JPS58101798A - Dehydrating method for muddy material - Google Patents

Dehydrating method for muddy material

Info

Publication number
JPS58101798A
JPS58101798A JP56183491A JP18349181A JPS58101798A JP S58101798 A JPS58101798 A JP S58101798A JP 56183491 A JP56183491 A JP 56183491A JP 18349181 A JP18349181 A JP 18349181A JP S58101798 A JPS58101798 A JP S58101798A
Authority
JP
Japan
Prior art keywords
dehydration
muddy
sludge
dehydrating
dewatering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56183491A
Other languages
Japanese (ja)
Inventor
Hideaki Shimizu
小舟栄一
Eiichi Ofune
清水英明
Haruhisa Saito
斉藤治久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP56183491A priority Critical patent/JPS58101798A/en
Publication of JPS58101798A publication Critical patent/JPS58101798A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To decrease moisture content down to levels at which self-burning is possible by adding dehydration aids to primarily dehydrated muddy-materials and granulating the same to suitable grain sizes and further subjecting the granules to secondary dehydration. CONSTITUTION:Muddy materials contg. org. components are dehydrated with dehydrators such as gravity dehydrators, vacuum dehydrators, centrifugal dehydrators, belt presses or filter presses down to about 82% moisture content. The primarily dehydrated sludge materials are charged into a rotary cylindrical mixer or the like and are crushed; at the same time dehydrating aids consisting of >=1 king among diatomaceous earth, slaked lime, calcium carbonate, incineration ashes, finely grained coal, sawdust, dry pulp and soil are added thereto; thereafter the mixture is granulated to suitable grain sizes. The dehydration (secondary dehydration) of the granules is performed with the above-mentioned dehydrators to reduce moixture content down to <=60%.

Description

【発明の詳細な説明】 本発明は、下水汚泥等含水率の高い泥水物質の脱水方法
に係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for dewatering muddy water materials with high water content, such as sewage sludge.

現在、公共水域の水質強化、産業界の発展・変換に伴い
、水質浄化量は増大しその結果副産物である汚泥は、増
加の一途を辿っている。一般に有機性汚泥の可燃分はセ
ルロース形態を示し、3000〜4500 (Kcal
A・有機分)の発熱量を有し、石炭にも匹敵する、それ
にもかかわらずレカ廿竜がち総見う汚泥量の90%以上
は1、結局大地又は海洋l\の投棄処分に頼っている、
しかし未処理汚泥では多量の水分を伴い腐販性を有し、
悪臭を発生する為、環境衛生上投棄に制限を受け、大都
市その周辺都市での大地処分地は今や飽和状態に達して
いる。
Currently, with the enhancement of water quality in public water bodies and the development and transformation of industry, the amount of water purification is increasing, and as a result, the amount of sludge as a byproduct is steadily increasing. Generally, the combustible content of organic sludge is in the form of cellulose, and has a combustible content of 3000 to 4500 (Kcal
A.It has a calorific value of organic content) and is comparable to that of coal.Nevertheless, more than 90% of the total amount of sludge produced is 1, which ultimately relies on dumping into the earth or the ocean. There is,
However, untreated sludge contains a large amount of water and is highly salable.
Due to the foul odor it produces, there are restrictions on dumping due to environmental hygiene reasons, and large-scale disposal sites in and around large cities are now saturated.

そこで、汚泥物質の処理処分については、省資源面より
有効利用・再利用が叫ばれ、自治体・メーカ共にその開
発に躍起となっているが、まだ決め手はない。
Therefore, when it comes to processing and disposing of sludge materials, effective use and reuse are being advocated from the perspective of resource conservation, and both local governments and manufacturers are working hard to develop such methods, but there is no definitive solution yet.

