JPS5948160B2 - Dehydration method for muddy substances - Google Patents

Dehydration method for muddy substances

Info

Publication number
JPS5948160B2
JPS5948160B2 JP56183492A JP18349281A JPS5948160B2 JP S5948160 B2 JPS5948160 B2 JP S5948160B2 JP 56183492 A JP56183492 A JP 56183492A JP 18349281 A JP18349281 A JP 18349281A JP S5948160 B2 JPS5948160 B2 JP S5948160B2
Authority
JP
Japan
Prior art keywords
muddy
dehydration
sludge
dewatering
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56183492A
Other languages
Japanese (ja)
Other versions
JPS58101799A (en
Inventor
英明 清水
栄一 小舟
治久 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP56183492A priority Critical patent/JPS5948160B2/en
Publication of JPS58101799A publication Critical patent/JPS58101799A/en
Publication of JPS5948160B2 publication Critical patent/JPS5948160B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】 本発明は、下水汚泥等含水率の高い泥水物質の脱水方法
に係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for dewatering muddy water materials with high water content, such as sewage sludge.

現在、公共水域の水質強化、産業界の発展、変換に伴い
、水質浄化量は増大しその結果副産物である汚泥は、増
加の一途を辿っている。
Currently, with the enhancement of water quality in public water bodies and the development and conversion of industry, the amount of water purification is increasing, and as a result, the amount of sludge as a byproduct is steadily increasing.

一般に有機性汚泥の可燃分はセルロース形態を示し30
00〜4500 (kcal/kg ’有機分)の発熱
量を有し、石炭にも匹敵する、それにもかかわらず総発
生汚泥量の90%以上は結局大地又は海洋への投棄処分
に頼っている。
Generally, the combustible content of organic sludge is in the form of cellulose30
It has a calorific value of 00 to 4,500 (kcal/kg' organic content), which is comparable to that of coal.Despite this, more than 90% of the total amount of sludge generated ends up being dumped into the ground or the ocean.

しかし未処理汚泥では多量の水分を伴い腐敗性を有し、
悪臭を発生する為環境衛生上投棄に制限を受け、大都市
、その周辺都市での大地処分地は今や飽和状態に達して
いる。
However, untreated sludge contains a large amount of water and is putrefactive.
Dumping is restricted for environmental hygiene reasons because of the foul odor it produces, and large-scale disposal sites in large cities and surrounding cities are now saturated.

そこで、汚泥物質の処理処分については、省資源面より
有効利用、再利用が叫ばれ自治体、メーカ共にその開発
に躍起となっているが、未だ決め手はない。
Therefore, with regard to the treatment and disposal of sludge materials, effective use and reuse have been advocated in terms of resource conservation, and both local governments and manufacturers are working hard to develop such methods, but there is still no decisive solution.

従来、有機分を含む泥状物質を脱水固化するには、汚泥
物質に何らかの調質剤を添加し、調質後重力脱水、真空
脱水、遠心脱水、ベルトプレス、フィルタプレス等の装
置を単独又は組み合わせて脱水固化するものであったが
、含水粉体間の毛管現象やろ布の目詰り現象等の脱水妨
害により、脱水後の含水率は70〜80%台で、多段炉
を始めとする各種焼却炉での自然が可能な状態までに脱
水することは出来なかった。
Conventionally, in order to dehydrate and solidify sludge containing organic components, some kind of conditioning agent is added to the sludge, and after conditioning, equipment such as gravity dehydration, vacuum dehydration, centrifugal dehydration, belt press, filter press, etc. is used alone or However, due to dehydration interference such as capillarity between water-containing powders and clogging of filter cloth, the water content after dehydration was in the 70 to 80% range, and various types of furnaces, including multi-stage furnaces, It was not possible to dehydrate it to the level that nature could in an incinerator.

泥状物質と自燃域まで脱水することは、省資源面から見
ても重要であ゛る。
Dehydration to the level of sludge and self-combustion is important from the perspective of resource conservation.

ここで泪然域の含水率はおよそ65%以下であることが
必要である。
Here, it is necessary that the moisture content of the tranquil zone is about 65% or less.

そのため、従来泥状物質を脱水固化後水分蒸発を目的と
する、天日乾燥や燃焼ガスの循環による乾燥が行なわれ
ている。
For this reason, drying in the sun or by circulating combustion gas has been conventionally performed to evaporate water after dehydrating and solidifying the muddy material.

しかし従来の方法では汚泥ケーキ1ton当930〜4
0!の外部燃料を必要とし、不経済であり設備的にも問
題が多かった。
However, in the conventional method, 930 to 40% per ton of sludge cake
0! It required external fuel, which was uneconomical and caused many problems in terms of equipment.

