JPS5947767A - Mis type semiconductor element - Google Patents

Mis type semiconductor element

Info

Publication number
JPS5947767A
JPS5947767A JP15681682A JP15681682A JPS5947767A JP S5947767 A JPS5947767 A JP S5947767A JP 15681682 A JP15681682 A JP 15681682A JP 15681682 A JP15681682 A JP 15681682A JP S5947767 A JPS5947767 A JP S5947767A
Authority
JP
Japan
Prior art keywords
drain
source
channel
schottky
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15681682A
Other languages
Japanese (ja)
Inventor
Kinya Kato
加藤 謹矢
Tsutomu Wada
力 和田
Kazutake Kamihira
員丈 上平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP15681682A priority Critical patent/JPS5947767A/en
Publication of JPS5947767A publication Critical patent/JPS5947767A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7839Field effect transistors with field effect produced by an insulated gate with Schottky drain or source contact

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To enable to restrain short channel effect without increasing source- drain resistance by using a source and a drain which make ohmic contact with the channel and Schottky contact with a substrate. CONSTITUTION:Since the aluminum source and drain 13 make Schottky contact with the N type Si substrate 10 and ohmic contact with the formed P type channel 15, the defect of small drain current which is found in conventional Schottky source-drain MOS type semiconductor elements is not recognized, and accordingly characteristics of a MOS type semiconductor element wherein a diffused layer is used for the source and drain are obtained. The source-drain resistance can be reduced by using aluminum for the source and drain, and the Schottky channel effect is difficult to generate.

Description

【発明の詳細な説明】 本発明はIVfIlし牛尋体素子に関する。[Detailed description of the invention] The present invention relates to an IVfl body element.

MIS形半導体素子、特にIVIO3形半専体累千はj
P純な構造ケ持ち、製作が容易であることから、集積回
路に多用ちれている。従来一般に用いられているIVI
O8形半導体素子盆スケールダウン則に基ついて倣卸1
化するには、ナヤ不ル長の微細化に伴なって生じるショ
ートナヤネル効果、例えばしきい値電圧の低下等電防止
1°る心安がある。これは、基板中に形成したソースP
よひドレイン(以下ではソース・ドレインと略称する)
の拡散層深さを浅くすることにより実現さ7Lる。しか
し、ソース参トレインの拡散層を浅くするとソース・ド
レイン抵抗か増太し、ドレイン電流の低下等、素子峰性
會劣化させるという欠点がめった。
MIS type semiconductor devices, especially IVIO3 type semi-dedicated
Because it has a simple structure and is easy to manufacture, it is widely used in integrated circuits. Conventionally commonly used IVI
O8 type semiconductor device tray imitation wholesale 1 based on scale down rules
In order to achieve this, there is peace of mind that the short Nayanel effect that occurs with the miniaturization of the Naya irregular length, for example, the isoelectric reduction of the threshold voltage, can be prevented by 1°. This is the source P formed in the substrate.
Yohi drain (hereinafter abbreviated as source/drain)
This is achieved by reducing the depth of the diffusion layer of 7L. However, when the diffusion layer of the source reference layer is made shallow, the source/drain resistance increases, resulting in a decrease in drain current and other drawbacks, such as deterioration of device peak characteristics.

上記問題を解決する方法として、ソース・ドレインに金
屑または金鵜シリツーイドのショットキ接触を用いた、
いわゆるショットキソース・ドレインMO8形半導体素
子が提案されている。
As a method to solve the above problem, a Schottky contact of gold scrap or gold silitoid is used for the source and drain.
A so-called Schottky source-drain MO8 type semiconductor device has been proposed.