従来、有機分を含む泥状物質を脱水固化するには、汚泥
物質に何らかの調質剤を添加し、調質後重力脱水、真空
脱水、遠心脱水、ベルトプレス、ライルタプレス等の装
置を単独又は組み合わせて、脱水固化するものであった
が、含水粉体間の毛管現象やi布の目詰り現象等の、脱
水妨害により、脱水後め含水率は70〜sag”@で、
多段炉を始めとする各種焼却炉での自燃が可能な状態ま
でに脱水することは出来なかった。泥状物質を自燃域ま
で脱水することは、省資源面から見ても重要である。こ
こで、自燃域の含水率はおよそ65%以下であることが
必要である。そのため、従来泥状物質を脱水固化後、水
分蒸発を目的とする天日乾燥や燃焼ガスの循環による乾
燥が行なわれている。
Conventionally, in order to dehydrate and solidify sludge containing organic components, some kind of conditioning agent is added to the sludge, and after conditioning, equipment such as gravity dehydration, vacuum dehydration, centrifugal dehydration, belt press, Lyruta press, etc. is used alone or in combination. However, due to dehydration interference such as capillarity between water-containing powders and clogging of the i-cloth, the water content after dehydration was 70 to sag.
It has not been possible to dehydrate it to a state where self-combustion is possible in various incinerators, including multistage furnaces. Dehydration of muddy substances to the self-combustible range is also important from the perspective of resource conservation. Here, the moisture content in the self-combustion region needs to be about 65% or less. For this reason, conventionally, after dehydration and solidification of muddy substances, drying is carried out in the sun or by circulation of combustion gas for the purpose of evaporating water.

しかし、従来の方法では汚泥ケーキ%’ton  当り
30〜401の外部燃料を必要とし、不経済であり、設
備的にも問題点が多かった。
However, the conventional method requires 30 to 401 parts of external fuel per %'ton of sludge cake, is uneconomical, and has many problems in terms of equipment.

本発明は前記問題点を解決し、自燃が可能なまで含水率
を下げる方法で、更に、エネルギーを創り出し得るまで
汚泥物質の脱水が出来る脱水方法を提供するものである
The present invention solves the above-mentioned problems and provides a dewatering method that can reduce the moisture content until self-combustion is possible, and furthermore, can dewater the sludge material until energy can be produced.

そこで本発明の脱水方法は、−次脱水した泥状物質に脱
水助剤を茄えたあと、これを適当な粒度に造粒し、更に
この造粒物を二次脱水することにより含水率を60ts
以下にすることを特徴とするものである。
Therefore, in the dehydration method of the present invention, a dehydration aid is added to the dehydrated slurry material, and then this is granulated to an appropriate particle size, and this granulated material is further dehydrated for a second time to reduce the water content to 60ts.
It is characterized by the following:

本発明の望ましい実施においては、二次脱水を加圧によ
り行い、含水率を50チ以下となる。
In a preferred implementation of the present invention, secondary dehydration is performed under pressure to reduce the water content to 50 inches or less.

本発明を工程順に詳細に説明する。The present invention will be explained in detail step by step.

本発明の一次脱水においては、水路、河川、沈殿池等か
ら回収した有機分を含む泥状物質を重力脱水、真空脱水
、遠心脱水、ベルトプレス、あるいはフィルタプレス等
の脱水機をもって泥状物質の含水率を82−以下にまで
に減らす。ここで望ましくは82%〜75%にする。例
えば、ベルトプレスを使用するのなら2〜3 kli/
diの操作圧で、重力と圧搾作用により75チの含水率
まで脱水可能であるし、遠心脱水機なら2000〜30
00Gの操作圧で遠心力により同じ<751の含水率ま
で脱水可能である。ただここ、で注意すべくは、各脱水
機の操作圧はそれぞれ適当な圧力を選ぶことである。た
だいたずらに操作圧を高くするのは、汚泥の圧密化現象
を促し、水の抜は道は失なわれ更にはf布の目詰りが起
る等、全く逆効果を招来することになる。
In the primary dehydration of the present invention, muddy materials containing organic components collected from waterways, rivers, sedimentation ponds, etc. are processed using a dehydrator such as gravity dehydration, vacuum dehydration, centrifugal dehydration, belt press, or filter press. Reduce moisture content to below 82-. Here, it is preferably 82% to 75%. For example, if you use a belt press, 2 to 3 kli/
With an operating pressure of DI, it is possible to dehydrate up to a moisture content of 75% by gravity and squeezing action, and a centrifugal dehydrator can dewater up to 2000~30% water content.
It is possible to dehydrate to the same water content <751 by centrifugal force at an operating pressure of 00G. However, what you should be careful about here is to choose an appropriate operating pressure for each dehydrator. However, unnecessarily increasing the operating pressure will promote the compaction of sludge, which will have the opposite effect, such as making it impossible to drain water and clogging the f-cloth.

