JPS58101800A - Dehydrating method for muddy material - Google Patents

Dehydrating method for muddy material

Info

Publication number
JPS58101800A
JPS58101800A JP56183493A JP18349381A JPS58101800A JP S58101800 A JPS58101800 A JP S58101800A JP 56183493 A JP56183493 A JP 56183493A JP 18349381 A JP18349381 A JP 18349381A JP S58101800 A JPS58101800 A JP S58101800A
Authority
JP
Japan
Prior art keywords
dehydration
muddy
sludge
less
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56183493A
Other languages
Japanese (ja)
Inventor
Hideaki Shimizu
英明 清水
Eiichi Ofune
小舟 栄一
Haruhisa Saito
斎藤 治久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP56183493A priority Critical patent/JPS58101800A/en
Publication of JPS58101800A publication Critical patent/JPS58101800A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To decrease moisture content down to levels at which self-burning is possible by granulating primarily dehydrated muddy materials to suitable grain sizes and sticking dehydration aids on the surfaces of granules then subjecting the granules to secondary dehydration. CONSTITUTION:Muddy materials contg. org. components are dehydrated by suitable dehydrators down to about <=82% moisture content. The primarily dehydrated materials are charged into a rotary cylindrical mixer or the like and are crushed; at the same time, the materials are granulated to suitable grain sizes. Thereafter >=1 kind among diatomaceous earth, slaked lime, calcium carbonate, incineration ashes, finely grained coal, sawdust, dry pulp and soil are added as dehydration aids at about 10-100wt% based on the dry weight of the original sludge solids, and are stuck on the surfaces of the granules. The secondary dehydration of the granular sludge materials is carried out with the above- described dehydrators, whereby the moisture is reduced down to <=60%.

Description

【発明の詳細な説明】 2皓 本発明は、下水汚泥含金水率の高い泥水物質の脱水方法
に係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for dewatering sewage sludge, a muddy water material with a high gold-containing water content.

現在、公共水域の水質強化、産業界の発展・変換に伴い
水質浄化量は増大しその結果副産物である汚泥は、増加
の一途を辿っている。一般に有機性を 汚泥の可燃分はセルロース形1[&示し3000〜番5
00(Ka &t/ J9 、有機分)の発熱量を有し
、石炭にも匹敵する、それにもかかわらず、−−セ寺療
ア総発生汚泥量の90%以上は結局大地又は海洋゛べの
投棄処分に頼っている。しかし未処理汚泥では多量の水
分を伴い腐敗性を有し、急臭を発生する為、壌境衛正上
投棄に制限を受け、大都市その周辺都市での大地処分地
は今や飽和状態に達している。
Currently, the amount of water purification is increasing due to the improvement of water quality in public water bodies and the development and transformation of the industrial world, and as a result, the amount of sludge as a byproduct is steadily increasing. In general, the combustible content of organic sludge is cellulose type 1 [& indicates 3000 to 5
It has a calorific value of 0.00 (Ka &t/J9, organic content), which is comparable to that of coal.Despite this, more than 90% of the total amount of sludge generated in medical facilities ends up on the earth or in the ocean. They rely on dumping. However, because untreated sludge contains a large amount of water, is putrid, and produces a strong odor, there are restrictions on dumping it for environmental protection reasons, and land disposal sites in large cities and surrounding cities are now saturated. ing.

そこで、汚泥物質の処理処分については、省資源面より
有効利用、再利用が叫はれ自治体1メーカ共にその一発
に麺起となっているが、未だ決め手はない。
Therefore, with regard to the treatment and disposal of sludge materials, effective use and reuse have been advocated from the perspective of resource conservation, and one local government manufacturer has taken up the initiative, but there is still no definitive solution.

従来、有機分を含む泥状物質を脱水固化するには、汚泥
物質に何らかの胸質剤を添加し、―質後重力脱水1真空
脱水、遠心脱水、ベルトプレス、フィルタプレス等の装
置を単独又は組み合わせて脱水固化するものであったが
、含水粉体間の毛管現象やろ布の目詰り現象等の脱水妨
害により、脱水後の含水率は70〜80%台で、多段炉
を始めとする各種焼却炉での自燃が可能な状態までに脱
水することは出来なかつ・た。泥状物質を自燃域まで脱
水することは、省資源面から児ても重要である。
Conventionally, in order to dehydrate and solidify sludge containing organic components, some kind of steric agent is added to the sludge, and then gravity dehydration after dehydration 1. However, due to dehydration interference such as capillarity between water-containing powders and clogging of filter cloth, the water content after dehydration was in the 70 to 80% range, and various types of furnaces, including multi-stage furnaces, It was not possible to dehydrate the water to a point where it could self-combust in an incinerator. Dehydration of muddy substances to the point where they are self-combustible is also important from the perspective of resource conservation.

