JPS5947769A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5947769A
JPS5947769A JP15809482A JP15809482A JPS5947769A JP S5947769 A JPS5947769 A JP S5947769A JP 15809482 A JP15809482 A JP 15809482A JP 15809482 A JP15809482 A JP 15809482A JP S5947769 A JPS5947769 A JP S5947769A
Authority
JP
Japan
Prior art keywords
gate
oxide film
coated glass
layer
arsenide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15809482A
Other languages
Japanese (ja)
Inventor
Yasuo Wada
恭雄 和田
Yoshifumi Kawamoto
川本 佳史
Kazuhiro Oga
大賀 一弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Microcomputer System Ltd
Hitachi Ltd
Original Assignee
Hitachi Ltd
Hitachi Microcomputer Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Microcomputer Engineering Ltd filed Critical Hitachi Ltd
Priority to JP15809482A priority Critical patent/JPS5947769A/en
Publication of JPS5947769A publication Critical patent/JPS5947769A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To secure the effective channel length and largely improve MOS FET withstand voltage by sufficiently enlarging the radius of curvature of the junction of source-drain regions by a method wherein an impurity is introduced into a substrate in the state that the gate region is coated with a coat glass. CONSTITUTION:A field oxide film 22 is grown on the Si substrate 21, further a gate oxide film 23 is grown by dry oxidation, poly Si is deposited by CVD method, and then the gate 24 is formed by photoetching method after the thermal diffusion of phosphorus. Next, the coat glass is spincoated, resulting in a coat glass layer 25 whose section at the gate side part inclines, the coat glass layer 25 on the gate oxide film 23 and the gate 24 is removed by etching with fluoric acid, arsenide is implanted, and accordingly an arsenide diffused layer 26 is formed. The radius of curvature at the end part of the arsenide diffused layer 26 can be enlarged to 1mum or more, and therefore the junction withstand voltage can be largely improved to 26V.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体装置の製造方法に関し、詳しくは、高耐
圧MO8半導体装置の形成にとくに好適な、半導体装置
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for manufacturing a semiconductor device that is particularly suitable for forming a high voltage MO8 semiconductor device.

〔従来技術〕[Prior art]

MOSFET (MOS  電界効果トランジスタ)を
高性能化するためには、ゲート長を短かくシ。
In order to improve the performance of MOSFETs (MOS field effect transistors), the gate length must be shortened.

ゲート酸化膜厚を薄くする事が有効なことは良く知られ
ている。この理由は、ゲイン定数βが、ゲート長Lg、
ゲート幅W g 、電界効果移動度μF〜ゲート酸化膜
厚tび、酸化膜比誘電率にメ、真空の誘電率ε。により
、次式で表わされるからである。
It is well known that reducing the thickness of the gate oxide film is effective. The reason for this is that the gain constant β is the gate length Lg,
Gate width W g , field effect mobility μF to gate oxide film thickness t, oxide film relative permittivity, and vacuum permittivity ε. This is because it is expressed by the following equation.

したがって、微小化されたM OS F E ’J”は
、より大きなゲイン定数を持つため、回路の高速化に大
きな効果がある。
Therefore, since the miniaturized MOS F E 'J'' has a larger gain constant, it has a great effect on speeding up the circuit.

しかし、反面このような微細化はMOSFETの耐圧の
低下をもたらした。第1図は、ゲート酸化膜厚をパラメ
ーターとしてMO8FE’I’  のゲート長L+rと
、耐圧BVDS の関係を示したもので、同一のゲート
長でも、ゲート酸化膜厚が薄くなると耐圧が低下するこ
とがわかる。第1図において、ゲート酸化膜ノリはおの
おのCつ:5Qn+n、△35nm、ロ25nm、◇:
20nmを表わす。−4−なわら、MO8I−ETを高
性能化するために、ゲート長を短縮りまたり、ゲート酸
化膜を薄<゛(ると而」圧が大幅に低下し、そのために
正常な回路動作が困難になる恐れがある。
However, on the other hand, such miniaturization has resulted in a decrease in the breakdown voltage of MOSFETs. Figure 1 shows the relationship between the gate length L+r of MO8FE'I' and the breakdown voltage BVDS using the gate oxide film thickness as a parameter.Even if the gate length is the same, the breakdown voltage decreases as the gate oxide film thickness becomes thinner. I understand. In Fig. 1, the gate oxide film thickness is C: 5Qn+n, △35nm, 25nm, ◇:
It represents 20nm. -4- However, in order to improve the performance of MO8I-ET, the gate length is shortened and the gate oxide film is made thinner. may become difficult.