この様に一次脱水をした汚泥物を回転円筒ミキサー等に
投入し、破砕すると共に脱水助剤として、珪藻土、消石
炭、炭酸カルシウム、焼却灰、微粉炭、ソーダスト、乾
燥パルプ、土壌のうち一種以上を元汚泥固形分の乾燥重
量に対し、lO〜100チの量で添加し、その後、これ
を適当な粒度に造粒する。前記脱水助剤のうち焼却灰は
、下水処理汚泥灰、床尿処理汚泥灰、産業廃′水処理汚
泥灰、都市ゴミ焼却灰、産業廃棄物焼却灰等の比較的入
手が容易で、工業上再利用価値の薄いものを用いること
が望ましい。特に、本発明の実施で出来た脱水物を焼却
して出来た焼却灰の一部を循環させて使用することが最
も望ましい。
The sludge that has been primarily dehydrated in this way is put into a rotary cylindrical mixer, etc., and crushed, and at least one of diatomaceous earth, slaked coal, calcium carbonate, incinerated ash, pulverized coal, sawdust, dried pulp, and soil is used as a dehydration aid. is added in an amount of lO to 100 g based on the dry weight of the original sludge solids, and then granulated to an appropriate particle size. Among the dehydration aids, incineration ash is relatively easy to obtain, such as sewage treatment sludge ash, bed urine treatment sludge ash, industrial wastewater treatment sludge ash, municipal waste incineration ash, and industrial waste incineration ash. It is desirable to use materials with low reuse value. In particular, it is most desirable to circulate and use a portion of the incineration ash produced by incinerating the dehydrated product produced in the practice of the present invention.

造粒方法はロータリ式、スクリー一式、振動式等の混線
機で、上述の乾燥助剤が汚泥中にめり込まない様かつ、
堀り起す様に混練する。造粒後の粒度は直径20關以下
とし、特に直径が1〜1゜顛の懸回に重量比で7096
以上の粒子が分布していることが望ましい。
The granulation method uses a mixer such as a rotary type, a scree set, or a vibrating type, so that the drying aid mentioned above does not sink into the sludge, and
Knead as if stirring. The particle size after granulation should be 20 degrees or less in diameter, especially 7096 in weight ratio for suspensions with a diameter of 1 to 1 degrees.
It is desirable that the above particles are distributed.

この発明のように、脱水助剤を加えた後に汚泥物質を造
粒すると、脱水助剤が汚泥物質に均一に混合される。
When the sludge material is granulated after adding the dewatering aid as in this invention, the dewatering aid is uniformly mixed into the sludge material.

この粒状の汚泥物質を前記脱水機によりて、再び脱水(
二次脱水)することによって、含水率を60チ以下にし
、その容量は、最初のものに比べ5割以下にすることが
出来るものである。またこの二次脱水を圧搾により行な
い、しかも初圧と加圧とを分けて行なう、二段圧搾する
ことで含水率を50チ以下容量を6割以下にするもので
ある。
This granular sludge material is again dehydrated (
By performing secondary dehydration, the water content can be reduced to 60 inches or less, and the capacity can be reduced to 50% or less compared to the initial one. In addition, this secondary dehydration is carried out by compression, and the initial pressure and pressurization are performed separately, and by performing two-stage compression, the water content is reduced to 50% or less, and the volume is reduced to 60% or less.

こめ初圧は30kg/d以下望才しくは15〜25kg
/cdLとし、時間は2分間以下とすることが望ましい
。また本加圧は50〜100 #I/cri 、望まし
くは60〜80#/dで、1〜3分間かけて圧搾する。
Initial pressure is less than 30kg/d, preferably 15-25kg
/cdL, and the time is preferably 2 minutes or less. The main pressurization is performed at 50 to 100 #I/cri, preferably 60 to 80 #/d, for 1 to 3 minutes.

次に実験例に基いて、本発明の詳細な説明する。Next, the present invention will be explained in detail based on experimental examples.

水路、河川、沈殿池等に沈殿濃縮した有機分を含み、含
水量かは’;98%の泥状物質入を揚泥ポンプにより回
収してベルトプレスに供給する。この時の泥状物質Bの
含水率は回収途中に少し水分が減っておよそ96チとな
っている。
It contains organic matter that has settled and concentrated in waterways, rivers, sedimentation ponds, etc., and has a water content of 98%, and is collected by a mud pump and supplied to a belt press. At this time, the water content of the muddy material B was approximately 96%, as the water content decreased slightly during the collection.

この泥状物質Bをベルトプレスにより一次脱水となる、
挟圧脱水をして10絽厚以下の円盤状に凝縮した、固形
泥状物質Cを取り出す。
This muddy substance B is subjected to primary dehydration using a belt press.
A solid mud-like substance C condensed into a disk shape of 10 mm or less in thickness is taken out by pressure dehydration.