本発明は前記問題点を解決し、自然が可能なまで含水率
を下げる方法で、更にエネルギーを創り出し得るまで汚
泥物質の脱水が出来る脱水方法を提供するものである。
The present invention solves the above-mentioned problems and provides a dewatering method that can dewater sludge materials to the extent that the water content can be reduced to the extent that nature allows and further energy can be created.

そこで本発明の脱水方法は、一次脱水した泥状物質に脱
水助剤を加えながらこれを適当な粒度に造粒し、更にこ
の造粒物を二次脱水することにより含水率を60%以下
にすることを特徴とするものある。
Therefore, the dehydration method of the present invention involves adding a dehydration aid to the primary dehydrated muddy material and granulating it to an appropriate particle size, and then secondary dehydrating the granulated material to reduce the moisture content to 60% or less. There are some that are characterized by

本発明の望ましい実施においては、2次脱水を加圧によ
り行い、含水率50%以下となる。
In a desirable implementation of the present invention, secondary dehydration is performed under pressure to reduce the water content to 50% or less.

本発明を工程順に詳細に説明する。The present invention will be explained in detail step by step.

本発明の一次脱水においては、水路、河Jll、沈殿池
等から回収した有機分を含む泥状物質を重力脱水、真空
脱水、遠心脱水、ベルトプレス、あるいはフィルタプレ
ス等の脱水機をもって泥状物質の含水率を82%以下に
までに減らす。
In the primary dehydration of the present invention, muddy materials containing organic components collected from waterways, rivers, sedimentation ponds, etc. are processed using a dewatering machine such as gravity dehydration, vacuum dehydration, centrifugal dehydration, belt press, or filter press. Reduce the moisture content of the water to 82% or less.

例えばベルトプレスを使用するのなら2〜3 kg/c
m’の操作圧で重力と圧搾作用により75%の含水率ま
で脱水可能であるし、遠心脱水機なら2000〜300
0 Gの操作圧で遠心力により同じ<75%の含水率ま
で脱水可能である。
For example, if you use a belt press, 2 to 3 kg/c
It is possible to dehydrate up to 75% moisture content by gravity and squeezing action at an operating pressure of m', and a centrifugal dehydrator can dewater up to 75%
Dehydration to the same <75% water content is possible by centrifugal force at an operating pressure of 0 G.

ただここで注意すべくは、各脱水機の操作圧は、それぞ
れ適当な圧力を選ぶことである。
However, what you should be careful about here is to choose an appropriate operating pressure for each dehydrator.

ただいたずらに操作圧を高くするのは、汚泥の圧密化現
象を促し水の抜は道は失なわれ、更にはr布の目詰りが
起る等全く逆効果を招来することになる。
However, unnecessarily increasing the operating pressure will cause the sludge to become compacted, making it impossible to drain the water, and will even lead to the opposite effect, such as clogging of the r-cloth.

この様に一次脱水をした汚泥物を回転円筒ミキサー等に
投入し、破砕すると共に脱水助剤として、珪藻土、消石
炭、炭酸カルシウム、焼却灰、微粉炭、ソーダスト、乾
燥パルプ、土壌のうち一種以上を元汚泥固形分の乾燥重
量に対し10〜100%量で添加しながらこれを適当な
粒度に造粒する。
The sludge that has been primarily dehydrated in this way is put into a rotary cylindrical mixer, etc., and crushed, and at least one of diatomaceous earth, slaked coal, calcium carbonate, incinerated ash, pulverized coal, sawdust, dried pulp, and soil is used as a dehydration aid. is added in an amount of 10 to 100% based on the dry weight of the original sludge solid content, and is granulated to an appropriate particle size.

前記脱水助剤のうち焼却灰は下水処理汚泥灰、沫尿処理
汚泥灰、産業廃水処理汚泥灰、都市ゴミ焼却灰、産業廃
棄物焼却灰等の比較的入手が容易で、工業上再利用価値
の薄いものを用いることが望ましい。
Among the dehydration aids, incineration ash is relatively easy to obtain, such as sewage treatment sludge ash, sewage treatment sludge ash, industrial wastewater treatment sludge ash, municipal waste incineration ash, and industrial waste incineration ash, and has industrial reuse value. It is desirable to use a thin one.

特に、本発明の実施で出来た脱水物を焼却して出来た焼
却灰の一部を循環させて使用することが最も望ましい。
In particular, it is most desirable to circulate and use a portion of the incineration ash produced by incinerating the dehydrated product produced in the practice of the present invention.