ここで自燃域の含水率はおよそ65%以下であることが
必要である。そのため、従来泥状物質を脱水固化後水分
蒸発を目的とする天日乾燥や燃焼ガスの循環による乾燥
が行なわれている。しかし従来の方法では汚泥ケーキ1
ton当り30〜401の外部燃料を必要とし、不経済
であり、設備的にも問題点が多かった。゛ 本発明は前記問題点を解決し、自燃が可能なまで含水率
を下げる方法で、更にエネルギーを創り出し得るまで汚
泥物質の脱水が出来る脱水方法を提供するものである。
Here, the moisture content in the self-combustion range needs to be about 65% or less. For this reason, conventionally, muddy materials are dehydrated and solidified, followed by drying in the sun or by circulating combustion gas for the purpose of evaporating water. However, in the conventional method, sludge cake 1
It required 30 to 401 tons of external fuel per ton, was uneconomical, and had many problems in terms of equipment. The present invention solves the above-mentioned problems and provides a dewatering method that can reduce the moisture content until self-combustion is possible, and can dewater sludge material until it can generate more energy.

そこで本発明の脱水方法は、−次脱水した泥状物質を適
当な粒度に造粒し、この造粒物の表面に脱水助剤を付着
させ更にこの造粒物を二次脱水することにより含水率を
60−以下にすることを特徴とするものである。
Therefore, the dehydration method of the present invention involves granulating the dehydrated slurry to an appropriate particle size, attaching a dehydration aid to the surface of the granules, and then subjecting the granules to secondary dehydration. It is characterized by making the ratio 60- or less.

本@明の望ましい実施においては、二次脱水を加圧によ
り行い含水率を50%以下となる。
In the preferred implementation of this @mei, secondary dehydration is performed under pressure to reduce the water content to 50% or less.

本発明を工程順に詳細に説明する。The present invention will be explained in detail step by step.

本発明の一次脱水においては、水路、河川、沈搬池略か
ら回収した有機分を含む泥状物質を重力脱水、簀空脱水
、遠心脱水、ベルトプレス、あるいはフィルタプレス等
の脱水機をもって泥状物質の含水率を82%以下にまp
減らす。例えはベルトプレスを使用するのなら2〜3 
kg / adの操作圧で、重力と圧搾作用により75
%の含水率まで脱水可能であるし1.遠心脱水機ならg
ooo〜5ooo eの操作圧で遠心力により同じ(7
5%の含水率まで脱水可能である。ただここで注意すべ
くは、各脱水機の操作圧は、それぞれ適当な圧力を適ぷ
ことである。
In the primary dewatering of the present invention, muddy materials containing organic components collected from waterways, rivers, and sedimentation ponds are processed into muddy materials using a dewatering machine such as gravity dehydration, tank air dehydration, centrifugal dehydration, belt press, or filter press. Keep the moisture content of materials below 82%
reduce. For example, if you use a belt press, 2 to 3
At an operating pressure of kg/ad, 75 due to gravity and squeezing action
It is possible to dehydrate up to a moisture content of 1. For a centrifugal dehydrator, g
ooo~5ooo The same (7
Dehydration is possible up to a moisture content of 5%. However, it is important to note that each dehydrator should be operated at an appropriate operating pressure.

ただいたずらに操作圧を高くするのは、汚泥の圧密化現
象を促し、水の抜は道は失なわれ更には、r布の目詰り
が起る等全く逆効果を招来することになる。
However, unnecessarily increasing the operating pressure will promote the compaction of the sludge, which will make it impossible to drain the water, and will even lead to the opposite effect, such as clogging of the r-cloth.

この様に一次脱水をした汚状物を回転円筒ミキサー等に
投入し、破砕すると共に汚状物を適当な粒度に造粒し、
その後脱水助剤として珪藻土、消石炭、炭酸カルシウム
、焼却灰、微粉炭、ソーダスト、乾燥パルプ、生態のう
ち一種以上を元汚泥固形分の乾燥重量に対しlO〜10
0′1IDjllで添加し造粒物の表面に脱水助剤を付
層させる。前記脱水助!剤のうち焼却灰は下水処理汚泥
灰、厘尿処理汚泥灰産業廃水処理汚泥灰、都市ゴミ焼却
灰、産業廃棄物焼却灰等の比較的入手が容品で工業上再
利用価値の薄いものを用いることが望ましい。特に本発
明の実施で出来た脱水物を焼却して出来た焼却灰の一部
を循mjせて使用することか歳も望ましい。
The filth that has been primarily dehydrated in this way is put into a rotating cylindrical mixer, etc., and is crushed and granulated to an appropriate particle size.
Then, as a dewatering aid, one or more of diatomaceous earth, slaked coal, calcium carbonate, incinerated ash, pulverized coal, sawdust, dried pulp, and biomass is added to the dry weight of the original sludge solids at lO~10
It is added at 0'1 IDjll to form a layer of dehydration aid on the surface of the granules. Said dehydration aid! Of these, the incineration ash includes sewage treatment sludge ash, sewage treatment sludge ash, industrial wastewater treatment sludge ash, municipal waste incineration ash, industrial waste incineration ash, etc., which are relatively easy to obtain and have little industrial reuse value. It is desirable to use it. In particular, it is desirable to circulate and use a portion of the incineration ash produced by incinerating the dehydrated product produced by carrying out the present invention.