焼却炉内の焼却灰をOからj00%の範囲で変化させて
添加したこの固形泥状物質Cを回転円筒ミキサ内で破砕
すると共に、調合混線を行う。混線時間は20〜40秒
位である。この間泥状物質Cはミキサ内にて反転する都
度四分五裂して、焼却灰と混合転動し、その結果象燥外
皮を有する直径5闘以下の粒状泥状物質りとなる。
This solid slurry material C, which has been added to the incinerated ash in the incinerator in a range from O to j00%, is crushed in a rotary cylindrical mixer and blended. The crosstalk time is about 20 to 40 seconds. During this time, the muddy material C is divided into quarters and quarters each time it is turned over in the mixer, mixed with the incinerated ash, and rolled, resulting in a granular muddy material having a grainy outer layer and having a diameter of 5 cm or less.

この粒状泥状物質りを二次脱水を行うべく圧搾装置に収
容し、2当初20#/dの圧を1分間加えて圧搾操作を
行なう。その後加圧tして70#/(’dの圧を2分間
加える。この操作により粒状泥状物質りは含水量のきわ
めて低い泥状物質Eとなる。
This granular slurry material is placed in a pressing device for secondary dehydration, and a pressing operation is performed by applying a pressure of 20#/d for 1 minute at the beginning. Thereafter, the pressure was increased to 70#/('d) for 2 minutes. Through this operation, the granular mud material became mud material E with extremely low water content.

更に、この泥状物質Eを粉砕機により砕壊し、固形状の
泥状粉Fにする。この固化泥状粉Fを焼却炉により完焼
し、その結果出来た焼却灰の一部を添加用乾燥助剤とし
て、前記ミキサ内に反送循環することもできる。
Furthermore, this muddy substance E is crushed by a crusher to form solid muddy powder F. This solidified muddy powder F can be completely burned in an incinerator, and a part of the resulting incinerated ash can be used as a drying aid to be added and circulated back into the mixer.

なお、前記の969G含水泥状物質Bはフィルタープレ
スを用いて、70%含水泥状物B′に形成し、ミキサに
おける焼却灰の添加量を301以下にし、圧搾脱水を容
易にしてもよい。
The 969G water-containing mud material B may be formed into a 70% water-containing mud material B' using a filter press, and the amount of incineration ash added in the mixer may be set to 301 or less to facilitate compression dehydration.

次に本実験の実験結果を説明する。Next, the experimental results of this experiment will be explained.

第1図は、−次脱水ケーキに脱水助剤として、焼却灰を
加え混合造粒して二次脱水した時の焼却灰添加量と脱水
汚泥物質の含水率の関係を示すものである。
FIG. 1 shows the relationship between the amount of incinerated ash added and the water content of the dehydrated sludge material when incinerated ash is added as a dehydration aid to the secondary dehydrated cake and mixed and granulated for secondary dehydration.

この図から、グラフaで示すように二次脱水前の含水率
が98チの場合、二次脱水後の含水率は脱水助剤の冷加
量が100%以上になるまで一定で、その後急激に低下
し15096位で安定する。
From this figure, as shown in graph a, when the water content before secondary dehydration is 98 cm, the water content after secondary dehydration remains constant until the amount of cooling of the dehydration aid reaches 100% or more, and then suddenly and stabilized at 15,096th place.

この含水率は40%であった。次に、二次脱水前の含水
率が8096の場合(グラフB)、二次脱水後の含水率
は脱水助剤の添加量が30チ以下で、含水量が4096
となった。脱水助剤の量が30〜50チで、二次脱水後
の含水量は安定する。次に、二次脱水前の含水率75%
の場合(グラフC)は、含水率5otsの場合とほとん
ど同じ経過を辿るが、ただ助剤添加量20チで、含水率
は40チにまでさがることがわかる。
This moisture content was 40%. Next, when the water content before secondary dehydration is 8096 (graph B), the water content after secondary dehydration is 4096 when the amount of dehydration aid added is 30 inches or less.
It became. When the amount of dehydration aid is 30 to 50, the water content after secondary dehydration is stabilized. Next, the moisture content before secondary dehydration is 75%.
In the case of (graph C), almost the same progress as in the case of water content of 5 ots is followed, but it can be seen that the water content drops to 40 oz with the addition of auxiliary agent of 20 oz.

以上の事からもわかる様に、いずれも乾燥助剤が130
%以上加えられた場合には含水率は60−以下となる。
As you can see from the above, the drying aid is 130% in both cases.
% or more, the water content will be 60- or less.