造粒方法はロータリ一方、スクリュ一式、振動式等の混
合機で上述の脱水助剤が汚泥中にめり込まないlす、掘
起す様に細粒化と混合によって行う。
The granulation method is carried out using a mixer such as a rotary mixer, a set of screws, or a vibrating mixer, by pulverizing and mixing the above-mentioned dehydration aid so that it does not sink into the sludge and is dug up.

このように堀り起すように汚泥の細粒化を行って造粒す
ることによって、汚泥の微細構造を壊さないで造粒する
ことができる。
By refining the sludge and granulating it in this way, it is possible to granulate the sludge without destroying its fine structure.

この造粒方法は本発明の実施において極めて重要な点で
ある。
This granulation method is extremely important in implementing the present invention.

汚泥の微細構造を保ち、その通水性を損なわないように
するには、この造粒混合時に汚泥が練られないように汚
泥を堀り起すごとく、すなわち汚泥を切断するように造
粒するとともに、助剤と混合して助剤をまぶすようにす
る。
In order to maintain the fine structure of the sludge and not impair its water permeability, the sludge is granulated in a manner similar to digging up the sludge, that is, cutting the sludge, so that the sludge is not kneaded during the granulation and mixing. Mix with auxiliary agent and sprinkle with auxiliary agent.

このことにより、泥状物質の揺動変化(チキントロピー
)を防ぎながら造粒される。
This allows the slurry to be granulated while preventing oscillation changes (chickentropy).

このように造粒することにより、汚泥の造粒物の表面を
脱水助剤で覆ったようになる。
By granulating the sludge in this manner, the surface of the sludge granules is covered with the dewatering aid.

このとき、泥状物質を練ってしまって揺動変化を起すと
、汚泥の微細構造が壊れて通水性が低下し、いわゆる粘
土のような状態となって、脱水することが極めて困難と
なる。
At this time, if the sludge is kneaded and shaken, the fine structure of the sludge will be broken and its water permeability will be reduced, resulting in a so-called clay-like state, making it extremely difficult to dewater.

このように混線をよく行って揺動変化を起してしまうと
、このように1汚泥口体の通水性が低下するとともに、
乾燥した脱水助剤を使用してもこの混線時に汚泥の水分
によって助剤が湿って、汚泥粒の表面に付いた混合層が
厚くなり、乾燥状態のままの脱水助剤層が薄くなってし
まう。
If there is frequent cross-talk and oscillation changes occur, the water permeability of the sludge port body will decrease, and
Even if a dry dewatering aid is used, the water in the sludge will moisten the aid during this crosstalk, making the mixed layer on the surface of the sludge particles thicker, and the dry dewatering aid layer will become thinner. .

造粒後の粒度は直径を20mm以下とし、特に直径が1
〜lQmmの範囲に重量比で70%以上の粒子が分布し
ていることが望ましい。
The particle size after granulation should be 20 mm or less in diameter, especially if the diameter is 1.
It is desirable that 70% or more of the particles by weight are distributed in the range of ~lQmm.

この発明のように、脱水助剤を加え、なから汚泥物質を
適当な粒度に造粒すると、汚泥物質を細く1して行く過
程で、常に汚泥の表面が脱水助剤で覆われているように
なるので、含水量が少し多い汚泥であっても汚泥造粒物
同志の再付着を防止することができる。
As in this invention, when a dewatering aid is added and the sludge material is granulated to an appropriate particle size, the surface of the sludge is always covered with the dewatering aid during the process of thinning the sludge material. Therefore, even if the sludge has a slightly high water content, it is possible to prevent the sludge granules from adhering to each other again.

このように造粒することにより、造粒物の粒度がよくそ
ろう。
By granulating in this way, the particle size of the granulated product is well-aligned.

この粒状の汚泥物質を前記脱水機によって、再び脱水(
二次脱水)することによって含水率を60%以下にし、
その容量は最初のものに比べ5割以上にすることが出来
るものである。
This granular sludge material is again dehydrated (
Secondary dehydration) to reduce the water content to 60% or less,
Its capacity can be increased by more than 50% compared to the first one.

またこの二次脱水を圧搾により行ない、しかも初圧と加
圧とを分けて行なう。
Further, this secondary dehydration is performed by squeezing, and the initial pressure and pressurization are performed separately.

二段圧搾することで含水率50%以下容量を6割以下に
するものである。
By performing two-stage compression, the moisture content is reduced to 50% and the volume is reduced to 60% or less.