造粒方法はロータリ一式、スクリュ一式、振動式等の混
線機で、上述の乾燥助剤が汚泥中にめり込まない様かつ
揚り起す様に混練する。造粒後の粒度は直径zom以下
とし、特に直径が1〜10gの範囲に重量比で70%以
上の粒子が分布していることか望ましい。この発明のよ
うに、汚泥物質を適当な粒度に造粒した後この造粒物の
表面に脱水助剤なる。圧搾時にこの脱水助剤の働きでr
布などのフィルターと直に汚泥物質が接触するのを防ぐ
ものと考えられる。
The granulation method is to use a mixer such as a rotary set, a screw set, or a vibrating mixer to mix the above-mentioned drying aid so that it does not sink into the sludge and rises up. The particle size after granulation should be less than the diameter zom, and it is particularly desirable that 70% or more of the particles by weight be distributed within the range of 1 to 10 g in diameter. As in the present invention, after sludge material is granulated to an appropriate particle size, a dewatering aid is formed on the surface of the granulated material. The action of this dehydration aid during squeezing
It is thought to prevent sludge substances from coming into direct contact with filters such as cloth.

この粒状の汚泥物質を、前記脱水機によって再び脱水(
二次収水]することによって、含水率を60シ以下にし
、その容量は最初のものに比べ5割以下にすることが出
来るものである。またこの二次脱水を圧搾によ・り行な
い、しかも初圧と加圧とを分けて竹なう二段圧搾するこ
とで含水率を50%以下容振を611Il以下にするも
のである。この初圧は3079 /傭1以下、望ましく
4;Lla〜25へ/♂とし、時間は2分間以下とする
ことか望ましい。また本加圧は60〜100&9Z−値
ましくは60〜80J9/儂1で、1〜3分間かけて圧
搾する。
This granular sludge material is again dehydrated (
By performing secondary water harvesting, the water content can be reduced to 60 shi or less, and the capacity can be reduced to 50% or less compared to the first one. In addition, this secondary dehydration is carried out by pressing, and by separating the initial pressure and pressurization into two-stage compression using bamboo, the water content is reduced to 50% or less and the volume is reduced to 611 Il or less. The initial pressure is preferably 3079/min or less, preferably 4; Lla to 25/m, and the time is desirably 2 minutes or less. Further, the main pressurization is carried out at a pressure of 60 to 100 & 9Z-value or 60 to 80 J9/1 for 1 to 3 minutes.

次に実験例に基いて、本発明の詳細な説明する。Next, the present invention will be explained in detail based on experimental examples.

水路、河川、沈殿池等に沈殿i゛縮した有機分を含み含
水率かはホ98%の泥状物質入を揚泥ポンプにより回収
してベルトプレスに供給する。この時の泥状物質Bの含
水率は回収途中に少し水分が減っておよそ96%となっ
ている。この泥状物gk!1をベルトプレスにより一次
脱水となる。挟圧脱水をして10m11厚以下の円盤状
にkI!した固形泥状物質Oを取り出す。
Sludge containing organic matter precipitated in waterways, rivers, sedimentation ponds, etc. and having a water content of 98% is collected by a pump and fed to a belt press. At this time, the water content of the muddy material B was approximately 96%, as the water content decreased slightly during recovery. This muddy gk! 1 is subjected to primary dehydration using a belt press. Pressure dehydrates it into a disk shape with a thickness of 10m11 or less! The solid muddy substance O is taken out.

この固形泥状物質0を回転円筒ミキサ内で破砕、ある。This solid mud material is crushed in a rotating cylindrical mixer.

この間泥状物質0はミ・キサ内にて反転する都度、四分
五袋して焼却灰と混゛合転勤しその結果乾燥外皮を有す
る直径5sm以下の粒状泥状物質りとなる。
During this period, each time the muddy material 0 is turned over in the mixer, it is divided into quarters and five bags and mixed with the incineration ash and transferred, resulting in a granular muddy material having a dry skin and a diameter of 5 sm or less.

