in a temperature range of 150-350 ℃. The sour temperature is an important factor for strength and toughness. If the temperature is above 450 ℃, the toughness increases but the strength decreases rapidly due to the formation of cementite and the disappearance of the potential generated by controlled rolling. In the temperature range of 350-450 ° C, soot martensite embrittlement occurs and the toughness decreases rapidly. Therefore, the upper limit is preferably 350 ° C. If the soaking temperature is too low, the strength is excellent, but toughness is difficult to secure, so the lower limit is preferably 150 ° C.
이하, 실시예를 통하여 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.
[실시예]EXAMPLE
하기 표 1과 같이 조성되는 슬라브를 1150-1300℃에서 충분히 가열하고, 하기 표 2의 조건으로 압연 및 열처리하여 제조된 각 시편에 대하여 기계적 성질을 측정하고 그 측정결과를 하기 표 3에 나타내었다. 또한 각 시편들에 대한 항복강도-충격인성 관계를 측정하여 그 결과를 도 1에 나타내었다. 그리고, 발명재(a), 비교재(2)에 비교재(5)에 대하여 광학현미경 미세조직을 관찰하고 그 결과를 도 2에 나타내었다.The slabs formed as shown in Table 1 are sufficiently heated at 1150-1300 ° C., and the mechanical properties of the specimens prepared by rolling and heat treatment under the conditions of Table 2 are shown in Table 3 below. In addition, the yield strength-impact toughness relationship for each specimen was measured and the results are shown in FIG. 1. And the optical microscope microstructure of the comparative material 5 was observed in invention material (a) and the
참고로, 육상전투차량의 장갑소재로 사용하기 위해서는 -40℃에서의 충격인성이 40joule 이상이 되어야 한다(MIL-A-12560G(MR), 31 August 1988).For reference, the impact toughness at -40 ℃ should be more than 40joule to be used as armor material of land combat vehicle (MIL-A-12560G (MR), 31 August 1988).
먼저, 상기 표 3에 나타난 바와같이, 본 발명에 의해서 제조된 발명재(a-b)만이 -40℃에서 충격인성의 보증이 가능한 동시에 150kgf/㎟이상의 인장강도를 만족함을 알 수 있었다.First, as shown in Table 3, it can be seen that only the inventive material (a-b) manufactured by the present invention can guarantee the toughness at -40 ° C and satisfy the tensile strength of 150 kgf /
이에 반해, 발명강을 통상의 압연-직접소입 방법으로 제조한 비교재(2-3)와 발명강을 통상의 압연-재가열소입 방법으로 제조한 비교재(4) 그리고, 종래강을 통상의 압연-재가열소입하는 종래의 방법으로 제조한 비교재(5-7)은 모두 150kgf/㎟이상의 인장강도를 만족하지 못하며, 비교재(2-5)만이 -40℃에서의 충격인성를 만족하고 있었다.On the other hand, the comparative material (2-3) which manufactured the invention steel by the conventional rolling-direct quenching method, the comparative material (4) which produced the invention steel by the conventional rolling-reheating quenching method, and the conventional steel were rolled conventionally -The comparative materials (5-7) manufactured by the conventional method of reheating hardening did not satisfy the tensile strength of 150 kgf /
한편, 도 1에 나타난 바와같이, 본 발명에 따라 제어압연 및 직접소입법에 의해서 제조된 발명재(a, b)은 재가열소입법에 의해서 제조된 비교재(4-7)에 비해서 월등히 우수한 강도-인성의 관계를 보이고 있었다.On the other hand, as shown in Figure 1, the invention material (a, b) produced by the control rolling and direct quenching method according to the present invention is significantly superior in strength compared to the comparative material (4-7) produced by the reheat quenching method -The relationship was showing humanity.
이를 야금학적인 관점에서 분석해 볼 때, 그 첫 번째 이유로는 미재결정압연에 의해서 심하게 변형된 오스테나이트 결정립이 마르텐사이트 래스의 핵생성을 조장하여 결과적으로 마르텐사이트의 유효결정립 미세화를 야기한 것에 있다(출처 - 저자: K.A. Taylor외 2, 서명 : Physical Metallurgy of Direct-Quenched Steels), 그 두 번째 이유로는 미재결정압연에 의해서 형성된 전위들이 직접소입에 의해서 마르텐사이트에 잔류함으로 인해서 부가적인 강도증가가 가능한 것에 있다.From a metallurgical point of view, the first reason is that austenite grains that are severely deformed by recrystallization rolling encourage nucleation of martensite lath, resulting in the effective grain refinement of martensite (Source- Author: KA Taylor et al. 2, Signature: Physical metallurgy of Direct-Quenched Steels). The second reason is that the potentials formed by unrecrystallization rolling remain in martensite by direct quenching, thus allowing for additional strength increase.