この初圧は30kg/cm′以下、望ましくは15−2
5kg/cm’とし、時間は2分間以下とすることが望
ましい。
This initial pressure is 30 kg/cm' or less, preferably 15-2
5 kg/cm' and the time is preferably 2 minutes or less.

また本加圧は50 100kg / cm”、望ましく
は60−80kg/cm”で1〜3分間かけて圧搾する
Further, the main pressurization is performed at 50 to 100 kg/cm'', preferably 60 to 80 kg/cm'' for 1 to 3 minutes.

次に実験例に基いて、本発明の詳細な説明する。Next, the present invention will be explained in detail based on experimental examples.

水路、河川、沈殿池等に沈殿濃縮した有機分を含み含水
量がほぼ98%の泥状物質Aを揚泥ポンプにより回収し
てベルトプレスに供給する。
Sludge material A containing organic matter and having a water content of approximately 98% is collected by a mud pump and is supplied to a belt press.

この時の泥状物質Bの含水率は回収途中に少し水分が減
っておよそ96%となっている。
At this time, the water content of the muddy material B was approximately 96%, as the water content decreased slightly during recovery.

この泥状物質Bをベルトプレスにより1次脱水となる挟
圧脱水をしてlQmm厚以下の円盤状に凝縮した固形泥
状物質Oを取り出す。
This muddy substance B is subjected to primary dehydration using a belt press, and a solid muddy substance O condensed into a disk shape with a thickness of 1Q mm or less is taken out.

この固形泥状物質Cを回転円筒ミキサー内で破砕すると
共に、焼却炉内の焼却灰を0から200%の範囲で変化
させて添加しながら調合混合を行う。
This solid mud material C is crushed in a rotating cylindrical mixer, and blended and mixed while adding incineration ash in the incinerator in a range of 0 to 200%.

混線時間は20〜40秒位である。The crosstalk time is about 20 to 40 seconds.

この間泥状物質Oはミキサ内にて反転する都度、四分五
裂して焼却灰と混合転動し、その結果乾燥外皮を有する
直径5mm以下の粒状泥状物質りとなる。
During this time, each time the muddy material O is turned over in the mixer, it is divided into quarters and mixed with the incinerated ash and rolled, resulting in a granular muddy material having a dry outer shell and having a diameter of 5 mm or less.

この粒状泥状物質りを2次脱水を行うべく圧搾装置に収
容し、当初20kg/cm”の圧を1分間加えて圧搾操
作を行なう。
This granular slurry material is placed in a pressing device for secondary dehydration, and a pressing operation is performed by initially applying a pressure of 20 kg/cm'' for 1 minute.

その後加圧して70kg/cm′の圧を2分間加える。Thereafter, pressurization is applied to apply a pressure of 70 kg/cm' for 2 minutes.

この操作により粒状泥状物質りは含水量のきわめて低い
泥状物質Eとなる。
Through this operation, the granular mud material becomes mud material E with extremely low water content.

更にこの泥状物質Eを粉、砕機により破壊し固形状の泥
状粉Fにする。
Further, this muddy substance E is crushed by a crusher to form a solid muddy powder F.

この固形泥状粉Fを焼却炉により完焼し、その結果出来
た焼却灰の一部を話加用脱水助剤として、前記ミキサ内
に反送循環することもできる。
This solid muddy powder F can also be completely burned in an incinerator, and a part of the resulting incinerated ash can be used as a dehydration aid for addition and circulated back into the mixer.

なお前記の96%含水泥状物質Bはフィルタープレスを
用いて70%含水泥状物B′に形成し、ミキサにおける
焼却灰の添加量を30%以下にし、圧搾脱水を容易にし
てもよい。
Note that the 96% water-containing mud substance B may be formed into a 70% water-containing mud substance B' using a filter press, and the amount of incineration ash added in the mixer may be set to 30% or less to facilitate compression dehydration.

次に本実験の実験結果を説明する。Next, the experimental results of this experiment will be explained.

第1図は一次脱水ゲーキに脱水助材として焼却灰を加え
混合造粒して二次脱水した時の焼却灰添加量と脱水汚泥
物質の含水率の関係を示すものである。
Figure 1 shows the relationship between the amount of added incinerated ash and the water content of dehydrated sludge when incinerated ash is added as a dehydrating aid to the primary dehydrated sludge, mixed and granulated for secondary dehydration.

この図からグラフaで示すように二次脱水前の含水率が
98%の場合、二次脱水後の含水率は脱水助剤の添加量
が100%以上になるまで一定でその後急激に低下し、
150%位で安定する。
From this figure, as shown in graph a, when the water content before secondary dehydration is 98%, the water content after secondary dehydration remains constant until the amount of dehydration aid added reaches 100% or more, and then rapidly decreases. ,
It stabilizes at around 150%.