しかし、二次脱水前の水分が98−のものは、1501
以上の乾燥助剤を加えなければ50襲以下の含水率には
ならない。一方、80%、−75%のものは、脱水助剤
を20チ加えるだけで、含水率は40%にもなる。この
ように、第一次脱水で出来るだけ水分を減らしておくこ
とが望ましい1.が通常の脱水機の機能から考えて82
−以下とすれば十分と考えられる。この含水量であれば
脱水助剤を造粒粉の表面に付着させ得る。
However, if the water content before secondary dehydration is 98-1, it is 1501
Unless the above drying aid is added, the moisture content will not be lower than 50%. On the other hand, for 80% and -75%, the water content can reach 40% by simply adding 20 grams of dehydration aid. In this way, it is desirable to reduce water as much as possible through primary dehydration.1. is 82, considering the functions of a normal dehydrator.
-The following is considered sufficient. With this water content, the dehydration aid can be attached to the surface of the granulated powder.

これ以上の含水量の場合、造粒時に脱水助剤が消費され
て、多くの助剤が必要となる。
If the water content is higher than this, the dehydration aid will be consumed during granulation, and a large amount of the aid will be required.

次に本実験では、初めの汚泥物質と一次脱水後および二
次脱水後の汚泥物質の状態は各々含水率98チ、751
3091iであった、これらに対する重量の比較を示し
たものが第2図である。例えば、当初水分98%の汚泥
の全重量が1kgあったとすると、−次脱水後には水分
が751の場合的1713である、80gに、そして二
次脱水後には脱水剤10gの重量を加えても水分30%
で全重量は42gにも減少する。水分含有重量で比較す
ると各々980g、60g、12gと減少する。この様
に二次脱水された汚泥物質は、含水率50〜るようにな
る。
Next, in this experiment, the conditions of the initial sludge material, the sludge material after the primary dewatering, and the sludge material after the secondary dewatering had a water content of 98 cm and 751 cm, respectively.
3091i, and FIG. 2 shows a comparison of their weights. For example, if the total weight of sludge with 98% water content is 1 kg at the beginning, after the second dewatering, the water content is 751, which is 80 g, and after the second dewatering, the weight of 10 g of the dehydrating agent is added. Moisture 30%
This reduces the total weight to 42g. Comparing the water content weights, the weights decrease to 980g, 60g, and 12g, respectively. The sludge material subjected to secondary dewatering in this manner has a water content of 50 to 50.

次に第3図(a)は、−次脱水前の粒状泥状物質で(b
)は二次脱水後の可燃泥状物質の想像した組織図である
Next, Figure 3 (a) shows the granular muddy material before the -th dehydration (b).
) is an imagined organization diagram of the combustible mud material after secondary dehydration.

(81図において、画状物質lは汚泥固形質12、間隙
水131毛管上昇水14、表面付着水15、内部水1通
及び周囲の自由水17で構成されており、汚泥固形質以
外は全て水分である、そして上記水分のうち内部水16
だけは固形分12の内部に存在し、結合力が強く圧縮性
があるため、機械的に脱水することは困難なものである
が、その他の(間隙水13、毛管上昇水14、表面付着
水15等)は、脱水助剤の添加や機械的脱水をすること
で比較的容易に脱水が可能となったと考えられる。
(In Figure 81, the sludge solids 1 are composed of sludge solids 12, interstitial water 131, capillary rising water 14, surface adhesion water 15, one internal water, and surrounding free water 17; everything except the sludge solids water, and of the above water, internal water 16
It exists inside the solid content 12 and has a strong binding force and is compressible, so it is difficult to dehydrate it mechanically. 15 etc.) can be relatively easily dehydrated by adding a dehydration aid or mechanical dehydration.

そして、二次脱水後の画状物質は(b1図に示す様に汚
泥固形質12もろとも偏平な形状に変形し、内部水16
以外の、前記結合水はほとんど除外されているものと想
像される。
After the secondary dewatering, the sludge solids 12 and the sludge solids 12 are deformed into a flat shape (as shown in Figure b1), and the internal water 16
It is assumed that most of the bound water other than the above is excluded.

上記の様な結果が得られるのは、二次脱水前に添加した
乾燥助剤18が画状物質の外皮に付着することにより、
まず表面付着水15の親和力が弱まる、そして圧搾作用
も加わり、粒状泥状物質の外皮は圧壊し、それと同時に
汚泥固形質が押しつぶされ、逃げ場を失なった結合水等
は粒間の空隙を通じて外部に排水されるからではないか
と考えられる。
The above results are obtained because the drying aid 18 added before the secondary dehydration adheres to the outer skin of the patterned material.
First, the affinity of the water 15 adhering to the surface weakens, and then a squeezing action is added, crushing the outer skin of the granular muddy material, and at the same time crushing the sludge solids, and the bound water, etc., which has no place to escape, passes through the gaps between the grains to the outside. This is thought to be because the water is drained away.

