JPS58101797A - Dehydrating method for muddy material - Google Patents

Dehydrating method for muddy material

Info

Publication number
JPS58101797A
JPS58101797A JP56183490A JP18349081A JPS58101797A JP S58101797 A JPS58101797 A JP S58101797A JP 56183490 A JP56183490 A JP 56183490A JP 18349081 A JP18349081 A JP 18349081A JP S58101797 A JPS58101797 A JP S58101797A
Authority
JP
Japan
Prior art keywords
muddy
dehydration
dehydrating
less
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56183490A
Other languages
Japanese (ja)
Inventor
Hideaki Shimizu
英明 清水
Eiichi Ofune
小舟 栄一
Haruhisa Saito
斉藤 治久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP56183490A priority Critical patent/JPS58101797A/en
Publication of JPS58101797A publication Critical patent/JPS58101797A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To decrease moisture content down to levels at which self-burning is possible by adding dehydrating aids to primarily dehydrated muddy-like materials, granulating the same to suitable grain sizes and subjecting the granules to secondary dehydration. CONSTITUTION:Muddy-materials contg. org. components are dehydrated down to about 82% moisture content with dehydrators such as gravity dehydrators, vacuum dehydrators, centrifugal dehydrators, belt presses or filter presses. The primarily dehydrated materials are charged into a rotary cylindrical mixer or the like and are crushed; at the same time >=1 kind among diatomaceous earth, slaked lime, calcium carbonate, incineration ashes, finely grained coal, sawdust, dry pulp and soil are added thereto as dehydrating aids. In this case, the aids are added at 10-100wt% based on the dry weight of the original sludge solids and the mixture is rolled to granulate the same to suitable grain sizes. Thereafter the tranules are dehydrated (secondary dehydration) with the above-described dehydrators down to <=60% moisture content.

Description

【発明の詳細な説明】 本発明は、下水汚泥等含水率の高い泥水物質の脱水方法
に係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for dewatering muddy water materials with high water content, such as sewage sludge.

現在、公共水域の水質強化、産業界の発展・変換に伴い
、水質浄化量は増大しその結果副産物である汚泥は、増
加の一途を辿っている。一般に有機性汚泥の可燃分は、
セルロース形態を示し、3000〜4500(KCal
/に9@有機分)の発熱量を有し、石炭にも匹敵する、
それにもかかわらずも秘廿イ事壬総発生汚泥量の90%
以上は結局大地又は海洋への投棄処分に頼っている。し
かし未処理汚泥では多量の水分を伴い腐敗性を有し、悪
臭を発生する為、環境衛生上投棄に制限を受け、大都市
その周辺都市での大地処分地11、今や飽和状態に達し
ている。
Currently, with the enhancement of water quality in public water bodies and the development and transformation of the industrial world, the amount of water purification is increasing, and as a result, the amount of sludge as a byproduct is steadily increasing. Generally, the combustible content of organic sludge is
Shows cellulose form, 3000-4500 (KCal
/ has a calorific value of 9@organic content), comparable to coal.
Despite this, 90% of the total amount of sludge generated
The above methods ultimately rely on dumping into the ground or the ocean. However, because untreated sludge contains a large amount of water, is putrefactive, and produces a foul odor, there are restrictions on dumping it for environmental hygiene reasons, and land disposal sites in large cities and surrounding cities11 have now reached saturation. .

そこで、汚泥物質の処理処分については、省資源面より
有効利用・再利用が叫ばれ、自治体・メーカ共にその開
発に躍起となっているが、まだ決め手はない。従来、有
機分を含む泥状物質を脱水固化するには、汚泥物質に何
らかの調質剤を添加し、調質後重力脱水、真空脱水、遠
心脱水、ベルトプレスマフイルタデレス等の装置を単独
又は、組み合わせて、脱水固化するものであったが、含
水粉体間の毛管現象や3布の目詰り現象等の、脱水妨害
により、脱水後の含水率は70〜80%台で、多段炉を
始めとする各種焼却炉での自燃が可能な状態までに脱水
することは出来なかった。泥状物質を自燃域まで脱水す
ることは、省資源面から見ても重要である。ここで、自
燃域の含水率はおよそ65チ以下であることが必要であ
る。そのため、従来泥状物質を脱水同化後、水分蒸発を
目的とする天日乾燥や燃焼ガスの循環による乾燥が行な
われている。しかし、従来の方法では汚泥ケ一キメ、t
On当り30〜401の外部燃料を必要とし、不経済で
あり、設備的にも問題点が多かった。
Therefore, when it comes to processing and disposing of sludge materials, effective use and reuse are being advocated from the perspective of resource conservation, and both local governments and manufacturers are working hard to develop such methods, but there is no definitive solution yet. Conventionally, in order to dehydrate and solidify sludge containing organic components, some type of conditioning agent is added to the sludge, and after conditioning, gravity dehydration, vacuum dehydration, centrifugal dehydration, belt press muffler dehydration, etc. are performed independently. Alternatively, dehydration and solidification were performed in combination, but due to dehydration interference such as capillarity between water-containing powders and clogging of the three cloths, the moisture content after dehydration was in the 70 to 80% range, and a multi-stage furnace was used. It was not possible to dehydrate the water to a state where it could be self-combusted in various incinerators such as . Dehydration of muddy substances to the self-combustible range is also important from the perspective of resource conservation. Here, the moisture content in the self-combustion region needs to be about 65 inches or less. Therefore, conventionally, after dehydrating and assimilating muddy materials, drying is carried out in the sun or by circulation of combustion gas for the purpose of evaporating water. However, in the conventional method, the sludge removal rate, t
It required 30 to 401 external fuel per turn, which was uneconomical and caused many problems in terms of equipment.