このような耐圧の低下を防ぐために、従来二重ドレーン
法と称する方法が提案爆れている。この方法は、第2図
に示したように、たとえば、p型(100)面10Ω・
cmのシリコン基板1内にヒ素をドープして形成した高
濃度領域2およびり/をドープして形成した低濃度領域
:(が、ゲー1−4およびゲート酸化膜5の両側に、ソ
ース、1−・よびドレーン領域として形成されているこ
とを特徴とする。しかしこのようなih造では、必ずし
もMOSFETの耐圧を向上できない事が本発明者等の
検討で明らかになった。
In order to prevent such a drop in breakdown voltage, a method called the double drain method has been proposed. As shown in Figure 2, this method uses, for example, a p-type (100) plane 10Ω
A high concentration region 2 formed by doping arsenic and a low concentration region formed by doping arsenic in a silicon substrate 1 with a thickness of However, studies by the present inventors have revealed that such an IH structure does not necessarily improve the withstand voltage of the MOSFET.

すなわら、第2図に示したように、ゲート長Lgに対し
、実際の物理的なチヤネル長(実効チャネル長”Leu
で示す)は、上記低濃度領域3の分だけ短縮され、した
がってその分たけ耐圧は低下する。素子の集積度はゲー
ト長Lgで決まるから、このような二乗トレーン法で一
圧を向−ヒさせるために実効ゲート長I、@ffを確保
しようとすると、ゲート長Lgを長くしなければならず
、集積度は低下してしまう。このような集積度の低下は
、MO8IC設計上極めてψ、ましくないことはいうま
でもない。
In other words, as shown in Fig. 2, the actual physical channel length (effective channel length "Leu") is
) is shortened by the amount of the low concentration region 3, and the withstand voltage is therefore reduced by that amount. Since the degree of integration of the device is determined by the gate length Lg, if we try to secure the effective gate length I, @ff in order to suppress one voltage using such a square train method, we have to increase the gate length Lg. First, the degree of integration decreases. Needless to say, such a reduction in the degree of integration is extremely undesirable in terms of MO8IC design.

一方半導体装置の微細化と共にソース・ドレーン領域を
形成する不純物拡散層の接合深さを浅くする事が必要と
なってきた。一般には、ゲート長Lgが5μm程度で接
合深さは0.7μm、3μmで0.4μm、2μmで0
.3 p m 、 1.3 tt mで0.2μm程度
の接合深さとなるようなプロセスが用いられる。しかし
、接合深さが浅くなると、接合耐圧が低下し、ひいては
MUII’ET  の耐圧も低下する事が本発明者らの
検討で明らかになった。すなわち、第3図は接合深さと
MO8FET耐圧の関係を示す図であるが、接合深さx
tと、耐圧BvDS の間にはほぼ次式が成立している
事がわかる。
On the other hand, with the miniaturization of semiconductor devices, it has become necessary to reduce the junction depth of impurity diffusion layers forming source/drain regions. Generally, when the gate length Lg is about 5 μm, the junction depth is 0.7 μm, when it is 3 μm, it is 0.4 μm, and when it is 2 μm, it is 0.
.. A process is used that provides a junction depth of about 0.2 μm at 3 p m and 1.3 tt m. However, studies conducted by the present inventors have revealed that when the junction depth becomes shallow, the junction breakdown voltage decreases, and as a result, the breakdown voltage of MUII'ET also decreases. In other words, FIG. 3 is a diagram showing the relationship between junction depth and MO8FET breakdown voltage, but when junction depth x
It can be seen that the following equation approximately holds true between t and the breakdown voltage BvDS.