この含水率は40%であった。This moisture content was 40%.

次に二次脱水前の含水率が80%の場合グラフb、二次
脱水後の含水率は脱水助剤の添加量が30%以下で、4
0%となった。
Next, if the water content before secondary dehydration is 80%, graph B, and the water content after secondary dehydration is 4.
It became 0%.

脱水助剤の量が30〜50%で、二次脱水後の含水量は
安定する。
When the amount of the dehydration aid is 30 to 50%, the water content after secondary dehydration is stabilized.

次に二次脱水前の含水率75%の場合(グラフ0)は、
含水率80%の場合とほとんど同じ経過を辿るが、ただ
助剤添加量20%で含水率は40%にまでさがることが
わかる。
Next, if the water content is 75% before secondary dehydration (graph 0),
The process is almost the same as in the case where the water content is 80%, but it can be seen that the water content drops to 40% when the amount of auxiliary agent added is 20%.

以上の事からもわかる様にいずれも脱水助剤が130%
以上加えられた場合には含水率は60%以下となる。
As you can see from the above, the dehydration aid is 130% in both cases.
If more is added, the water content will be 60% or less.

しかし二次脱水前の水分が98%のものは、150%以
上の脱水助剤を加えなければ50%以下の含水率にはな
らない。
However, if the moisture content before secondary dehydration is 98%, the moisture content will not reach 50% or less unless a dehydration aid of 150% or more is added.

一方、80%、75%のものは脱水助剤を20%加える
だけで、含水率は40%にもなる。
On the other hand, for 80% and 75% products, the water content can reach 40% by adding only 20% of the dehydration aid.

このように、第一次脱水で出来るだけ水分を減らしてお
くことが望ましいが通常の脱水機の機能から考えて、8
2%以下とすれば十分と考えられる。
In this way, it is desirable to reduce the water content as much as possible in the first dehydration process, but considering the functions of a normal dehydrator,
It is considered that a level of 2% or less is sufficient.

この含有量であれば脱水助剤を造粒粉の表面に付着させ
得る。
With this content, the dehydration aid can be attached to the surface of the granulated powder.

これ以上の含水量の場合、造粒時に脱水助剤が消費され
て多くの助剤が必要となる。
If the water content is higher than this, the dehydration aid will be consumed during granulation and a large amount of the aid will be required.

次に、本実験では初めの汚泥物質と一次脱水後および二
次脱水後の汚泥物質の状態は各々含水率98%、75%
、30%であった。
Next, in this experiment, the initial sludge material, the state of the sludge material after the primary dewatering, and the state of the sludge material after the secondary dewatering had a water content of 98% and 75%, respectively.
, 30%.

これらに対する重量の比較を示したものが第2図である
FIG. 2 shows a comparison of the weights of these.

例えば、当初水分98%の汚泥の全重量が1kgあった
とすると一次脱水後には水分が75%の場合約1713
である80gに、そして二次脱水後には脱水助剤10g
の重量を加えても水分30%で全重量は42gにも減少
する。
For example, if the total weight of sludge with a moisture content of 98% is 1 kg at the beginning, after primary dewatering, if the moisture content is 75%, it will weigh approximately 1 kg.
80g, and 10g of dehydration aid after secondary dehydration.
Even if the weight of the water is 30%, the total weight will be reduced to 42g.

水分含有重量で比較すると各々980g、60g12g
と減少する。
Comparing the water content weight: 980g, 60g, 12g respectively
and decrease.

この様に二次脱水された汚泥物質は、含水率50〜60
%以下なので、固形状となって表面水分のない状態とな
りそのままで2000〜2500kcal/ kgの熱
量を有するようになる。
The sludge material secondary-dehydrated in this way has a water content of 50 to 60.
% or less, it becomes a solid state with no surface moisture and has a calorific value of 2000 to 2500 kcal/kg as it is.

次に第3図の左図は一次脱水前の粒状泥状物質で右図は
二次脱水後の可燃泥状物質の想像した組織図である。
Next, the left diagram in Figure 3 is the granular muddy material before primary dehydration, and the right diagram is an imagined organization diagram of the combustible muddy material after secondary dehydration.

左図において泥状物質1は、汚泥固形質12、間隙水1
3、毛管上昇水14、表面付着水15、内部水16及び
周囲の自由水17で構成されており、汚泥固形質以外は
全て水分である。
In the left figure, muddy material 1, sludge solids 12, and pore water 1
3. It is composed of capillary rising water 14, surface adhesion water 15, internal water 16, and surrounding free water 17, and everything except the solid sludge is water.