本発明は前記問題点を解決し、自燃が可能なまで含水率
を下げる方法で、更に、エネルギーを創り出し得るまで
汚泥物質の脱水が出来る脱水方法を提供するものである
The present invention solves the above-mentioned problems and provides a dewatering method that can reduce the moisture content until self-combustion is possible, and furthermore, can dewater the sludge material until energy can be produced.

そこで、本発明の脱水方法は、−次脱水した泥状物質に
脱水助剤を加え、適当な粒度に造粒し、更にこの造粒物
を二次脱水することにより含水率を60%以下にするこ
とを特徴とするものである。
Therefore, in the dehydration method of the present invention, a dehydration aid is added to the dehydrated slurry material, granulated to an appropriate particle size, and the granulated material is further dehydrated to reduce the water content to 60% or less. It is characterized by:

本発明の望ましい実施においては、二次脱水を加圧によ
り行い、含水率を50%以下となる。
In a preferred implementation of the present invention, secondary dehydration is performed under pressure to reduce the water content to 50% or less.

本発明を工程順に詳細に説明する。The present invention will be explained in detail step by step.

本発明の一次脱水に2いては、水路、河川、沈殿池等か
ら回収した有機分を含む泥状物資を重力脱水、真空脱水
、遠心脱水、ベルトプレス、あるいはフィルタプレス等
の脱水機をもって泥状物質の含水率を82−以下にまで
に減らす。望ましくは82%〜75%の含水率とする。
In the primary dewatering process 2 of the present invention, muddy materials containing organic components collected from waterways, rivers, sedimentation ponds, etc. are processed into muddy form using a dewatering machine such as gravity dehydration, vacuum dehydration, centrifugal dehydration, belt press, or filter press. Reduce the moisture content of the material to below 82-. The moisture content is preferably 82% to 75%.

例えば、ベルトプレスを使用するあなら2〜3kg/c
Idの操作圧で、重力と圧搾作用により、75eIbの
含水率まで脱水可能であるし、遠心脱水機なら2000
〜3000Gの操作圧で遠心力により、同じく75チの
含水率まで脱水可能である一6°ただここで注意すべく
は、各脱水機の操作圧はそれぞれ適当な圧力を選ぶこと
である。ただいたずらに操作圧を高くするのは汚泥の圧
密化現象を促し、水の抜は道は失なわれ、更にはr布の
目詰りが起る等、全く逆効果を招来することになる。
For example, if you use a belt press, it will weigh 2 to 3 kg/c.
At an operating pressure of Id, gravity and squeezing action can dehydrate up to a water content of 75 eIb, and a centrifugal dehydrator can dehydrate up to 2000 eIb.
At an operating pressure of ~3,000 G, centrifugal force can dehydrate the water up to a water content of 75°. However, care should be taken here to select an appropriate operating pressure for each dehydrator. However, unnecessarily increasing the operating pressure will promote compaction of the sludge, which will lead to no way to drain water, and even cause clogging of the r-cloth, which will have the opposite effect.

この様に一次脱水をした汚泥物を回転円筒ミキサー等に
投入し、破砕すると共に脱水助剤として、珪藻土、消石
炭、炭酸カルシウム、焼却灰、微粉炭、ソーダスト、乾
燥パルプ、土壌のうち一種以上を元汚泥固形分の乾燥重
量に対し、10〜100チの量で添加する。前記脱水助
剤のうち焼却灰は下水処理汚泥灰、尿尿処理汚泥灰、産
業廃水処理汚泥灰、都市ゴミ焼却灰、産業廃棄物焼却灰
等の比較的入手が容易で、工業上再利用価値の薄いもの
を用いることが望ましい。特に、本発明の実施で出来た
脱水物を焼却して出来た焼却灰の一部を循環させて使用
することが最も望ましい。
The sludge that has been primarily dehydrated in this way is put into a rotary cylindrical mixer, etc., and crushed, and at least one of diatomaceous earth, slaked coal, calcium carbonate, incinerated ash, pulverized coal, sawdust, dried pulp, and soil is used as a dehydration aid. is added in an amount of 10 to 100 g based on the dry weight of the original sludge solids. Among the dehydration aids, incineration ash is relatively easy to obtain, such as sewage treatment sludge ash, urine treatment sludge ash, industrial wastewater treatment sludge ash, municipal waste incineration ash, industrial waste incineration ash, etc., and has industrial reuse value. It is desirable to use a thin one. In particular, it is most desirable to circulate and use a portion of the incineration ash produced by incinerating the dehydrated product produced in the practice of the present invention.