14VDs=20Aogx」+27 この理由は、接合深さが浅くなると、接合の曲率半径が
小さくなり、したがって電界集中が起りやすくなってく
るためである。M 08 II” l’:、 Tの動作
状態ではこの傾向はさらに顕著となる。
14VDs=20Aogx"+27 The reason for this is that as the junction depth becomes shallower, the radius of curvature of the junction becomes smaller, and therefore electric field concentration becomes more likely to occur. This tendency becomes even more remarkable in the operating state of M 08 II''l':, T.

〔発明の概要〕[Summary of the invention]

本発明は前述のような従来技術の問題点を除くためにな
されたもので、ゲート領域−りに塗布ガラスを塗布した
状態で基板に不純物を導入する事によシ、実効チャネル
長を確保するとともに、ソース・トレー/領域の接合の
曲率半径を十分に大きくする事を可能にし、したがって
、MO81;’ET耐圧を大幅に向上させる事を可能と
するものである。
The present invention was made to eliminate the problems of the prior art as described above, and it secures the effective channel length by introducing impurities into the substrate with coating glass applied to the gate region. At the same time, it is possible to sufficiently increase the radius of curvature of the source tray/region junction, and therefore it is possible to significantly improve the MO81;'ET breakdown voltage.

〔実施例〕〔Example〕

実施例1 本発明において、塗布ガラスの塗布特性は重要である。 Example 1 In the present invention, the coating properties of the coated glass are important.

しだがって、まず塗布特性につき説明する。第4図(a
)はp型(100)面10ΩlIcInのシリフン基板
上11に熱酸化法により厚−Jlonmの酸化膜12を
成長させ、さらにモノテラン(SfH4)とアンモニア
(Nl−1,)を主成分とするガスを用いたケミカルq
ペーパー嗜デポジション法(以下CVIJ法と略)によ
り1ツさ15nrnの窒化シリコン(以下Si3N4と
略)膜13を堆積し、950t?、30分のウェット酸
化で上記S ’3N4  Jlg 13の表面を酸化し
て厚さ4nmの酸化膜14を成長叡ぜ、さらにsin、
の熱分解によるCVD法によって、厚さ0.3μmの多
結晶S i 11:¥15を堆積、熱拡散法でリンを拡
散し通常のホトエッチ法によりパターニングし、950
Cのウェットe化で酸化して、上記多結晶Si膜15上
に厚さ0.3μmの酸化膜16を成長させた状態を示す
。つぎに、塗布ガラスとして、主成分がシラノール(S
 i (OI−1)4)のアルコール溶液、f?:、と
えば0CD59310  (商品名二東京応化(株)製
)を、回転数700Orpmで回転塗布すると、第4図
(b)に示したように、塗布ガラス層17が形成される
。第4図(b)から明らかなように、本発明によれば、
ゲートとなるべき領域の両端において断面が傾斜した厚
い塗布ガラス層17を形成する事ができる。本実施例で
は、塗布時のスピンナ回転数fニア000rpmとした
が、2000rpm以上とすれば良い事がわかった。こ
の理由は、ゲート」二部における塗布ガラス層17の膜
厚aと、ゲート端から1μm1l(れた部分における膜
厚すの比r = a / bが、第5図に示したように
、塗布時の回転数700Orpm以上では1であるが、
2000 r p口1以下では0.5以下となり、した
がって、基板上の塗布ガラス層を除去する際に、ゲート
の両端部に形成された断面が傾斜した塗布ガラス層も除
去されてしまい、良好な半導体装置の形成が内錐になる
ためである。
Therefore, first, the coating characteristics will be explained. Figure 4 (a
), an oxide film 12 with a thickness of -Jlonm was grown by thermal oxidation on a p-type (100) plane 10ΩlIcIn silicon substrate 11, and a gas containing monotherane (SfH4) and ammonia (Nl-1,) as main components was grown. Chemical used
A silicon nitride (Si3N4) film 13 having a thickness of 15nrn was deposited by a paper deposition method (hereinafter abbreviated as CVIJ method), and 950t? The surface of the S'3N4 Jlg 13 was oxidized by wet oxidation for 30 minutes to grow an oxide film 14 with a thickness of 4 nm.
Polycrystalline Si 11: ¥15 was deposited with a thickness of 0.3 μm by the CVD method using thermal decomposition of
This shows a state in which an oxide film 16 with a thickness of 0.3 μm is grown on the polycrystalline Si film 15 by oxidizing C by wet e-oxidation. Next, as coated glass, the main component is silanol (S
Alcohol solution of i (OI-1)4), f? For example, when 0CD59310 (trade name, manufactured by Ni-Tokyo Ohka Co., Ltd.) is spin-coated at a rotational speed of 700 rpm, a coated glass layer 17 is formed as shown in FIG. 4(b). As is clear from FIG. 4(b), according to the present invention,
A thick coated glass layer 17 with a sloped cross section can be formed at both ends of the region to become the gate. In this example, the spinner rotation speed f during coating was set to 000 rpm, but it was found that it is sufficient to set it to 2000 rpm or more. The reason for this is that the ratio r = a / b of the thickness a of the coated glass layer 17 in the second part of the gate and the thickness of the coated glass layer 17 in the part 1 μm 1 l from the edge of the gate is as shown in FIG. When the rotation speed is 700 rpm or more, it is 1,
If it is less than 2000 rp, it will be less than 0.5. Therefore, when removing the coated glass layer on the substrate, the coated glass layer formed at both ends of the gate and having an inclined cross section will also be removed, resulting in a good result. This is because the semiconductor device is formed into an inner cone.