この粒状泥状物@Dを2次脱水を行うべく圧搾装置に収
容し、当初zohg / (illの圧を1分間加えて
圧搾操作を行なう。その後加圧して7oIIg/clp
の圧を2分間加える。この操作により粒状泥状物質りは
含水量のきわめて低い泥状物質重となる◎更にこの泥状
物質重を粉砕機により破壊し固形状の泥状粉1にする◎
この固化泥状粉1を焼却炉により完焼し、その結果出来
た焼却灰の一部を添加用乾燥助剤として、前記主命す内
に反送循環することもできる。
This granular slurry @D is placed in a compression device for secondary dehydration, and the compression operation is performed by initially applying a pressure of zohg / (ill) for 1 minute.
Apply pressure for 2 minutes. Through this operation, the granular slurry becomes slurry with extremely low water content ◎ This slurry is further broken down by a crusher into solid slurry powder 1 ◎
This solidified mud powder 1 can be completely burned in an incinerator, and a part of the resulting incinerated ash can be used as an additive drying aid and circulated back to the above-mentioned main direction.

なお、前記の96%含水泥状物質1はフィルタープレス
を用いて70%含水泥状物B′に形成し、ミキサにおけ
る焼却灰の添加量を30%以下にし、圧搾脱水を容易に
してもよい。
Note that the 96% water-containing muddy substance 1 may be formed into a 70% water-containing muddy substance B' using a filter press, and the amount of incineration ash added in the mixer may be set to 30% or less to facilitate compression dehydration. .

次に本実験の実検結果を説明する。Next, the actual test results of this experiment will be explained.

絽1図は、−次脱水ケーキに脱水助剤として焼却灰を加
え混合造粒して二次脱水した時の焼却灰添’ttIII
mと脱水汚泥物質の含水率の関係を示すものである。
Figure 1 shows the incineration ash added to the secondary dehydration cake when incineration ash was added as a dehydration aid, mixed and granulated, and secondary dehydration was carried out.
This shows the relationship between m and the water content of dehydrated sludge material.

この図から、グチ7aで示すように、二次脱水前の含水
率が98%の場合二次脱水後の含水率は脱水助剤の添加
量が100%以上になるまで一定でその後急激に低下し
10%位で安定する。この含水率は40外であった。次
に二次脱水前の含水率が80%の場合(グラフb)、二
次脱水後の含水率は脱水助剤の添加量がsO%以下で含
水量か40%となった。脱水助剤の量がsO〜50%゛
で、二次脱水後の含水量は安定する。次に二次脱水前の
含水率u1の場合(グラフ0)は、・含水率80%の場
合とはとんと同じ経過を辿るが、たた助剤添加1120
%で含水率は40%にまで場がることがわかる。
From this figure, as shown by line 7a, when the water content before secondary dehydration is 98%, the water content after secondary dehydration is constant until the amount of dehydration aid added is 100% or more, and then it rapidly decreases. It stabilizes at around 10%. This moisture content was outside 40. Next, when the water content before the secondary dehydration was 80% (graph b), the water content after the secondary dehydration was 40% when the amount of the dehydration aid added was sO% or less. When the amount of dehydration aid is sO~50%, the water content after secondary dehydration is stable. Next, in the case of water content u1 before secondary dehydration (graph 0), the process is exactly the same as in the case of water content 80%, but with the addition of a
It can be seen that the moisture content can reach up to 40%.

以上の事からもわかる様に、いずれも乾燥助剤が130
%以上加えられた場合には含水率は60%以下となる。
As you can see from the above, the drying aid is 130% in both cases.
% or more, the water content will be 60% or less.

しかし二次脱水前の水分か98%のものは10%以上の
乾燥助剤を加えなけれ祉50%以下の含水率にはならな
い。一方80%、75%のものは脱水助剤を20%加え
るだけで含水率は40%にもなる。
However, if the moisture content before the secondary dehydration is 98%, the moisture content cannot be reduced to less than 50% unless a drying aid of 10% or more is added. On the other hand, for 80% and 75% products, the water content can reach 40% by adding only 20% of the dehydration aid.

このように、第一次脱水で出来るたけ水分を減らしてお
くことか望ましいが通常の脱水機の檎能から考えて82
%″以下とすれ祉十分と考えられる。この含水量であれ
は脱水助剤を造粒粉の表面に付看させ得る。これ以上の
含水量の場合、造粒時に脱水助剤が消費されて多(の助
剤が必要となる。
In this way, it is desirable to reduce the water content as much as possible during the first dehydration, but considering the capacity of a normal dehydrator,
%" or less is considered to be sufficient. With this water content, the dehydration aid can be attached to the surface of the granulated powder. If the water content is higher than this, the dehydration aid will be consumed during granulation. Many auxiliary agents are required.