造粒方法は、ロータリ一式、スクリュ一式、振動式等の
混線機で、上述の乾燥助剤が汚泥中にめり込まない様か
つ、堀り起す様に混練する、造粒後の粒度は直径20w
以下とし、特に直径が1〜10mmの範囲に重量比で7
0%以上の粒子が分布していることが望ましい。
The granulation method uses a mixer such as a rotary set, a screw set, or a vibrating mixer, and mixes the above-mentioned drying aid so that it does not sink into the sludge and excavates it, and the particle size after granulation is adjusted to the diameter. 20w
The weight ratio should be 7 or less, especially if the diameter is in the range of 1 to 10 mm.
It is desirable that 0% or more of the particles are distributed.

この粒状の汚泥物質を前記脱水機番こよって、再び脱水
(′二次脱水)することによって、含水率を60%以下
にし、その容量は、最初のものに比べ5割以下にするこ
とが出来るものである−0またこの二次脱水を圧搾によ
り行ない、しかも初圧と加圧とを分けて行なう、二段圧
搾することで、含水率を50%以下容量を6割以下にす
るものである。
By dewatering this granular sludge again using the dewatering machine ('secondary dehydration), the water content can be reduced to 60% or less, and its capacity can be reduced to 50% or less compared to the initial one. In addition, this secondary dehydration is performed by compression, and the initial pressure and pressurization are performed separately, and by performing two-stage compression, the water content is reduced to 50% or less, and the volume is reduced to 60% or less. .

この初圧は301c!?/crl以下、望ましくは15
〜25kg/cI/lとし、時間は2分間以下とするこ
とが望ましい。また本加圧は50〜100#/d、望ま
しくは59〜80#/CI!tとし、1〜3分間かけて
圧搾する。
This initial pressure is 301c! ? /crl or less, preferably 15
It is desirable that the amount is 25 kg/cI/l and the time is 2 minutes or less. The main pressure is 50 to 100 #/d, preferably 59 to 80 #/CI! t and squeeze for 1 to 3 minutes.

次に、実験例に基いて、本発明の詳細な説明する。Next, the present invention will be explained in detail based on experimental examples.

水路、河川、沈殿池等に沈殿濃縮した有機分を含み含水
率がほぼ98チの泥状物質入を揚泥ポンプにより回収し
て、ベルトプレスに供給する。この時の泥状物質Bの含
水率は、回収途中に少し水分が減っておよそ96チとな
っている。
Sludge containing concentrated organic matter and having a moisture content of approximately 98 cm is collected by a pump and supplied to a belt press. At this time, the water content of the muddy material B was approximately 96 cm, as the water content decreased slightly during the collection.

この泥状物質Bをベルトプレスにより一次脱水となる、
挟圧脱水をして、IQIIm厚以下の円盤状に凝縮した
。固形泥状物質Cを取り出す。
This muddy substance B is subjected to primary dehydration using a belt press.
It was dehydrated under pressure and condensed into a disk shape with a thickness of IQIIm or less. Take out the solid mud substance C.

この固形泥状物質Cを回転円筒ミキサ内で破砕すると共
に、焼却炉内の焼却灰をOから200%の範囲で変化さ
せて添加し、調合混線を行う混練時間は、20〜40秒
位である。この間泥状物質Cは、ミキサ、内にて反転す
る都度四分五裂して、焼却灰と混合転動し、その結果乾
燥外皮を有する直径511I以下の粒状泥状物質りとな
る。
This solid mud substance C is crushed in a rotating cylindrical mixer, and the incinerated ash in the incinerator is added in a range of 200% from O, and the mixing time for blending is about 20 to 40 seconds. be. During this time, the muddy material C is divided into quarters each time it is turned over in the mixer, mixed with the incinerated ash, and rolled, resulting in a granular muddy material having a dry outer shell and having a diameter of 511I or less.