実施例2 第6図(a)に示すように、p型(100)面1゜Ω−
用のシリコン基板21に、周知の1.ocos法により
厚さ0.6μmのフィールド酸化膜22を成長させ、さ
らに厚さ20 n mのゲー) +!鑓化膜23を95
0C20分間のドライ酸化により成長させ、C1)法に
よりpo’yS Iを厚さ0.35 tt mに堆積、
リンを熱拡散後、ホトエッチ法によりゲート24を形、
我した。つぎに、第6F+(b)に示すように、塗布ガ
ラスとして、0CD59000(前品名二東京尾N化製
)を、回転数500Orpmでスピン塗布し、ゲートf
llQ部にお・ける断面が傾斜した塗布ガラス層25を
形成し、窒素雰囲気中で9501;20分間アニールし
た。ゲート酸化膜23上粋よびゲート24、.1.:の
塗布ガラス層25を弗酸:弗化アンモニウム=1:20
の溶液によってエッチして除去し、イオン丁J込み法に
より、ヒ素(As)を80keVでI X 1016c
m−2打込み、さらに1000t?で30分間窒素アニ
ールを行ない、第6図(C)に示したように、基板21
内に接合深さ0.4μm9層抵抗25Ω/「]のヒ素拡
散層26を形成した。このようにして形成された上記ヒ
素拡散層26の端部における曲率半径は、通常のMO8
ICプロセスを用いたのでは0.4μmとなり、接合耐
圧は18V程度であるのに対し、1μm以上とする事が
できるため、接合耐圧は26Vと大幅に向上できること
が認められた。さらに塗布ガラスの92布条件と、ヒ素
イオン打込み層のアニール条件を適当に選ぶ事により、
ヒ素拡散層26の!11A+%(Sをゲート24に接触
させない。いわゆるオフ・セット構造とする事ができる
ため、M OS JI″1・:Tの耐圧を、さらに向上
する串ができる。第6図(Cル1、このオフ・セラh 
rlh造M OS I’″ETの例であり、ヒ素拡散層
の横方内床がりは0.4μmであるが、塗布ガラス層2
5は、ゲート24から1 tt m pH(c i +
りj’J’t tで形成されているため、ゲート24の
両1則に0.6μmのオン会セット部27が形成さ11
.イ)。オフ・セット部27の長さは、塗布ガラスの塗
布条件、イオン打込み条件、およびアニール苧件により
制御する事ができる。したがって、MOSFETの耐圧
を必要に応じて容易に制御することが+’iJ能である
Example 2 As shown in FIG. 6(a), the p-type (100) surface was
The well-known 1. A field oxide film 22 with a thickness of 0.6 μm is grown by the ocos method, and then a field oxide film 22 with a thickness of 20 nm is grown. 95 sintered film 23
It was grown by dry oxidation at 0C for 20 minutes, and po'yS I was deposited to a thickness of 0.35 tt m by method C1).
After thermally diffusing phosphorus, the gate 24 is shaped by photoetching.
I did. Next, as shown in No. 6F+(b), 0CD59000 (previous product name manufactured by Nitokyo Nka) was spin-coated at a rotational speed of 500 Orpm as a coated glass, and the gate f
A coated glass layer 25 having a sloped cross section in the llQ portion was formed and annealed for 20 minutes in a nitrogen atmosphere. The upper surface of the gate oxide film 23 and the gate 24, . 1. The coated glass layer 25 of : hydrofluoric acid: ammonium fluoride = 1:20
Arsenic (As) was removed by etching with a solution of
m-2 implantation and another 1000t? After nitrogen annealing for 30 minutes, the substrate 21 is heated as shown in FIG. 6(C).
An arsenic diffusion layer 26 with a junction depth of 0.4 μm and a nine-layer resistance of 25 Ω/'' was formed within the arsenic diffusion layer 26.The radius of curvature at the end of the arsenic diffusion layer 26 formed in this way was that of a normal MO8.
If an IC process was used, the thickness would be 0.4 μm, and the junction breakdown voltage would be about 18V, but it was found that since the thickness could be 1 μm or more, the junction breakdown voltage could be significantly improved to 26V. Furthermore, by appropriately selecting the 92 cloth conditions for the coated glass and the annealing conditions for the arsenic ion implantation layer,
Arsenic diffusion layer 26! 11A+% (S is not brought into contact with the gate 24. Since it is possible to have a so-called offset structure, a skewer that further improves the withstand voltage of MOS JI''1.:T can be created. This off-sera h
This is an example of a rlh manufactured M OS I'''ET, and the lateral inner depth of the arsenic diffusion layer is 0.4 μm, but the coated glass layer 2
5 is 1 tt m pH (c i +
Since the gate 24 is formed with a 0.6 μm on-line set portion 27 on both sides of the gate 24,
.. stomach). The length of the offset portion 27 can be controlled by the coating conditions of the coated glass, the ion implantation conditions, and the annealing conditions. Therefore, it is possible to easily control the breakdown voltage of the MOSFET as required.