이에 대한 증거는 도 2에 제시된 미세조직을 보면 확인할 수 있다. 즉, 도 2에 나타난 바와 같이, 본 발명에 의해 제조된 발명재(a)는 오스테나이트가 심하게 변형되었을 뿐만 아니라 변형조직이 마르텐사이트 변태 후에도 잔류함을 보이고 있다(도 2a). 반면 재가열소입법에 의해서 제조된 비교재(5)의 경우에는 그러하지 않음을 알 수 있다(도 2c).Evidence for this can be confirmed by looking at the microstructure shown in FIG. 2. That is, as shown in Figure 2, the invention material (a) produced by the present invention shows that not only the austenite is severely deformed but also the deformed tissue remains after the martensite transformation (Fig. 2a). On the other hand, it can be seen that the case of the comparative material (5) manufactured by the reheat quenching method (Fig. 2c).
또한, 도 1에 나타난 바와같이, 발명강을 미재결정압연 없이 통상의 열간압연 후 직접소입을 행한 비교재(2, 3)의 경우에는 발명재와 유사한 인성을 보이나 항복강도가 15-20kgf/㎟ 정도 낮다. 이는 비교재(2-3)의 경우에는 직접소입의 효과는 일부 작용하였으나 제어압연과 직접소입을 동시에 행할 경우에 야기되는 마르텐사이트의 유효결정립 미세화 및 전위강화 효과가 불충분한 것에 주요 원인이 있다. 이에 대한 증거로서 도 2에 나타낸 비교재(2)의 미세조직(도 2b)을 보면, 발명재에 비해서 오스테나이트는 거의 변형되지 않았을 뿐만 아니라 아주 큼을 알 수 있다.In addition, as shown in FIG. 1, the comparative materials (2, 3) in which the inventive steel was directly annealed after ordinary hot rolling without unrecrystallized rolling showed similar toughness as the inventive material, but the yield strength was 15-20 kgf / mm2. About low This is mainly due to the effect of direct quenching in the case of the comparative material (2-3) but insufficient effective grain refining and dislocation strengthening effect of martensite caused by simultaneous control rolling and direct quenching. As a proof of this, when looking at the microstructure of the
그리고, 도 1에 나타난 바와같이, 발명재와 동일한 압연 및 소입공정으로 제조한 반면 최종 소려처리 만을 달리한 비교재(1)의 경우에 강도와 인성 모두 발명재에 비해서 좋지 않음을 알 수 있었다. 일반적으로 마르텐사이트는 소려온도가 높아지면 강도는 감소하는 반면 인성은 증가하는 경향을 보이지만 세멘타이트가 형성되는 온도인 350-450℃부근에서는 강도와 인성이 동시에 감소하며, 이는 야금학적으로 잘알려진 소려 마르텐사이트 취화현상이며 이는 바로 비교재(1)의 낮은 강도와 인성의 원인이다.And, as shown in Figure 1, it was found that in the case of the comparative material (1) manufactured by the same rolling and quenching process as the invention material, but only the final consideration treatment, both strength and toughness are not as good as the invention material. In general, martensite tends to decrease in strength while increasing toughness, but increases in toughness, but decreases in strength and toughness at around 350-450 ° C, the temperature at which cementite is formed. Martensite embrittlement is the cause of low strength and toughness of the comparative material (1).