そして上記水分のうち内部水16だけは固形分12の内
部に存在し、結合力が強く圧縮性があるため、機械的に
脱水することは困難なものであるが、その他(間隙水1
3、毛管上昇水14、表面付着水15等)は脱水助剤の
添加や機機的脱水をすることで比較的容易に脱水が可能
となったと考えられる。
Of the above moisture, only internal water 16 exists inside the solid content 12 and has a strong binding force and is compressible, so it is difficult to mechanically remove water.
3, capillary rising water 14, surface adhering water 15, etc.) can be relatively easily dehydrated by adding a dehydration aid or mechanical dehydration.

そして、二次脱水後の湾状物質は右図に示す様に汚泥固
形質12もろとも偏平な形状に変形し内部水16以外の
前記結合水はほとんど除外されているものと想像される
It is assumed that the bay-shaped material after the secondary dewatering is deformed into a flat shape along with the sludge solids 12, as shown in the right figure, and almost all of the bound water other than the internal water 16 is excluded.

上記の様な結果が得られるのは、二次脱水前に添加した
乾燥助剤18が湾状物質の外皮に付着することにより、
まず表面付着水15の親和力が弱まる。
The above results are obtained because the drying aid 18 added before the secondary dehydration adheres to the outer skin of the bay-shaped material.
First, the affinity of the water 15 adhering to the surface is weakened.

そして圧搾作用も加わり、粒状泥状物質の外皮は圧壊し
、それと同時に汚泥固形質が押しつぶされ逃げ場を失な
った結合水等は粒間の空隙を通じて外部に排水されるか
らではないかと考えられる。
It is thought that this is because the squeezing action is added, and the shell of the granular sludge material is crushed, and at the same time, the sludge solids are crushed, and bound water, etc., which has no place to escape, is drained to the outside through the voids between the particles.

最後に第4図は、汚泥物質の従来脱水法と本発明による
脱水法での含水率、および各含水状態での熱特性を示す
ものである。
Finally, FIG. 4 shows the moisture content of sludge materials in the conventional dewatering method and the dewatering method according to the present invention, and the thermal characteristics in each water content state.

この図の通り、現状の多段炉では汚泥物質を自然域まで
乾燥させるため外部燃焼用燃料を汚泥ケーキ1ton当
930〜40gも費やしている。
As shown in this figure, in the current multistage furnace, 930 to 40 g of external combustion fuel is consumed per ton of sludge cake in order to dry the sludge material to a natural state.

そこで各種焼却炉においての自燃レベルを高めることが
検討されているが、含水率65%以上では自然可能な焼
却炉を造ることが困難である。
Therefore, increasing the self-combustion level in various incinerators is being considered, but it is difficult to create a natural incinerator with a moisture content of 65% or more.

本発明の脱水方法により汚泥の含水率は60%以下、望
ましくは50%以下となったので汚泥をそのまま燃焼さ
せることが出来るだけでなくエネルギーを創り出すこと
か゛出来る様になったのである。
By the dewatering method of the present invention, the moisture content of sludge is reduced to 60% or less, preferably 50% or less, making it possible not only to burn the sludge as it is, but also to generate energy.

本発明は以上説明した様に有機分を含有する汚泥物質の
高度の熱特性を無駄にすることなく、自燃が可能なまで
に含水率を低下させることに成功し、しかも脱水後の汚
泥物質の容量は5割以下に減容出来た。
As explained above, the present invention has succeeded in reducing the water content to a level that enables self-combustion without wasting the advanced thermal properties of sludge material containing organic components, and in addition, the sludge material after dewatering has The capacity was reduced to less than 50%.

また燃焼時の熱を利用し、発電等の有効なエネルギーに
変換することも出来る。
It is also possible to use the heat from combustion and convert it into useful energy such as power generation.