実施例3 実施例2において形成されたオフ・セット部に、リンを
拡散して低濃度のn型層を形成し、M OS F E 
Tの耐圧を向上させる、いわゆる二重ドレーン構造を、
第2図に示したような実効チャネル長の短縮なしに実現
する事ができる。第7図はこの例で、第6図(C)にお
いては、塗布ガラス層25は除去され、酸化を行なって
、再酸化膜27を形成がされている。該再酸化膜27は
、ゲート耐圧を向上させるために形成するもので、必ず
しも不可欠ではない。本実施例においては、ioo。
Example 3 Phosphorus is diffused into the offset portion formed in Example 2 to form a low concentration n-type layer, and MOS F E
The so-called double drain structure improves the withstand voltage of T.
This can be realized without shortening the effective channel length as shown in FIG. FIG. 7 shows this example, and in FIG. 6(C), the coated glass layer 25 is removed and oxidized to form a re-oxidized film 27. The re-oxidation film 27 is formed to improve the gate breakdown voltage and is not necessarily essential. In this example, ioo.

Cのドライ酸化により、厚さ200mの酸化膜を成長さ
せた。さらにリンイオンを、加速電圧50keVでI 
X 10” cm−2打込み、100OUで20分間ア
ニールする。その結果、接合深さ0.4μm1層抵抗2
00Ω/口 のリン拡散層28が形成され1M08FE
Tの耐圧を大幅に向上できた。
An oxide film with a thickness of 200 m was grown by dry oxidation of C. Furthermore, phosphorus ions were
x 10" cm-2 implant, annealed at 100OU for 20 minutes. As a result, a junction depth of 0.4 μm single layer resistor 2
A phosphorus diffusion layer 28 of 1M08FE is formed with a resistance of 00Ω/mouth.
The withstand voltage of T was significantly improved.

本実施例では、ゲート電圧5Vのときの耐圧が、ゲート
長11μmの素子において、4Vから6■へ、50%向
上された。
In this example, the withstand voltage at a gate voltage of 5 V was improved by 50% from 4 V to 6 .mu.m in a device with a gate length of 11 .mu.m.