이상으로 부터, 본 발명재(a,b)의 경우 제어압연 및 직접소입 공정에 의해서 마르텐사이트에 잔류된 가공전위에 의해서 큰 강도증가가 이루어졌으며 또한, 제어압연 및 직접소입에 의한 마르텐사이트 유효결정립의 미세화에 의해서 강도증가는 물론 강도증가에 따른 인성감소를 억제함으로서 종래강과 유사한 인성을 보이면서20kgf/㎟이상의 강도증가가 이룩됨을 알 수 있었다.In view of the above, in the case of the present invention (a, b), a significant increase in strength was achieved due to the processing potential remaining in martensite by a controlled rolling and direct quenching process, and an effective grain of martensite by controlled rolling and direct quenching. It can be seen that the increase in strength is achieved by suppressing the increase in strength as well as the decrease in strength due to the miniaturization of 20 kgf /
상술한 바와같이, 본 발명은 종래강의 성분계를 미세조정하고 제어압연 후 직접소입함으로서 종래강과 동등이상의 인성을 보이면서도 강도를 20kgf/㎟이상 향상시킬 수 있는 150kgf/㎟ 급 고장력강을 경제적으로 생산할 수 있는 효과가 있는 것이다.As described above, the present invention can economically produce 150kgf / mm2 high tensile strength steel which can improve the strength by more than 20kgf / mm2 while showing toughness equivalent to that of conventional steel by fine-adjusting the component system of conventional steel and direct quenching after control rolling. It works.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970058003A KR100328042B1 (en) | 1997-11-04 | 1997-11-04 | A Method of Manufacturing High strength steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970058003A KR100328042B1 (en) | 1997-11-04 | 1997-11-04 | A Method of Manufacturing High strength steel |
Publications (2)
Publication Number | Publication Date |
---|---|
KR19990038335A KR19990038335A (en) | 1999-06-05 |
KR100328042B1 true KR100328042B1 (en) | 2002-05-10 |
Family
ID=37478478
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019970058003A KR100328042B1 (en) | 1997-11-04 | 1997-11-04 | A Method of Manufacturing High strength steel |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100328042B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102776337A (en) * | 2012-08-21 | 2012-11-14 | 重庆大江工业有限责任公司 | Press quenching and processing method for 30 MnCrNiMo armored steel plate part |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100419648B1 (en) * | 1999-10-12 | 2004-02-25 | 주식회사 포스코 | A method for manufacturing ultra high tensile strenth steel |
-
1997
- 1997-11-04 KR KR1019970058003A patent/KR100328042B1/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102776337A (en) * | 2012-08-21 | 2012-11-14 | 重庆大江工业有限责任公司 | Press quenching and processing method for 30 MnCrNiMo armored steel plate part |
Also Published As
Publication number | Publication date |
---|---|
KR19990038335A (en) | 1999-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102276741B1 (en) | High strength cold-rolled steel sheet and galvanized steel sheet having high hole expansion ratio and manufacturing method thereof | |
JP4530606B2 (en) | Manufacturing method of ultra-high strength cold-rolled steel sheet with excellent spot weldability | |
JPH1060593A (en) | High strength cold rolled steel sheet excellent in balance between strength and elongation-flanging formability, and its production | |
JPH04268016A (en) | Production of high tensile strength steel sheet for door guide bar having excellent crushing characteristic | |
JP7357691B2 (en) | Ultra-high strength cold-rolled steel sheet and its manufacturing method | |
KR20170074319A (en) | Thick steel sheet having excellent low temperature toughness and resistance to hydrogen induced cracking, and method of manufacturing the same | |
KR20220089453A (en) | Ultra high strength cold rolled steel sheet having excellent spot weldability and formability, ultra high strength galvanized steel sheet and method of manufacturing the same | |
US20220235443A1 (en) | Non-heat treated wire rod with excellent wire drawability and impact toughness and manufacturing method therefor | |
KR20210080676A (en) | High-strength steel sheet with excellent ductability and formability and method of manufacturing the same | |
KR100328042B1 (en) | A Method of Manufacturing High strength steel | |
KR100276308B1 (en) | The manufacturing method ofsuper high strength cold rolling steel sheet with workability | |
KR100328051B1 (en) | A Method of manufacturing high strength steel sheet | |
KR100368218B1 (en) | A manufacturing process of a high strength steel with high temper soften resistance | |
KR20150022492A (en) | Non heat treated wire rod having excellent high strength and impact toughness and method for manafacturing the same | |
JP2655901B2 (en) | Manufacturing method of direct quenching type high strength steel sheet with excellent toughness | |
KR102164088B1 (en) | High strength cold rolled steel sheet having excellent burring property and manufacturing method for the same | |
KR101899736B1 (en) | Thick steel sheet having excellent low temperature toughness and resistance to hydrogen induced cracking, and method of manufacturing the same | |
JP2756535B2 (en) | Manufacturing method for strong steel bars | |
JPH0277521A (en) | Production of ultra-high-tension steel sheet for welding having excellent homogeneity in thickness direction | |
KR102478807B1 (en) | Steel sheet having high strength and high formability and method for manufacturing the same | |
US20240309483A1 (en) | High strength galvanized and galvannealed steel sheets and manufacturing method | |
KR100435467B1 (en) | A method for manufacturing high strength cold rolled steel sheet having superior ductility by continuous annealing | |
KR100334327B1 (en) | Method of manufacturing surface fine grain steels | |
KR100419648B1 (en) | A method for manufacturing ultra high tensile strenth steel | |
US20240167137A1 (en) | High strength cold rolled steel sheet for automotive use having excellent global formability and bending property |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20060131 Year of fee payment: 5 |
|
LAPS | Lapse due to unpaid annual fee |