この粒状泥状物質りを二次脱水を行うべく圧搾装置に収
iし、当初2oAc9/dの圧力を1分間加えて圧搾操
作を行なう。その後加圧し’r 70 瞭億の圧を2分
間加える。この操作により、粒状泥状物質りは含水量の
きわめて低い泥状物質Eとなる。
This granular slurry material is collected in a pressing device for secondary dehydration, and a pressing operation is performed by initially applying a pressure of 20Ac9/d for 1 minute. Then pressurize and apply 70 liters of pressure for 2 minutes. Through this operation, the granular mud material becomes mud material E with extremely low water content.

更にこの泥状物質Eを粉砕機により砕壊し”、固形状の
泥状粉Fにする。この固化泥状粉Fを焼却炉により完焼
し、その結果出来た焼却灰の一部を添加用乾燥助剤とし
て、前記ミキサ内に反送循環することもできる。
Furthermore, this muddy substance E is crushed by a crusher to form a solid muddy powder F. This solidified muddy powder F is completely burned in an incinerator, and a part of the resulting incinerated ash is used for addition. It can also be recycled back into the mixer as a drying aid.

なお、前記の96チ含水泥状物質Bは、フィルタープレ
スを用いて、70チ含水泥状物Bに形成し、ミ°キサに
おける焼却灰の添加量を30%以下にし、圧搾脱水を容
易にしてもよい。
In addition, the above-mentioned 96-chi water-containing muddy substance B was formed into a 70-chi water-containing muddy substance B using a filter press, and the amount of incineration ash added in the mixer was set to 30% or less to facilitate compression dehydration. It's okay.

次に本実験の実験結果を説明する。Next, the experimental results of this experiment will be explained.

第1図は、−次脱水ケーキに脱水助剤として、焼却灰を
加え混合造粒して二次脱水した時の焼却灰冷加量と脱水
汚泥物質の含水率の関係を示すもこの図から、グラ→a
で示すように二次脱水前の含水率が68チの場合、二茨
脱水後の含水率は脱水助剤の添加量が100%以上にな
るまで一定で、その後急激に低下し、150%位で安定
する。
Figure 1 shows the relationship between the amount of cooling of incinerated ash and the water content of dehydrated sludge material when incinerated ash is added as a dehydration aid to the secondary dehydrated cake, mixed and granulated for secondary dehydration. , gura→a
As shown in Figure 2, when the water content before secondary dehydration is 68%, the water content after secondary dehydration remains constant until the amount of dehydration aid added exceeds 100%, and then rapidly decreases to around 150%. becomes stable.

この含水率は4(lであった。次に二次脱水前の一含水
率が80%の場合(グラフb)、二次脱水後水量が40
チとなった。脱水助剤の量が30−10チで、二次脱水
後の゛含水量は安定する。次に、二次脱水前の含水率7
5チの場合(グラフC)は、含水率80チの場合とほと
んど同じ経過を辿るが、た戸助剤添加量20チで、含水
率は40チにまでさがる2゛とがわかる。
This water content was 4 (l).Next, when the water content before secondary dehydration was 80% (graph b), the water content after secondary dehydration was 40%.
It became chi. When the amount of dehydration aid is 30-10%, the water content after secondary dehydration is stabilized. Next, the water content before secondary dehydration is 7
In the case of 5 inches (graph C), the process is almost the same as in the case of 80 inches of water content, but it can be seen that when the amount of additive is 20 inches, the water content drops to 40 inches.

以上の事からもわかる様に、いずれも乾燥助剤が130
榔以上加えられた場合には含水率は60チ以下となる。
As you can see from the above, the drying aid is 130% in both cases.
If more than 50% of water is added, the water content will be less than 60%.

しかし、二次脱水前の水分が98チのものは、1501
以上の乾燥助剤を加えなければ50%以下の含水率には
ならない。′一方、80175%のものは、脱水助剤を
2(l加えるだけで、含水率は40チにもなる。このよ
うに、第一次脱水で出来るだけ水分を減らしておくこと
が望ましい。が通常の脱水機の機能から考えて、82−
以下とすれば十分と考えられる。この含水量であれば、
脱水助剤を造粒粉の表面に付着させ得る。
However, if the water content before secondary dehydration is 98 cm, it is 1501
Unless the above-mentioned drying aid is added, the moisture content will not be lower than 50%. 'On the other hand, in the case of 80175%, the water content can reach as much as 40 g by simply adding 2 (l) of dehydration aid.In this way, it is desirable to reduce the water content as much as possible in the primary dehydration. Considering the functions of a normal dehydrator, 82-
The following is considered sufficient. With this water content,
A dehydration aid may be attached to the surface of the granulated powder.

これ以上の含水量の場合、造粒時に脱水助剤が消費され
て含水量を減少させることになるので、多くの助剤が必
要となる。
If the water content is higher than this, the dehydration aid will be consumed during granulation and reduce the water content, so a large amount of the aid will be required.