次に本実験では初めの汚泥物質と、−次脱水後および二
次脱水後の汚泥物質の状態は各々含水率98%175%
、30%であった。これらに対する重量の比較を示した
ものが第2図である。例えは、当初水分゛95I%の汚
泥の全重量かlJcgあったとすると一次脱水後には水
分が75%の場合約イ、である480gに、そして二次
脱水後には脱水剤10ρ重量を加えても水分30%で全
重量は42gにも減少する。水分含有重量で比較すると
各々9 BOg x 60g、 12gと減少する。
Next, in this experiment, the initial sludge material, the state of the sludge material after the second dehydration, and the second dehydration have a water content of 98% and 175%, respectively.
, 30%. FIG. 2 shows a comparison of the weights of these. For example, if the total weight of sludge with a moisture content of 95I% was initially 1Jcg, after the primary dehydration, if the moisture content was 75%, the total weight would be 480g, which is approximately 480g, and after the secondary dehydration, even if 10ρ weight of dehydrating agent was added. At 30% moisture, the total weight decreases to 42g. Comparing the water content weight, the weight decreases to 9 BOg x 60g and 12g, respectively.

この様に二次脱水された汚泥物質は、含水率50〜60
%以下なので、固形状となって表面水分のない状態とな
りそのままでj!OOO〜2500Ko&A/ kgの
熱量を有するよづになる。゛ 次に1g3図(a)は−次脱水前“の粒状泥状物質で(
b)は二次脱水後の可燃泥状物質の想像した組織図であ
る。(&)図において、汚状物1Iilは、汚泥固形質
12、間隙水13、毛管上昇水14、表面付潜水15、
内部水16及び周囲の自由水17で構成されており、汚
泥固形質以外は全て水分である。そして上記水分のうち
内部水16だけは固杉分1にの内部に存在し、結合力か
強く・圧縮性があるため、機械的に脱水することは困難
なものであるが、その他の(間隙水13、毛管上昇水1
4、表面付潜水15等)は脱水助剤の添加や機械的脱水
をすることで比較的容易に脱水が゛可能となったと考え
られる。そして、二□次脱水後の汚状物質は(b)図に
示す様に汚泥固形質12もろとも偏平な形状に変形し内
部水16以外の前記結合水ははとんど除外されているも
のと想像される9、上記の様な結果が得られるのは、二
次脱水前に添加した乾燥助゛剤18が汚状物質の外皮に
付着することにより、まず表面付層水15.の親和力が
弱まる。
The sludge material secondary-dehydrated in this way has a water content of 50 to 60.
% or less, it becomes a solid state with no surface moisture and can be left as is! It becomes a yozu with a calorific value of OOO~2500Ko&A/kg.゛Next, Figure 1g3 (a) shows the granular muddy material before the next dehydration (
b) is an imagined organization diagram of the combustible mud material after secondary dehydration. (&) In the figure, the filth 1Iil includes sludge solids 12, pore water 13, capillary rising water 14, surface submerged water 15,
It is composed of internal water 16 and surrounding free water 17, and everything except the sludge solids is water. Of the above moisture, only internal water 16 exists inside the solid cedar component 1, and because of its strong bonding force and compressibility, it is difficult to mechanically dehydrate it. 13 water, 1 capillary rising water
4, surface-attached submersible material 15, etc.) can be relatively easily dehydrated by adding a dehydration aid or by mechanical dehydration. After the secondary dehydration, the sludge solids 12 and the sludge solids 12 are deformed into a flat shape, and the bound water other than the internal water 16 is almost completely removed, as shown in Figure (b). The reason why the above results are obtained is that the drying aid 18 added before the secondary dehydration adheres to the outer skin of the soiled material, and the surface layer water 15. The affinity of is weakened.

そして圧搾作用も加わり、粒状泥状物質の外皮は圧壊し
それと同時に汚泥固形質か押しつぶされ、逃は場を失な
った。結合水等は粒間の本隊を通じて外部に排水される
からではないかと考えられる。
Then, the squeezing action was added, and the shell of the granular mud material was crushed, and at the same time, the solid sludge was crushed, leaving no place for escape. It is thought that this is because bound water is drained to the outside through the main body between grains.