以上の様に本発明は省資源面より、産業廃棄物の有効利
用、再利用が叫ばれる昨今において、非常に有効な汚泥
物質の脱水方法である。
As described above, the present invention is a very effective method for dewatering sludge materials in these days when there is a demand for effective use and reuse of industrial waste from the viewpoint of resource conservation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、焼却灰添加量と脱水汚泥物質の含水率の関係
を示す図、第2図は初めの汚泥物質、一次脱水後、二次
脱水後各々の水分と汚泥固形分の重量比を示す図、第3
図は脱水前と二次脱水後の汚泥物質の想像した組織図、
第4図a、 bは汚泥物質の従来脱水法と本発明によ
る脱水法での含水率および各含水状態での熱特性を示す
図である。 1・・・・・・汚泥物質、12・・曲汚泥固形質、13
・・曲間防水、14・・・・・・毛管上昇水、15・・
曲表面付着水、16・・・・・・内部水、17・・・・
・・自由水、18・・曲乾燥助剤。
Figure 1 shows the relationship between the amount of incinerated ash added and the water content of dehydrated sludge material, and Figure 2 shows the weight ratio of water and sludge solids for the initial sludge material, after primary dewatering, and after secondary dewatering. Figure shown, 3rd
The figure shows an imagined organization diagram of sludge material before dehydration and after secondary dehydration.
FIGS. 4a and 4b are diagrams showing the water content and thermal characteristics in each water content state in the conventional dewatering method of sludge material and the dewatering method according to the present invention. 1... Sludge substance, 12... Curved sludge solid substance, 13
... Waterproofing between songs, 14 ... Capillary rising water, 15 ...
Water adhering to curved surface, 16... Internal water, 17...
... Free water, 18... Bending drying aid.

Claims (1)

【特許請求の範囲】 1 泥状物質の脱水において、一次脱水した泥状物質に
脱水助剤を加え泥状物質の揺動変化を防ぎながら適当な
粒度に造粒することにより、造粒物の表面を脱水助剤で
覆った上で、この造粒物を二次脱水することにより、含
水率を60%以下にすることを特徴とする泥状物質の脱
水方法。 2、特許請求の範囲1項において、泥状物質への脱水助
剤の添加を、泥状物質を粒粒しながら行うことを特徴と
する泥状物質の脱水方法。 3 特許請求の範囲第1項又は第2項において、二次脱
水を加圧により行い、含水率を50%以下にすることを
特徴とする泥状物質の脱水方法。 4 特許請求の範囲第1項〜第3項のいずれか1項に記
載の方法において、一次脱水にて泥状物質の含水率を8
2%以下にすることを特徴とする脱水方法。 5 特許請求の範囲第1項〜第4項のいずれか1項に記
載の方法において、脱水助剤として、珪藻土、消石灰、
炭酸カルシウム、焼却灰、微粉炭、土壌、骨粉、ソーダ
スト、乾燥パルプのうち1種以上を用いることを特徴と
する泥状物質の脱水方法。 6 特許請求の範囲第5項において、焼却灰を用いるこ
とを特徴とする泥状物質の脱水方法。 7 特許請求の範囲第6項において、焼却灰として下水
処理汚泥灰、凍尿処理汚泥灰、産業廃水処理汚泥灰、都
市ゴミ焼却灰、産業廃棄物焼却灰のいずれかまたはそれ
らの混合物を用いることを特徴とする泥状物質の脱水方
法。 8 特許請求の範囲第1項又は第2項において、脱水助
剤の添加量を元汚泥固形分の乾燥実景に対し10〜10
0%の量とすることを特徴とする泥状物質の脱水方法。 9 特許請求の範囲第1項又は第2項において、造粒後
の粒度を直径20mm以下とすることを特徴とする泥状
物質の脱水方法。 10 特許請求の範囲第9項において、直径1〜10
mmの粒度帯に重量比で70%以上の粒子が分布するこ
とを特徴とする泥状物質の脱水方法。 11 特許請求の範囲第3項において、加圧方法を縦
型及び横型の脱水機の何れかによる直接加圧又は間接加
圧とし、初圧後加圧する二段圧搾する二′とを特徴とす
る泥状物質の脱水方法。 12、特許請求の範囲第3項において、加圧力とその保
持時間を初圧は30kg/cm以下で2分以内、加圧は
50〜100kg / cm’で1〜3分とすることを
特徴とする泥状物質の脱水方法。
[Claims] 1. In dehydration of muddy materials, a dehydration aid is added to the muddy materials that have been primarily dehydrated, and the granules are granulated to an appropriate particle size while preventing fluctuation of the muddy materials. A method for dehydrating a muddy substance, which comprises covering the surface with a dehydration aid and subjecting the granulated material to secondary dehydration to reduce the water content to 60% or less. 2. A method for dewatering a muddy material according to claim 1, characterized in that the addition of a dehydration aid to the muddy material is carried out while the muddy material is being granulated. 3. A method for dehydrating a muddy substance according to claim 1 or 2, characterized in that the secondary dehydration is performed under pressure to reduce the water content to 50% or less. 4. In the method according to any one of claims 1 to 3, the water content of the slurry material is reduced to 8 in the primary dehydration.
A dehydration method characterized by reducing water to 2% or less. 5. In the method according to any one of claims 1 to 4, diatomaceous earth, slaked lime,
A method for dewatering muddy substances, characterized by using one or more of calcium carbonate, incineration ash, pulverized coal, soil, bone meal, sawdust, and dried pulp. 6. A method for dewatering muddy substances as set forth in claim 5, characterized in that incineration ash is used. 7 In claim 6, the incineration ash is sewage treatment sludge ash, frozen urine treatment sludge ash, industrial wastewater treatment sludge ash, municipal waste incineration ash, industrial waste incineration ash, or a mixture thereof. A method for dehydrating muddy substances characterized by: 8 In claim 1 or 2, the amount of the dehydration aid added is 10 to 10
A method for dehydrating muddy substances, characterized in that the amount of water is 0%. 9. A method for dewatering muddy substances according to claim 1 or 2, characterized in that the particle size after granulation is 20 mm or less in diameter. 10 In claim 9, a diameter of 1 to 10
A method for dewatering muddy material, characterized in that 70% or more of particles by weight are distributed in a particle size band of mm. 11 Claim 3 is characterized in that the pressurization method is direct pressurization or indirect pressurization using either a vertical or horizontal dehydrator, and 2' is a two-stage compression process in which pressurization is applied after initial pressure. Method for dewatering muddy substances. 12. Claim 3 is characterized in that the initial pressure is 30 kg/cm or less for 2 minutes or less, and the pressure is 50 to 100 kg/cm' for 1 to 3 minutes. A method for dehydrating muddy substances.
JP56183492A 1981-11-16 1981-11-16 Dehydration method for muddy substances Expired JPS5948160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56183492A JPS5948160B2 (en) 1981-11-16 1981-11-16 Dehydration method for muddy substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56183492A JPS5948160B2 (en) 1981-11-16 1981-11-16 Dehydration method for muddy substances