次に、本実験では、初めの汚泥物質と一次脱水後および
二次脱水後の汚泥物質の状態は、各々含水率98%、7
51に30%であった。これらに対する重量の比較を示
したものが第2図である。例えば、当初水分98チの汚
泥の全重量が1ic9あったとすると、−次脱水後には
水分が75%の場合的1/13である、80gに、そし
て二次脱水後には脱水剤10gの重量を加えても水分3
09gで全重量は42gにも減少する。水分含有重量で
比較すると各々980g、60g、12gと減少する。
Next, in this experiment, the conditions of the initial sludge material, the sludge material after the primary dewatering, and the sludge material after the secondary dewatering had a water content of 98% and 7%, respectively.
51 and 30%. FIG. 2 shows a comparison of the weights of these. For example, if the total weight of sludge with a water content of 98 g is initially 1ic9, after the second dehydration it becomes 80 g, which is 1/13 of the case where the water content is 75%, and after the second dehydration, the weight of the dehydrating agent is 10 g. Even if added, moisture 3
09g, the total weight is reduced to 42g. Comparing the water content weights, the weights decrease to 980g, 60g, and 12g, respectively.

このように二次脱水された汚泥物質は、含水率50〜6
(l以下なので、固形状となって表面水分のない状態で
そのままで2000〜2500Kcal 7kg (7
)熱量を有するようになる。
The sludge material secondary-dehydrated in this way has a moisture content of 50 to 6.
(Since it is less than 1 liter, it becomes solid and has no surface moisture and has a weight of 2000 to 2500 Kcal 7 kg (7
) It has a calorific value.

次に第3図(a)は、−次脱水前の粒状泥状物質で(b
)は二次脱水後の可燃泥状物質の想像した組織図である
Next, Figure 3 (a) shows the granular muddy material before the -th dehydration (b).
) is an imagined organization diagram of the combustible mud material after secondary dehydration.

(a)図において、湾状物質1は汚泥固形質12、間隙
水13、毛管上昇水14、表面付着水15、を 内部水1ii及び周囲の自由水17で構成されており、
汚泥固形質以外は全て水分である。そして上記水分のう
ち内部水16だけは固形分12の内部に存在し、結合力
が強く圧縮性があるため、機械的に脱水することは困難
なものであるが、その他の(間隙水13、毛管上昇水l
゛4、表面付着水15等)は、脱水助剤の添加や、機械
的脱水をするこ□とで比較的容易に脱水が可能となった
と考えられる。そして、二次脱水後の湾状物質は(b)
図に示す様に、汚泥固形質12もろとも偏平な形状に変
形し、内部水16以外の前記結合水はほとんど除外され
ているものと想像される。
In the figure (a), a bay-shaped substance 1 is composed of sludge solids 12, pore water 13, capillary rising water 14, surface adhesion water 15, internal water 1ii and surrounding free water 17,
Everything except solid sludge is water. Of the above-mentioned water, only internal water 16 exists inside the solid content 12 and has a strong binding force and is compressible, so it is difficult to mechanically remove water, but other water (pore water 13, capillary rising water
It is thought that the water adhering to the surface (15, etc.) can be relatively easily dehydrated by adding a dehydration aid or by mechanical dehydration. And the bay-shaped substance after secondary dehydration is (b)
As shown in the figure, it is assumed that both the sludge solids 12 are deformed into a flat shape, and that most of the bound water other than the internal water 16 is excluded.

上記の様な結果が得られるのは、二次脱水前に添加した
乾燥助剤1汚状物質の外皮に付着することにより、まず
表面付着水15の親和力が弱まるそして圧搾作用も加わ
り、粒状泥状物質の外皮は圧壊し、それと同時に汚泥固
形質が押しつぶされ、逃げ場を失なった結合水等は、粒
間の空隙を通じて外部Iこ排水されるからではないかと
考えられる。
The reason why the above results are obtained is that when the drying aid 1 added before secondary dehydration adheres to the outer skin of the dirt, the affinity of the surface adhering water 15 is first weakened, and then a squeezing action is added, causing the granular mud to become It is thought that this is because the outer shell of the sludge material is crushed and the solid sludge is crushed at the same time, and the bound water, etc., which has no place to escape, is drained to the outside through the voids between the particles.

最後暑こ第4図は、汚泥物質の従来脱水法と本発明によ
る脱水法での含水率、および各含水状態での熱特性を示
すものである。この図の通り、現状の多段炉では汚泥物
質を自燃域まで乾燥させるため、外部燃焼用燃料を汚泥
ケーキl ton当り30〜401!も費やしている。
Finally, FIG. 4 shows the moisture content of sludge materials in the conventional dehydration method and the dehydration method according to the present invention, and the thermal characteristics in each moisture content state. As shown in this figure, in the current multi-stage furnace, in order to dry the sludge material to the self-combustion range, the external combustion fuel is used at 30 to 40 kg per ton of sludge cake! is also spent.