最後に第4図は汚泥物質の従来脱水法と本発明による脱
水法での含水率、および各含水状態での熱特性を示すも
のである。この図の通り現状の多段炉では、汚泥物質を
自燃域まで乾燥させるため、外部燃焼用燃料を汚泥ナー
キlto:n当り30〜40tも費やしている。そこで
各種焼却炉においての自燃レベルを高めることが検討さ
れているが含水率65%以上では自燃可能な焼却炉を造
ることが困難である。本発明の脱水方法により汚泥の含
水率を60囁以下望ましくは′&0%以下となったので
、汚泥をそのまま燃焼させることが出来るだけでなくエ
ネルギーを創り出すことが出来る様になったのであるO 本発明は以上説明した様に有機分を含有する汚泥物質の
高度の熱特性を無駄にすることなく自燃が可能なまでに
含水率を低下嘔せることに成功ししかも脱水後の汚泥物
質の容量は5 I11以下に減容出来た。また燃焼時の
熱を利用し、発電等の有効なエネルギーに変換すること
も出来る。以上の様に本発明は省資源面より、産業廃棄
物の有効利用再利用が叫祉れる昨今において、非常に有
効な汚泥物質の脱水方法である。
Finally, FIG. 4 shows the moisture content of sludge materials in the conventional dewatering method and the dewatering method according to the present invention, and the thermal characteristics in each water content state. As shown in this figure, in the current multistage furnace, in order to dry the sludge material to the self-combustion range, 30 to 40 tons of external combustion fuel is consumed per sludge n. Therefore, attempts have been made to increase the level of self-combustion in various incinerators, but it is difficult to create incinerators that can self-combust when the water content is 65% or more. By the dehydration method of the present invention, the moisture content of sludge is reduced to 60 hiss or less, preferably 0% or less, so it is now possible not only to burn the sludge as it is, but also to create energy. As explained above, the invention has succeeded in reducing the water content to a point where self-combustion is possible without wasting the high thermal properties of sludge material containing organic components, and in addition, the volume of sludge material after dewatering has been reduced. 5 I was able to reduce the volume to below I11. It is also possible to use the heat from combustion and convert it into useful energy such as power generation. As described above, the present invention is a very effective method for dewatering sludge materials in these days when the effective use and reuse of industrial waste is becoming more and more popular in terms of resource conservation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は焼却灰添加量と脱水汚泥物質の含水率の胸係を
示す図、第2図は初めの汚泥物質、−次脱水後、二次脱
水機番々の水分と汚泥固彩分の重量比を示す図、第3図
は脱水前と二次脱水後の汚泥物質の想像した組1lii
i図、第4図(1)伽)は汚泥物質の従来脱水法と本発
明による脱水法での含水率おを よび各含水状態での熱特性も示す図である。 l:汚泥物質、12=汚泥固形質、13:間隙水、14
毛管上昇水、15:表面付潜水、16:内部水、17:
自由水、18:乾燥助剤。 <2 代理人 1)中 寿 −(,5″、イ;1.i゛・号−
ヅ 手続補正書(自発) 11j(□151゜9..20 、。 1° ”°゛1 ′I)  ′□ 1″゛    泥状
物質の脱水方法浦IIをすると l1111;lii ’ l’f +:’l出奮i 1
yl(・・・  東5;C都り代111区丸の内2丁1
11番2シ二−、h   ・508・ ul’c属株式
会社+i)・占、lii野 典夫 代   理    人 :、、、I[東−ン都f’f(ll1区丸の内2丁I1
1番2シ;−1l :i、 ’、v、属は入会11内 
鴫詰 東京 28番−4612袖IF、 、’1 k・
[象 明細書の発明の詳細な説明の媚。 補正の内容 「発明の詳細な説明」の内容全欧のように補正する。 L 9頁6行   との固杉泥状粉rをz 9貞)行か
ら8行 添加用脱水助剤として3 10貞6行   3
0%以下で40外となった4  10i[11行   
いずれも脱水助剤&  NII’%行   15%以上
の脱水助剤全加え&  zg貞4行   その他(間−
水〜〕、  11貞9行   脱水助剤10gの重量を
加え&  1396行   汚泥の含水4Jd60以 
 上
Figure 1 shows the relationship between the amount of incinerated ash added and the moisture content of dehydrated sludge material, and Figure 2 shows the relationship between the amount of added incinerated ash and the moisture content of dehydrated sludge material. A diagram showing the weight ratio, Figure 3 is an imagined set of sludge materials before dewatering and after secondary dewatering 1lii
Figure i and Figure 4 (1) are diagrams showing the moisture content of sludge materials in the conventional dehydration method and the dehydration method according to the present invention, as well as the thermal characteristics in each water content state. l: sludge substance, 12 = sludge solid, 13: pore water, 14
Capillary rising water, 15: Surface submersion, 16: Internal water, 17:
Free water, 18: drying aid. <2 Agent 1) Hisashi Naka -(,5″, i;1.i゛・No.-
ㅅProcedural amendment (voluntary) 11j (□151゜9..20,. 1° ”°゛1 ′I) ′□ 1″゛ If the method of dehydrating muddy substances Ura II is used, l1111;lii 'l'f + :'l excited i 1
yl (... Higashi 5; C Toriyo 111-ku Marunouchi 2-chome 1
No. 11, 2, H, 508, UL'C Co., Ltd.
1st 2nd; -1l : i, ', v, genus is within admission 11
Tsuzume Tokyo 28th-4612 Sode IF, '1 k.
[Detailed description of the invention in the description. Contents of the amendment The content of the "detailed description of the invention" shall be amended as per Europe. L page 9, line 6, hard cedar muddy powder r with z 9 sada) line to 8 lines as a dehydration aid for addition 3 10 sada line 6 3
4 outside 40 with 0% or less 10i [11 lines
All include dehydration aids &NII'% row Add all dehydration aids of 15% or more & zg 4 rows Others (between-
], Line 11, 9 Add the weight of 10 g of dehydration aid & Line 1396 Water content of sludge is 4Jd60 or more
Up