最後に第4図は、汚泥物質の従来脱水法と本発明による
脱水法での含水率、および各含水状態での熱特性を示す
ものである。この図の通り、現状の多段炉では汚泥物質
を自燃域まで乾燥させるため、外部燃焼用燃料を汚泥ケ
ーキ1 ton当り30〜401も費やしている。そこ
で、各種焼却炉においての自燃レベルを高めることが検
討されているが、含水率65Is以上では自燃可能な焼
却炉を造ることが困難である。本発明の脱水方法により
汚泥の含水率を60−以下、望ましくは50%以下とな
ったので、汚泥をそのまま燃焼させることが出来るだけ
でなく、エネルギーを創り出すことが出来る様になった
のである。
Finally, FIG. 4 shows the moisture content of sludge materials in the conventional dewatering method and the dewatering method according to the present invention, and the thermal characteristics in each water content state. As shown in this figure, in the current multistage furnace, in order to dry the sludge material to the self-combustion range, 30 to 40 liters of external combustion fuel is consumed per 1 ton of sludge cake. Therefore, increasing the level of self-combustion in various incinerators has been considered, but it is difficult to create incinerators that can self-combust when the water content is 65 Is or more. By the dewatering method of the present invention, the moisture content of sludge is reduced to 60% or less, preferably 50% or less, so that it is not only possible to burn the sludge as it is, but also to generate energy.

本発明は、以上説明した様に有機分を含有する汚泥物質
の高度の熱特性を無駄にすることなく、自燃が可能なま
でに含水率を低下させることに成功し、しかも脱水後の
汚泥物質の容量は5割以下に減容出来た。また、燃焼時
の熱を利用し、発電等の有効なエネルギーに変換するこ
とも出来る。
As explained above, the present invention has succeeded in reducing the water content to a point where self-combustion is possible without wasting the high thermal properties of sludge containing organic components, and in addition, the sludge after dewatering has The capacity was reduced to less than 50%. Additionally, the heat generated during combustion can be used to convert it into useful energy such as power generation.

以上の様に本発明は省資源面より、産業廃棄物の有効利
用・再利用が叫ばれる昨今において非常に有効な、汚泥
物質の脱水方法である。
As described above, the present invention is a very effective method for dewatering sludge materials in these days when there is a demand for effective use and reuse of industrial waste from the viewpoint of resource conservation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、焼却灰添処量と脱水汚泥物質の含水率の関係
を示す図、第2図は初めの汚泥物質−次脱水後、二次脱
水後各々の水分と汚泥固形分の重量比を示す図、第3図
は脱水前と二次脱水後の汚泥物質の想像した組織図、第
4図(a)(b)は汚泥物質の従来脱水法と本発明によ
る脱水法での含水率、および各含水状態での熱特性を示
す図である。 1・・・汚泥物質 12・・・汚泥固形質 13・・・
間隙水614・・・毛管上昇水 15・・・表面付着水
第 3 図 (a)  脱氷@(b)二次脱lk後 第 4 図 補11をする者 1’、  U、’、、1SO8+  日立金属株式会社
10者河野 典夫 代   理   人 1、・:14「    東京都千代口1区丸の内2丁目
1番2号補+Eの対象 明細書の発明の詳細な説明の媚。 補正の内容 「発明の詳細な説明」の内容を次のように補正する。 L 9頁S行  この固形状泥状粉1全焼+++   
、 IL  9177行  を添加用脱水助剤として□ 。 &  10頁4行から6行 30−以下で、 4041
0夏11行  いずれも脱水助剤 &  10貞14行  11sO%以上の脱水助剤を加
a  18頁8行  脱水助剤添加や機械的脱水を? 
 1ljjlo行から11行 二次脱水後には脱水助剤lO9の 重量 以  上
Figure 1 shows the relationship between the amount of incinerated ash added and the water content of dehydrated sludge material, and Figure 2 shows the weight ratio of water and sludge solids between the initial sludge material, after secondary dewatering, and after secondary dewatering. Figure 3 is an imagined organization diagram of sludge material before dewatering and after secondary dewatering, and Figures 4 (a) and (b) show the water content of sludge material in the conventional dewatering method and the dewatering method according to the present invention. , and thermal characteristics in each water-containing state. 1...Sludge substance 12...Sludge solid substance 13...
Pore water 614...Capillary rising water 15...Surface adhesion water Figure 3 (a) De-icing @ (b) After secondary de-lking Figure 4 Person performing supplementary Figure 11 1', U,',, 1SO8+ Hitachi Metals Co., Ltd. 10 Norio Kono Yoshihiro 1,: 14 "Detailed explanation of the invention in the subject specification of Supplement + E, 2-1-2 Marunouchi, Chiyoguchi 1-ku, Tokyo. Contents of the amendment "Invention The contents of "Detailed explanation of" have been amended as follows. L Page 9 Line S This solid muddy powder 1 is completely burnt +++
, IL line 9177 as a dehydration aid for addition. & Page 10, lines 4 to 6, 30- or less, 4041
0 Summer Line 11 Both are dehydration aid & 10 Tei Line 14 Add dehydration aid of 11sO% or more a Page 18 Line 8 Addition of dehydration aid or mechanical dehydration?
After the secondary dehydration from line 1ljjlo to line 11, the weight of the dehydration aid lO9 is greater than