そこで、各種焼却炉においての自燃レベルを高めること
が検討されているが、含水Cm6.、.5 ’4以上で
は、自燃可能な焼却炉を造ることが困難である。本発明
の脱水方法により、汚泥の含水率を60%以下、望まし
くは5゜チ以下となったので、汚泥をそのまま燃焼させ
ることが出来るだけでなく、エネルギーを創り出すこと
が出来る様になったのである。
Therefore, increasing the self-combustion level in various incinerators is being considered, but water-containing Cm6. ,.. 5'4 or more, it is difficult to build a self-combustible incinerator. By the dewatering method of the present invention, the moisture content of sludge is reduced to 60% or less, preferably 5% or less, so it is not only possible to burn the sludge as it is, but also to create energy. be.

本発明は、以上説明した様に、有機分を含有する汚泥物
質の高度の熱特性を無駄にすることなく、自燃が可能な
までに含水率を低下させることに成功し、しかも脱水後
の汚泥物質の容量は5割以下に減容出来た。また、燃焼
時の熱を利用し、発電等の有効なエネルギーに変換する
ことも出来る。
As explained above, the present invention has succeeded in reducing the water content to a point where self-combustion is possible without wasting the high thermal properties of sludge containing organic components, and in addition, the sludge after dewatering has The volume of the substance was reduced to less than 50%. Additionally, the heat generated during combustion can be used to convert it into useful energy such as power generation.

以上の様に本発明は省資源面より、産業廃棄物の有効利
用、再利用が叫ばれる昨今において非常に有効な、汚泥
物質の脱水方法である。
As described above, the present invention is a very effective method for dewatering sludge substances in these days when there is a demand for effective use and reuse of industrial waste from the viewpoint of resource conservation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、焼却灰添加量と脱水汚泥物質の含水率の関係
を示す図、第2図は初めの汚泥物質−次脱水後、二次脱
水後各々の水分と汚泥固形分の重量比を示す図、第3図
は脱水前と二次脱水後の汚泥物質の想像した組織図、第
4図(a)(b)は汚泥物質の従来脱水法と本発明によ
る脱水法での含水率、および各含水状態での熱特性を示
す図である。 1・・・汚泥物質 12・・・汚泥固形質 13・・・
間隙水14・・・毛管上昇水 15・・・表面付着水1
6・・・内部水 17・・・自由水 18・・・乾燥助
剤賂3図 (a)  脱水前            (6)二次
脱水後第4図 手続補正書(自発) 57,9.20 昭和  年 J   I+ ・1覧  (i    (+)  ノン  示昭 11
1156 fl−持許願第 183490  跨i由1
1をする各 ン゛・11  150g+ 、 1.11’/、余属株
式会社代ノン/+イIII野 典夫 代   理   人 1・:III    東S;(都千代Il1区丸の内2
丁目1釣2壮i由11のλ・1象 明細書の発明の詳細な説明の嘴。 補正の内容 「発明の詳細な説明」の内容を次のように膚正する。 ′L、5頁18行  含水率’1−50j以下とLゑ0
2、 8jj15行  に凝集し念、固形泥状物質0&
 9N9行  この固形泥状粉1を焼卸4 1ajjl
1行  添加用脱水助剤として4 σ頁16行  監し
、圧搾脱水を容易にして&  10貞7行か−ら8行 
30′%以下で、40%−9,10頁15行  いずれ
も脱水助剤a  io頁18行  150%以上の1L
助剤を9.11頁16行  脱水助剤xo9の重量を加
え1α zgzzg行から13行 その他(−間一水15、毛管上 以  上
Figure 1 shows the relationship between the amount of incinerated ash added and the water content of dehydrated sludge material, and Figure 2 shows the weight ratio of water and sludge solids in the initial sludge material, after secondary dewatering, and after secondary dewatering. Figure 3 shows the imagined organization of the sludge material before dehydration and after secondary dehydration, and Figures 4 (a) and (b) show the water content of the sludge material in the conventional dehydration method and the dehydration method according to the present invention. FIG. 3 is a diagram showing thermal characteristics in each water-containing state. 1...Sludge substance 12...Sludge solid substance 13...
Pore water 14...Capillary rising water 15...Surface adhesion water 1
6...Internal water 17...Free water 18...Drying aid supplement Figure 3 (a) Before dehydration (6) After secondary dehydration Figure 4 Procedure amendment (voluntary) 57, 9.20 Showa year J I+ ・1 list (i (+) non-show 11
1156 fl-Request for permission No. 183490 Straddle i Yu 1
1 150g+, 1.11'/, Remaining Co., Ltd. Non/+I III Norio Yoro Person 1: III Higashi S; (Miyakochiyo Il1 Ward Marunouchi 2
Beak of the detailed explanation of the invention in the λ・1 elephant specification of Chome 1 Tsuri 2 Soi Yu 11. The content of the amendment "Detailed Description of the Invention" is revised as follows. 'L, page 5 line 18 Moisture content '1-50j or less and L 0
2, 8jj line 15 has agglomeration, solid muddy substance 0&
Line 9N9 Burn this solid muddy powder 1 4 1ajjl
Line 1 As a dehydration aid for addition 4 σ Page 16 Lines Supervise, facilitate press dehydration & 10 lines 7-8
30'% or less, 40% - 9, 10 pages line 15 All dehydration aids a io page 18 line 150% or more 1L
9. Add the weight of the dehydration aid xo9 on page 11, line 16, and add the weight of the dehydration aid xo9.