実施例4 実施例3においては、リン拡散層を形成するために、リ
ンイオン打込みを行なったが、イオン打込みのかわり、
塗布ガラス層からのリン拡散を行なう事も可能である。
Example 4 In Example 3, phosphorus ion implantation was performed to form a phosphorus diffusion layer, but instead of ion implantation,
It is also possible to carry out phosphorus diffusion from the coated glass layer.

第8図(a) kl5、tP、6図と同様にして、基板
30上にフィールド酸化膜;31、ゲート酸化膜32、
ゲート33を形成した1111′費において、塗布ガラ
スとして0CD59340  (商品名二東京応化製ニ
リンを8mole  %含む)を500Orpmで回転
塗布し、塗布ガラス層34を形成した状態を示す。95
0Cで20分間窒素アニールし、塗布ガラス層34から
基板31内にリンを第8図(b)に示すように、低濃度
拡散層35を形成した。得られた低濃度拡散35の接合
深さは0.2μm、層抵抗は500Ω/口 であった。
FIG. 8(a) kl5, tP, field oxide film; 31, gate oxide film 32, on substrate 30 in the same manner as in FIG.
At 1111' when the gate 33 was formed, OCD59340 (containing 8 mole % of Nilin, manufactured by Nito Ohka Co., Ltd., trade name) was spin-coated as a coated glass at 500 rpm to form a coated glass layer 34. 95
Nitrogen annealing was performed at 0C for 20 minutes to form a low concentration diffusion layer 35 of phosphorus from the coated glass layer 34 into the substrate 31 as shown in FIG. 8(b). The resulting low concentration diffusion layer 35 had a junction depth of 0.2 μm and a layer resistance of 500Ω/hole.

上記塗布ガラス層34およびゲート酸化膜32の一部を
弗酸と弗化アンモニウムを1:20の割合で混合したエ
ッチ液で除去し、さらに900Cのウェット酸化で膜厚
20nmの酸化膜36を成長させ、イオン打込み法によ
りヒ素を80keVでI X 10”crn″″打込み
、950Cで20分間アニールして、第8図(C)に示
すように、ヒ累拡散層37を形成した。この時のヒ素拡
散層37の接合深さυ、1: 0.25μm1また低一
度拡散層35の接合深さは、0.2μmであった。第8
図(clから明らかなように、本発明によれば、ゲート
長からの実効チャネル長の短縮が小さく、したがって耐
圧向上の効果も太きい。ゲート長1μmのN=I OS
 F E T について比較したところ、従沫の方法に
よって形成した場合に比べ2V以上の側圧向上を実現で
きた。
Part of the coated glass layer 34 and gate oxide film 32 is removed using an etchant containing a mixture of hydrofluoric acid and ammonium fluoride at a ratio of 1:20, and then an oxide film 36 with a thickness of 20 nm is grown by wet oxidation at 900C. Then, by ion implantation, arsenic was implanted at 80 keV at I.times.10"crn" and annealed at 950 C for 20 minutes to form an arsenic diffusion layer 37 as shown in FIG. 8(C). The junction depth υ of the arsenic diffusion layer 37, 1: 0.25 μm1, and the junction depth of the low-degree diffusion layer 35 was 0.2 μm.
As is clear from the figure (cl), according to the present invention, the reduction in the effective channel length from the gate length is small, and therefore the effect of improving the breakdown voltage is large.N = IOS with a gate length of 1 μm.
When comparing FET, it was possible to achieve an increase in lateral pressure of 2 V or more compared to the case formed by the method of Yoko.

実施例5 −1−記の実施例では、ゲートとしてpoly Siを
用いたが、たとえばMoS i2. WS i、、 、
 ’I’iS i2等の金属硅化物(以下シリサイドと
略)あるいはたとえばMo、W等の金属(以下メタルと
略)およびこれらの材料の組合−艮を用いる事もできる
Example 5 In the example described in -1-, polySi was used as the gate, but for example, MoSi2. WS i, , ,
It is also possible to use metal silicides (hereinafter abbreviated as silicides) such as 'I'iS i2, metals such as Mo and W (hereinafter abbreviated as metals), and combinations of these materials.