Claims (1)

【特許請求の範囲】 1、泥状物質の脱水に詔いて、−次脱水した泥状物質に
脱水助剤を加えたあと、これを適尚な粒度に造粒し、更
にこの造粒物を二次脱水することにより、含水率を60
1g以下にすることを特徴とする泥状物質の脱水方法。 2、特許請求の範囲第1項において、二次脱水を加圧に
より行い、含水率を50%以下にすることを特徴とする
泥状物質の脱水方法。 3、特許請求の範囲第1項又は第2項において、−次脱
水で泥状物質の含水率を82チ以下にすることを特徴と
する泥状物質の脱水方法。 4、特許請求の範囲第1項〜第3項において、脱水助剤
として、珪藻土、消石灰、炭酸カルシウム、焼却灰、微
粉炭〜土壌、骨粉、ソーダスト、乾燥パルプのうち1種
以上を用いることを特徴とする泥状物質の脱水方法。 5、%許請求の範囲第4項において、焼却灰を用いるこ
とを特徴とする泥状物質の脱水方法。 6、特許請求の範囲第5項におl/ζて、焼却灰として
、下水処理汚泥灰、尿尿処理汚泥灰、産業廃水処理汚泥
灰、都市ゴミ焼却灰、産業廃棄物焼却灰のいずれかまた
はそれらの混合暢を用いることを特徴とする泥状物質の
脱′水方法。 7、特許請求の範囲第1項において脱水助剤の添加量を
元泥汚固形分の乾燥重量に対し、10〜1009Gの量
とすることを特徴とする1泥状物質の脱水方法。 8、特許請求の範囲第1項において造粒後の粒度を直径
201EII以下とすることを特徴とする泥状物質の脱
水方法。 9、特許請求の範囲第8項において、直径1〜1゜關の
粒度帯に重量比で701以上の粒度が分布することを特
徴とする泥状物質の脱水方法。 10、%許請求の範囲第2項において加圧方法を縦型及
び横型の脱水機何れかで直接加圧又は間接加圧とじ、初
圧後加圧する二段圧搾することを特徴とする泥状物質の
脱水方法。 11、特許請求の範囲第2項において加圧力とその保持
時間を初圧は30 Jl/cr/を以下で2分以下、加
圧は50〜100kg/cIIで1〜3分とすることを
特徴とする泥状物質の脱水方法。
[Claims] 1. After dehydrating the muddy material and adding a dehydration aid to the dehydrated muddy material, this is granulated to an appropriate particle size, and then the granulated material is By performing secondary dehydration, the moisture content can be reduced to 60
A method for dehydrating muddy substances characterized by reducing the amount to 1 g or less. 2. A method for dehydrating a muddy material according to claim 1, characterized in that the secondary dehydration is performed under pressure to reduce the water content to 50% or less. 3. A method for dehydrating a muddy material according to claim 1 or 2, characterized in that the water content of the muddy material is reduced to 82 cm or less in the second dehydration. 4. Claims 1 to 3 provide that one or more of diatomaceous earth, slaked lime, calcium carbonate, incinerated ash, pulverized coal, soil, bone meal, sawdust, and dried pulp is used as the dehydration aid. Characteristic dehydration method for muddy substances. 5.% Permissible A method for dehydrating a muddy substance according to claim 4, characterized in that incineration ash is used. 6. According to claim 5, the incinerated ash is any one of sewage treatment sludge ash, urine treatment sludge ash, industrial wastewater treatment sludge ash, municipal garbage incineration ash, and industrial waste incineration ash. A method for dewatering muddy substances characterized by using a mixture thereof. 7. A method for dewatering mud-like substances according to claim 1, characterized in that the amount of the dewatering aid added is 10 to 1009 G based on the dry weight of the original mud sludge solids. 8. A method for dewatering a slurry material according to claim 1, characterized in that the particle size after granulation is 201EII or less in diameter. 9. A method for dewatering a muddy substance according to claim 8, characterized in that particles having a weight ratio of 701 or more are distributed in a particle size band having a diameter of 1 to 1°. 10. Percentage of sludge according to claim 2, characterized in that the pressurization method is direct pressurization or indirect pressurization using either a vertical or horizontal dehydrator, and two-stage compression in which pressurization is applied after initial pressurization. Methods of dehydrating substances. 11. In claim 2, the pressurizing force and its holding time are characterized in that the initial pressure is 30 Jl/cr/ or less for 2 minutes or less, and the pressurizing is 50 to 100 kg/cII for 1 to 3 minutes. A method for dehydrating muddy substances.
JP56183491A 1981-11-16 1981-11-16 Dehydrating method for muddy material Pending JPS58101798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56183491A JPS58101798A (en) 1981-11-16 1981-11-16 Dehydrating method for muddy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56183491A JPS58101798A (en) 1981-11-16 1981-11-16 Dehydrating method for muddy material