Claims (1)

【特許請求の範囲】 1、泥状物質の脱水において、−次脱水した泥状物質に
脱水助剤を加え適当な粒度に造粒し、更にこの造粒物を
二次脱水することにより、含水率を60%以下にするこ
とを特徴とする、泥状物質の脱水方法。 2、特許請求の範囲第1項に詔いて、二次脱水を加圧に
より行い、含水率を501以下にすることを特徴とする
泥状物質の脱水方法。 3、特許請求の範囲第1項又は第2項において、−次脱
水で泥状物質の含水率を82チ以下にすることを特徴と
する泥状物質の脱水方法。 4、%許請求の範囲第1項〜第3項において、脱水助剤
として、珪藻土、消石灰、炭酸カルシウム、焼却灰、微
粉炭土壌、骨粉、ソーダスト、乾燥パルプのうち1種以
上を用いることを特徴とする泥状物質の脱水方法。 5、特許請求の範囲第4項において、焼却灰を用いるこ
とを特徴とする泥状物質の脱水方法。 6、特許請求の範囲第5項において、焼却灰として、下
水処理汚泥灰、採尿処理汚泥灰、産業廃水処理汚泥灰、
都市ゴミ焼却灰、産業廃棄物焼却灰のいずれかまたはそ
れらの混合物を用いることを特徴とする泥状物質の脱水
方法。 7、特許請求の範囲第1項において脱水助剤の添加量を
元汚泥固形分の乾燥重量に対し10〜100チの量とす
ることを特徴とする泥状物質の脱水方法。 8、特許請求の範囲第1項において造粒後の粒度を直径
20u以下とすることを特徴とする泥状物質の脱水方法
。 9、特許請求の範囲第8項において、直径1〜10酩の
粒度帯に重量比で70%以上の粒子が分布することを特
徴とする泥状物質の脱水方法。 10、特許請求の範囲第2項において、加圧方法を縦型
及び横型の脱水機例れかで、直接加圧又は間接加圧とし
、初圧後加圧する二段圧搾することを特徴とする泥状物
質の脱水方法。 11、特許請求の範囲第2項において、加圧力とその保
持時間を初圧は30感d以下で2分以下、加圧は50〜
109 kg/Cdで1〜3分とすることを特徴とする
泥状物質の脱水方法。 12、特許請求の範囲第1項において、泥状物質の含水
率を82−以下まで一次脱水し、該泥状物質に焼却灰を
元汚泥固形分の乾燥重量に対し、10〜50%添加し、
直径を1〜101131の粒度帯に重量比で70チ以上
の粒子が分布するように造粒し、更にこの造粒物を圧搾
脱水機によって、初圧を15〜25 JC9/(:dで
2分以下、加圧60〜80に9/dで1〜3分の圧搾を
行なうことを特徴とした泥状物質の脱水方法。
[Scope of Claims] 1. In the dehydration of muddy materials, a dehydration aid is added to the dehydrated muddy material, the granules are granulated to an appropriate particle size, and the granulated material is subjected to secondary dehydration to reduce water content. A method for dehydrating muddy substances, characterized by reducing the water content to 60% or less. 2. A method for dehydrating a muddy material, as set forth in claim 1, characterized in that secondary dehydration is performed under pressure to reduce the water content to 501 or less. 3. A method for dehydrating a muddy material according to claim 1 or 2, characterized in that the water content of the muddy material is reduced to 82 cm or less in the second dehydration. 4. Permissible claims In items 1 to 3, it is specified that one or more of diatomaceous earth, slaked lime, calcium carbonate, incinerated ash, pulverized coal soil, bone meal, sawdust, and dried pulp is used as a dehydration aid. Characteristic dehydration method for muddy substances. 5. A method for dehydrating muddy substances according to claim 4, characterized in that incineration ash is used. 6. In claim 5, the incineration ash includes sewage treatment sludge ash, urine collection treatment sludge ash, industrial wastewater treatment sludge ash,
A method for dewatering muddy substances, characterized by using either municipal waste incineration ash, industrial waste incineration ash, or a mixture thereof. 7. A method for dewatering sludge as set forth in claim 1, characterized in that the amount of the dewatering aid added is 10 to 100 g based on the dry weight of the original sludge solid content. 8. A method for dewatering a slurry material according to claim 1, characterized in that the particle size after granulation is 20 u or less in diameter. 9. A method for dewatering a muddy substance according to claim 8, characterized in that 70% or more of the particles by weight are distributed in a particle size range of 1 to 10 mm in diameter. 10. Claim 2 is characterized in that the pressurization method is direct pressurization or indirect pressurization using either a vertical or horizontal dehydrator, and two-stage compression is performed in which pressurization is applied after initial pressure. Method for dewatering muddy substances. 11. In claim 2, the initial pressure is 30 sens d or less and the initial pressure is 2 minutes or less, and the pressurization is 50 ~
A method for dehydrating muddy substances, characterized by dehydrating 109 kg/Cd for 1 to 3 minutes. 12. In claim 1, the slurry material is primarily dehydrated to a water content of 82 or less, and incineration ash is added to the mud material in an amount of 10 to 50% based on the dry weight of the original sludge solid content. ,
The granules are granulated so that particles with a weight ratio of 70 mm or more are distributed in a particle size band with a diameter of 1 to 101,131 mm, and the granules are then compressed and dehydrated to an initial pressure of 15 to 25 JC9/(: 2 in d). 1. A method for dehydrating a muddy substance, characterized in that compression is carried out at a pressure of 60 to 80 minutes and 9/d for 1 to 3 minutes.
JP56183490A 1981-11-16 1981-11-16 Dehydrating method for muddy material Pending JPS58101797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56183490A JPS58101797A (en) 1981-11-16 1981-11-16 Dehydrating method for muddy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56183490A JPS58101797A (en) 1981-11-16 1981-11-16 Dehydrating method for muddy material