本実施例では、多結晶Siを(、VD法により0.2μ
mの19さに堆積し、さらにその上に、Mo5t2をス
パッタ法で0.2μmのJWさに堆積し、950Cで2
0分間窒素雰囲気中でアニールする事により、ゲートを
形成した。この場合も上記実施例と同様な耐圧向上効果
が得られた。
In this example, polycrystalline Si (0.2μ
On top of that, Mo5t2 was deposited to a JW of 0.2 μm using a sputtering method, and 2 μm was deposited at 950C.
A gate was formed by annealing in a nitrogen atmosphere for 0 minutes. In this case as well, the same effect of improving the breakdown voltage as in the above example was obtained.

本発明において用いられる塗布ガラスは、一般にスピン
オンガラスともよばれ、各種のもσ)〃り知られている
。本発明は、これら多くの塗布ガラス層 〔発明の効果〕 以上実施例によって説明;−またように、本JM明によ
れば、ゲートの側部に厚さが一連続に1゛I?なる塗布
ガラス層を形成し、この塗布ガラス層を介して不純物を
漕入することによってソース・ドレーン令頁域を形成し
、それにより、ソース・ドレーン接合の曲率半径を太き
くシ、かつ二■1ドレーンあるいはオフセットゲート構
造が容易に実現される。
The coated glass used in the present invention is generally called spin-on glass, and various types are also known. [Effects of the Invention] The present invention has been described with reference to the above embodiments; - Also, according to the present invention, the thickness of the glass layer on the side of the gate is 1゛I? By forming a coated glass layer of Single drain or offset gate structures are easily realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はゲート長と■\40 S F’ E’I’の1
4川σ〕関係を示す曲#図、第2図は従来の方法によっ
て形成されたMO8FF、Tを示す図、第3図は接合深
さと制圧の関係を示す図、第4図〜第8図はそれぞれ本
発明の詳細な説明するだめの図である。 1.11,21..30・・・シリコン基板、4,15
゜24.33・・・ゲート、5,12,14,27゜3
2・・・ゲート酸化膜、22.31・・・フィールド酸
化膜、17,25.34・・・塗布ガラス膜、16゜2
7.36・・・再1履化膜、2,26.37・・・高濃
度第  1  図 猶 Z 図 不 3  図 第4 図(久ジ 呆4図(b) 5 第 S 図 スし−’JfQa、申云ソ灸(ヒptn、)第に 図 
(火) も 乙 図(b) 2/f 拓7図 21 γ 8 口 (り 第8図(b)
Figure 1 shows the gate length and ■\40 S F'E'I'1
Figure 2 is a diagram showing MO8FF and T formed by the conventional method. Figure 3 is a diagram showing the relationship between bonding depth and suppression. Figures 4 to 8 2A and 2B are diagrams for explaining the invention in detail, respectively. 1.11,21. .. 30...Silicon substrate, 4,15
゜24.33...Gate, 5, 12, 14, 27゜3
2... Gate oxide film, 22.31... Field oxide film, 17, 25.34... Coated glass film, 16°2
7.36...Re-1 oxidation film, 2,26.37...High concentration 1st figure 'JfQa, Shen Yunso Moxibustion (Hyptn,) Fig.
(Tue) Mootsu Figure (b) 2/f Taku 7 Figure 21 γ 8 Mouth (Ri Figure 8 (b)

Claims (1)

【特許請求の範囲】 1、 ゲートの側部に形成された厚さが神続的に異なる
塗布ガラス層を介して、半導体基板に不純物を導入する
ことによシ、ソースおよびドレインを形成する工程を含
むことを特徴とする半導体装置の製造方法。 2、上記不純物の導入は、イオン打込みによって行なわ
れる特許請求の範囲第1項記載の半導体装置の製造方法
。 3、上記不純物の導入は、上記塗布ガラス層中に含まれ
る不純物を熱拡散することによって行なわれる特許請求
の範囲第1項記載の半導体装置の製造方法。
[Claims] 1. A step of forming a source and a drain by introducing impurities into a semiconductor substrate through coated glass layers formed on the sides of a gate and having different thicknesses. A method for manufacturing a semiconductor device, comprising: 2. The method of manufacturing a semiconductor device according to claim 1, wherein the impurity is introduced by ion implantation. 3. The method of manufacturing a semiconductor device according to claim 1, wherein the impurity is introduced by thermally diffusing the impurity contained in the coated glass layer.
JP15809482A 1982-09-13 1982-09-13 Manufacture of semiconductor device Pending JPS5947769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15809482A JPS5947769A (en) 1982-09-13 1982-09-13 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15809482A JPS5947769A (en) 1982-09-13 1982-09-13 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5947769A true JPS5947769A (en) 1984-03-17