Publications (2)

Publication Number Publication Date
JPS58101799A JPS58101799A (en) 1983-06-17
JPS5948160B2 true JPS5948160B2 (en) 1984-11-24

Family

ID=16136759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56183492A Expired JPS5948160B2 (en) 1981-11-16 1981-11-16 Dehydration method for muddy substances

Country Status (1)

Country Link
JP (1) JPS5948160B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6048198A (en) * 1983-08-25 1985-03-15 Hitachi Kiden Kogyo Ltd Fermenting method of organic waste
JP5153414B2 (en) * 2008-03-31 2013-02-27 三井造船株式会社 NGH pellet pressing and dehydration

Also Published As

Publication number Publication date
JPS58101799A (en) 1983-06-17

Similar Documents

Publication Publication Date Title
US4587022A (en) Process for dewatering sludge
KR100908450B1 (en) Method to manufacture porous solid fuel using sludge and solid fuel thereof
CN107098550A (en) Sludge solidifying agent and utilize its solidfied material preparation method
JP2001322808A (en) Manufacturing method of activated carbon from sludge
JP3577223B2 (en) Activated carbon production method using sludge
JPS5948160B2 (en) Dehydration method for muddy substances
JP2000017278A (en) Preparation of refuse solid fuel
KR101934411B1 (en) High-temperature waste treatment method using sludge
JP4288714B2 (en) Method of manufacturing fertilizer from organic sludge
US4810257A (en) Mechanical dewatering process
JP3211113B2 (en) Method for producing lightweight aggregate from dewatered sludge
JPS58101798A (en) Dehydrating method for muddy material
JPS58101797A (en) Dehydrating method for muddy material
JPS58101800A (en) Dehydrating method for muddy material
JPH08119782A (en) Production of carbon-containing briquette or pellet by total treatment of waste
JPH08176567A (en) Production of solid fuel from waste and utilization of the same solid fuel
JP2975011B1 (en) Activated carbon for dioxin adsorption, method and apparatus for producing the same, and dioxin adsorption treatment method
JP3242674B2 (en) Mud and mud waste treatment equipment
KR101845807B1 (en) Manufacturing method of a sludge treatment agent and method to treat a sludge using the same
JPH0978076A (en) Apparatus for manufacturing solid fuel
JPS61296A (en) Treatment of organic sludge
JPS6013891A (en) Assistant fuel for cement calcination and method for using the same
JPS5980495A (en) Combustion auxiliary material for furnace using sludge of sewage and its preparation
JPS63296900A (en) Dehydration of substance hard to dehydrate
JPS63295000A (en) Method for dehydrating hardly dehydratable substance