Publications (1)

Publication Number Publication Date
JPS58101797A true JPS58101797A (en) 1983-06-17

Family

ID=16136723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56183490A Pending JPS58101797A (en) 1981-11-16 1981-11-16 Dehydrating method for muddy material

Country Status (1)

Country Link
JP (1) JPS58101797A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104402193A (en) * 2014-12-11 2015-03-11 北京建筑材料科学研究总院有限公司 Sludge raw material drying method applied to cement kiln gasification furnace
CN104496150A (en) * 2014-12-11 2015-04-08 北京建筑材料科学研究总院有限公司 Sludge raw material drying method used in cement kiln grate cooler

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104402193A (en) * 2014-12-11 2015-03-11 北京建筑材料科学研究总院有限公司 Sludge raw material drying method applied to cement kiln gasification furnace
CN104496150A (en) * 2014-12-11 2015-04-08 北京建筑材料科学研究总院有限公司 Sludge raw material drying method used in cement kiln grate cooler
CN104402193B (en) * 2014-12-11 2016-05-18 北京建筑材料科学研究总院有限公司 Be applied to the mud raw material drying method of cement kiln gasification furnace

Similar Documents

Publication Publication Date Title
US4587022A (en) Process for dewatering sludge
CN107098550A (en) Sludge solidifying agent and utilize its solidfied material preparation method
JPH1180763A (en) Production of solid fuel from sewage sludge
JPS58101797A (en) Dehydrating method for muddy material
JP4288714B2 (en) Method of manufacturing fertilizer from organic sludge
JP2788858B2 (en) Method for producing coal-containing briquettes or pellets by comprehensive waste treatment
JP2000017278A (en) Preparation of refuse solid fuel
JPS58101798A (en) Dehydrating method for muddy material
KR101934411B1 (en) High-temperature waste treatment method using sludge
JPS58101800A (en) Dehydrating method for muddy material
JPS5948160B2 (en) Dehydration method for muddy substances
JP2006315885A (en) Recycled fertilizer and method of producing the same
US4810257A (en) Mechanical dewatering process
JP3211113B2 (en) Method for producing lightweight aggregate from dewatered sludge
JP2792820B2 (en) High-performance activated carbon and its production method
JPH08176567A (en) Production of solid fuel from waste and utilization of the same solid fuel
CN101863610B (en) Method for secondary deep dewatering of dewatered sludge
JP5349786B2 (en) Method for converting dehydrated organic waste into fuel and biomass fuel
JPH0978076A (en) Apparatus for manufacturing solid fuel
JP3242674B2 (en) Mud and mud waste treatment equipment
JPS5980495A (en) Combustion auxiliary material for furnace using sludge of sewage and its preparation
KR101845807B1 (en) Manufacturing method of a sludge treatment agent and method to treat a sludge using the same
JPS6013891A (en) Assistant fuel for cement calcination and method for using the same
JP3666940B2 (en) How to make sewage sludge into cement
KR102592950B1 (en) Method of manufacturing soil materials for landfill using sludge