Family

ID=15664167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15809482A Pending JPS5947769A (en) 1982-09-13 1982-09-13 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5947769A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059777A (en) * 1983-09-13 1985-04-06 Nec Corp Manufacture of semiconductor device
JPS63124571A (en) * 1986-11-14 1988-05-28 Nec Corp Manufacture of semiconductor device
US4755479A (en) * 1986-02-17 1988-07-05 Fujitsu Limited Manufacturing method of insulated gate field effect transistor using reflowable sidewall spacers
JPH02113538A (en) * 1988-10-21 1990-04-25 Nec Corp Manufacture of lddmos transistor
US6948582B2 (en) 2001-03-02 2005-09-27 Toyota Jidosha Kabushiki Kaisha Shift device for vehicle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059777A (en) * 1983-09-13 1985-04-06 Nec Corp Manufacture of semiconductor device
US4755479A (en) * 1986-02-17 1988-07-05 Fujitsu Limited Manufacturing method of insulated gate field effect transistor using reflowable sidewall spacers
JPS63124571A (en) * 1986-11-14 1988-05-28 Nec Corp Manufacture of semiconductor device
JPH02113538A (en) * 1988-10-21 1990-04-25 Nec Corp Manufacture of lddmos transistor
US6948582B2 (en) 2001-03-02 2005-09-27 Toyota Jidosha Kabushiki Kaisha Shift device for vehicle
US7100467B2 (en) 2001-03-02 2006-09-05 Toyota Jidosha Kabushiki Kaisha Shift device for vehicle
US7117970B2 (en) 2001-03-02 2006-10-10 Toyota Jidosha Kabushiki Kaisha Shift device for vehicle
US7137475B2 (en) 2001-03-02 2006-11-21 Toyota Jidosha Kabushiki Kaisha Shift device for vehicle

Similar Documents

Publication Publication Date Title
US5573961A (en) Method of making a body contact for a MOSFET device fabricated in an SOI layer
EP0116317A2 (en) Method for producing a semiconductor device comprising an oxidation step
JPS61289644A (en) Manufacture of semiconductor device
JPS5947769A (en) Manufacture of semiconductor device
JPS6035573A (en) Manufacture of semiconductor device
JP2823819B2 (en) Semiconductor device and manufacturing method thereof
JP3328600B2 (en) Fabrication process for bipolar and BICMOS devices
JP3262434B2 (en) Method for manufacturing semiconductor device
KR100200184B1 (en) Manufacturing method of semiconductor device
JP2968548B2 (en) Semiconductor device and manufacturing method thereof
JPH0897414A (en) Semiconductor device
JPH06204420A (en) Manufacture of semiconductor device
JP3110313B2 (en) Method for manufacturing semiconductor device
JP3050190B2 (en) Method for manufacturing semiconductor device
JP3344162B2 (en) Method for manufacturing field effect semiconductor device
JPH04127538A (en) Semiconductor device and manufacture thereof
JPH11135646A (en) Complementary mos semiconductor device and manufacture thereof
JPH07307467A (en) Semiconductor device and its manufacture
JPS63153862A (en) Manufacture of semiconductor device
JPS62269352A (en) Manufacture of semiconductor device
JPS5931230B2 (en) Method for manufacturing MOS type semiconductor integrated circuit
JPH02277246A (en) Manufacture of thin-film transistor
JPH0430437A (en) Manufacture of semiconductor device
JPH02105422A (en) Manufacture of semiconductor integrated circuit device
JPS63122272A (en) Mos type field effect transistor and its manufacture