Claims (1)

【特許請求の範囲】 L 泥状物質の脱水において、−次脱水した泥状物質を
適当な粒度に造粒し、この造粒物の表面に脱水助剤を付
9m蕩せ、更にこの造粒物を二次脱水することにより含
水率を60%以下にすることを特徴とする泥状物質の脱
水方法。 2、特許請求の範囲第1項において、二次脱水を加圧に
より行い、含水率を50%以下にすることを特徴とする
泥状物質の脱水方法。 & 特許請求の範囲第1項又は第2項において、−次脱
水で泥状物質の含水率を8!!z以下にすることを・特
徴とする泥状物質の脱水方法。 4 特許請求の範囲第1項〜第3項において、脱水助剤
として、珪櫟土、消石灰、炭酸カルシウム焼却灰、微粉
炭、±(、青粉、ソーダスト、乾燥パルプのうち、Lm
以上を用いることを特徴とする泥状物質の脱水方法。 4 特許請求の範囲第4項において、焼却灰を用いるこ
とを特徴とする泥状物質の脱水方法。 6 特許請求の範囲第す項において、焼却灰として下水
処理、汚泥灰、(尿処璃汚泥灰、産業廃水処理汚泥灰、
都市ゴミ焼却灰、産業廃棄物焼却灰のいずれかまたはそ
れらの混合物を用いることを特徴とする泥状物質の脱水
方法。 7、 特許請求の範囲第1項において脱水助剤の添加量
を元汚泥向形分の乾燥重量に対し10〜100%の量と
することを!#黴とする泥状物質の脱水方法。 a 特許請求の範囲第1項において造粒後の粒度な直径
gosat以下とすることを特徴とする泥状物質の脱水
方法。 9、 特許請求の範囲第8項において直径1〜lOWの
粒度帯に1!量比で70%以上の粒子が分布することを
特徴とする泥状物質の脱水方法。 1α 特許請求の範囲第2項において、加圧方法を縦撤
及び1i#型の脱水機、何れかで直接加圧又は間接加圧
とし、初圧後加圧する二段圧搾することを特徴とする泥
状物質の脱水方法。 IL  特許請求の範囲第2項において加圧力とその保
持時間を初圧は30へ/−以下で2分以下、加圧はbO
〜10019 / am”で1〜3分とすることを特徴
とする泥状物質の脱水方法。
[Scope of Claims] L In the dehydration of muddy materials, the dehydrated muddy materials are granulated to an appropriate particle size, a dehydration aid is applied to the surface of the granulated material for a length of 9 m, and the granulated material is further granulated. 1. A method for dehydrating muddy materials, which comprises reducing the water content to 60% or less by subjecting the material to secondary dehydration. 2. A method for dehydrating a muddy material according to claim 1, characterized in that the secondary dehydration is performed under pressure to reduce the water content to 50% or less. & In claim 1 or 2, the moisture content of the muddy substance is reduced to 8! ! A method for dehydrating muddy substances characterized by reducing the water to z or less. 4. In claims 1 to 3, the dehydration aids include siliceous earth, slaked lime, calcium carbonate incineration ash, pulverized coal, ±(, blue powder, sawdust, dry pulp, Lm
A method for dehydrating muddy substances characterized by using the above method. 4. A method for dewatering muddy substances as set forth in claim 4, characterized in that incineration ash is used. 6 In claim 1, incineration ash includes sewage treatment, sludge ash, (urine treatment sludge ash, industrial wastewater treatment sludge ash,
A method for dewatering muddy substances, characterized by using either municipal waste incineration ash, industrial waste incineration ash, or a mixture thereof. 7. In claim 1, the amount of dewatering aid added is 10 to 100% of the dry weight of the original sludge material! #Dehydration method for muddy substances that turn into mold. (a) A method for dewatering a slurry material according to claim 1, characterized in that the particle diameter after granulation is less than or equal to gosat. 9. In claim 8, 1! A method for dewatering muddy substances characterized by a distribution of particles of 70% or more in terms of quantity. 1α Claim 2 is characterized in that the pressurization method is direct pressurization or indirect pressurization using either vertical evacuation or a 1i# type dehydrator, and two-stage squeezing is performed in which pressurization is applied after initial pressure. Method for dewatering muddy substances. IL In claim 2, the initial pressure is 30/- or less for 2 minutes or less, and the pressurization is bO
10019/am” for 1 to 3 minutes.
JP56183493A 1981-11-16 1981-11-16 Dehydrating method for muddy material Pending JPS58101800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56183493A JPS58101800A (en) 1981-11-16 1981-11-16 Dehydrating method for muddy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56183493A JPS58101800A (en) 1981-11-16 1981-11-16 Dehydrating method for muddy material