Publications (1)

Publication Number Publication Date
JPS58101798A true JPS58101798A (en) 1983-06-17

Family

ID=16136740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56183491A Pending JPS58101798A (en) 1981-11-16 1981-11-16 Dehydrating method for muddy material

Country Status (1)

Country Link
JP (1) JPS58101798A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002031273A1 (en) * 2000-10-12 2002-04-18 Minna Katriina Aarnio Method for treatment of dredging soil
JP2008002239A (en) * 2006-06-26 2008-01-10 Fujikura Kasei Co Ltd Pressure roller
CN103553288A (en) * 2013-11-21 2014-02-05 武汉森泰环保工程有限公司 Method for preparing water treatment biological activity accelerant from winery wastewater treatment sludge

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002031273A1 (en) * 2000-10-12 2002-04-18 Minna Katriina Aarnio Method for treatment of dredging soil
JP2008002239A (en) * 2006-06-26 2008-01-10 Fujikura Kasei Co Ltd Pressure roller
CN103553288A (en) * 2013-11-21 2014-02-05 武汉森泰环保工程有限公司 Method for preparing water treatment biological activity accelerant from winery wastewater treatment sludge

Similar Documents

Publication Publication Date Title
US4587022A (en) Process for dewatering sludge
US5735225A (en) Method for recovering energy from solid waste
JPH11217576A (en) Co-fuel for cement calcination and its production
JP2001322808A (en) Manufacturing method of activated carbon from sludge
JPS58101798A (en) Dehydrating method for muddy material
JP4288714B2 (en) Method of manufacturing fertilizer from organic sludge
JP3577223B2 (en) Activated carbon production method using sludge
JP2788858B2 (en) Method for producing coal-containing briquettes or pellets by comprehensive waste treatment
KR101934411B1 (en) High-temperature waste treatment method using sludge
JP2000017278A (en) Preparation of refuse solid fuel
JPS58101800A (en) Dehydrating method for muddy material
US4810257A (en) Mechanical dewatering process
JPS58101797A (en) Dehydrating method for muddy material
JP3211113B2 (en) Method for producing lightweight aggregate from dewatered sludge
JPS5948160B2 (en) Dehydration method for muddy substances
JP2792820B2 (en) High-performance activated carbon and its production method
JPS61284A (en) Oil-adsorbing granule
JPH08176567A (en) Production of solid fuel from waste and utilization of the same solid fuel
JP5349786B2 (en) Method for converting dehydrated organic waste into fuel and biomass fuel
JPS5980495A (en) Combustion auxiliary material for furnace using sludge of sewage and its preparation
JPS6082192A (en) Treatment of organic sludge
JPS6013891A (en) Assistant fuel for cement calcination and method for using the same
KR101845807B1 (en) Manufacturing method of a sludge treatment agent and method to treat a sludge using the same
JPH11228979A (en) Production of finely powdered fuel
JPH07178398A (en) Method for dehydrating organic sludge