Publications (1)

Publication Number Publication Date
JPS58101800A true JPS58101800A (en) 1983-06-17

Family

ID=16136777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56183493A Pending JPS58101800A (en) 1981-11-16 1981-11-16 Dehydrating method for muddy material

Country Status (1)

Country Link
JP (1) JPS58101800A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06170114A (en) * 1992-12-11 1994-06-21 Kamata Bio Eng Kk Flocculant
JPH11319848A (en) * 1998-05-08 1999-11-24 Kyushu Electric Power Co Inc Method and apparatus for treatment of muddy water
JP2014510635A (en) * 2011-04-13 2014-05-01 ハイドロプレス ホールディングス エルエルシー Waste treatment system and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4943263A (en) * 1972-08-31 1974-04-23
JPS4985131A (en) * 1972-12-19 1974-08-15
JPS5396258A (en) * 1977-02-01 1978-08-23 Masaaki Suzuki Method of dehydrating aqueous sludge

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4943263A (en) * 1972-08-31 1974-04-23
JPS4985131A (en) * 1972-12-19 1974-08-15
JPS5396258A (en) * 1977-02-01 1978-08-23 Masaaki Suzuki Method of dehydrating aqueous sludge

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06170114A (en) * 1992-12-11 1994-06-21 Kamata Bio Eng Kk Flocculant
JPH11319848A (en) * 1998-05-08 1999-11-24 Kyushu Electric Power Co Inc Method and apparatus for treatment of muddy water
JP2014510635A (en) * 2011-04-13 2014-05-01 ハイドロプレス ホールディングス エルエルシー Waste treatment system and method

Similar Documents

Publication Publication Date Title
US4587022A (en) Process for dewatering sludge
JP3344448B2 (en) Sludge treatment method
JPH11217576A (en) Co-fuel for cement calcination and its production
JP2001322808A (en) Manufacturing method of activated carbon from sludge
JPH1160223A (en) Production of activated carbon by sludge, apparatus therefor and sludge activated carbon
JPS58101800A (en) Dehydrating method for muddy material
JP4288714B2 (en) Method of manufacturing fertilizer from organic sludge
JP3577223B2 (en) Activated carbon production method using sludge
JP2788858B2 (en) Method for producing coal-containing briquettes or pellets by comprehensive waste treatment
JPS58101798A (en) Dehydrating method for muddy material
US4810257A (en) Mechanical dewatering process
JPS58101799A (en) Dehydrating method for muddy material
JPS58101797A (en) Dehydrating method for muddy material
JP3537123B2 (en) Method for producing solid fuel from sewage sludge
JPS61284A (en) Oil-adsorbing granule
JP2010084078A (en) Solid fuel and method for producing the same
EP1730083A1 (en) Sewage sludge treatment method and system
CN101863610B (en) Method for secondary deep dewatering of dewatered sludge
JPS5980495A (en) Combustion auxiliary material for furnace using sludge of sewage and its preparation
KR102592950B1 (en) Method of manufacturing soil materials for landfill using sludge
KR102592949B1 (en) Method of manufacturing soil materials for landfill using sludge
JPH11228979A (en) Production of finely powdered fuel
JPS6013891A (en) Assistant fuel for cement calcination and method for using the same
KR102272614B1 (en) Solidifying agent composition for sludge comprising sludge dry-fuel and manufacturing method thereof
KR101845807B1 (en) Manufacturing method of a sludge treatment agent and method to treat a sludge using the same