この方法は、ソース・ドレインに金属または金属シリサ
イドを用いることから、ソース・ドレイン抵抗を小さく
できると共に、ソース・ドレインが基板中に形成さ゛れ
ていないため、ショートチャネル効果を抑制できる。し
かし、ショットキソース・ドレインMO8形半導体素子
では第1図のnチャネルでの等価回路に示すように、ソ
ース2とチャネル5の間にショットキ障壁4が形成され
る。このため、ゲート1にオン電圧が印加された時、電
荷担体はソース2からショットキ障壁4を乗り越えてチ
ャネル5に注入されねばならない。したがって、ショッ
トキソース・ドレインMO8形半導体素子では、ソース
・ドレインに拡散層音用いチャネルに対してオーム性接
触會有するMO8形半導体素子に比ベトレイン電流が小
さいという欠点がめった。なお3はドレインを示す。
Since this method uses metal or metal silicide for the source and drain, it is possible to reduce the source and drain resistance, and since the source and drain are not formed in the substrate, the short channel effect can be suppressed. However, in the Schottky source/drain MO8 type semiconductor device, a Schottky barrier 4 is formed between the source 2 and the channel 5, as shown in the n-channel equivalent circuit of FIG. Therefore, when an on-voltage is applied to the gate 1, charge carriers must be injected from the source 2 over the Schottky barrier 4 into the channel 5. Therefore, the Schottky source/drain MO8 type semiconductor device often has the disadvantage that the train current is small compared to the MO8 type semiconductor device which has ohmic contact with the source/drain diffusion layer channel. Note that 3 indicates a drain.

本発明はチャネルに対してオーム性接触、基板に対して
ショットキ接触とするソース・ドレインを用いることを
特徴とし、その目的はソース舎ドレイン抵抗を増大させ
ることなくショートチャネル効果を抑制し、スケールダ
ウンされたtIS形半導体素子を提供するにある。
The present invention is characterized by using a source/drain having an ohmic contact with the channel and a Schottky contact with the substrate.The purpose of this invention is to suppress the short channel effect without increasing the source/drain resistance and to reduce the scale. An object of the present invention is to provide a tIS type semiconductor device.

前記の目的を達成するため、本発明eまチャネルに対し
てオーム性接触、基板に対してショットキ接触とするソ
ースおよびドレインに用いることを特徴とするMIS形
半導体素子全発明の狭口とするものである。
In order to achieve the above object, the present invention provides an MIS type semiconductor device characterized in that it is used for the source and drain with ohmic contact to the channel and Schottky contact to the substrate. It is.

次に本発明の実施例全添附図面についてh発明する。な
お実施例は一つの例示であって、本発明の精神を逸脱し
ない範囲内で、柚々の変更あるいは改良を行いうろこと
は1うまでもない。
Next, embodiments of the present invention will be described with reference to all attached drawings. Note that the embodiments are merely illustrative, and it goes without saying that various changes and improvements may be made without departing from the spirit of the present invention.

前述したように、ショットキソースドレインMO8形半
導体素子は、ソース・ドレイン抵抗を小さくできると共
にショートチャネル効果が抑制できるので、スケールダ
ウンしたMO8形半導体素子に適した構造である。しか
し、ソースとチャネルの間にショットキ障壁が存在する
ため、ドレイン電流が小さいという欠点がめる。
As described above, the Schottky source-drain MO8 type semiconductor device is suitable for a scaled-down MO8 type semiconductor device because the source/drain resistance can be reduced and the short channel effect can be suppressed. However, since there is a Schottky barrier between the source and the channel, there is a drawback that the drain current is small.

本発明の要点は上記のショットキソース・ドレインte
l OS形十4I体素子の利点を保持し、欠点でア4)
ソースとチャネルの間のショットキ障壁倭取り除くため
、ソースとチャネルヶオーム性接触としたことにるる。
The main point of the present invention is the above-mentioned Schottky sauce drain.
l Maintains the advantages of the OS type 14I body element, but eliminates the disadvantages of A4)
In order to eliminate the Schottky barrier between the source and the channel, ohmic contact is made between the source and the channel.

以1、実施例により成用する。The following 1 is accomplished based on the examples.

〔実施?l11〕 第2図?−1、本発明の一実施例ケ示すものであって、
pチャネルのivt OS形半導体素子の−1面を示す
。図において、10は不純物鋲度2 x lo” /副
3のn形シリコン基板、llは二酸化シリコンの素子分
離、12は多結晶シリコンのケート、13はアルミニウ
ムのソース拳ドレイン、14は二酸化シリコンのケート
絶縁物お・よびソース嗜ドレイン13とケート12の分
離である。15はp形のチャ不ルヲホす。に4のアルミ
ニウムのソース・ドレインv;J1、n形シリコン基板
10に対してはショットキ接触となシ、15の部分に形
りにされるp形のチャネルに対し1はメーム性接触とな
るため、従来のショットキソース・ドレインyhos形
半m体銅矛に児られるドレイン電流が小δいという欠点
は見とめられず、ソース・ドレインに拡散層を用いたM
O8形十形半導体の特性か有られた。一方、ソース・ド
レイン■(抗はソース・ドレインにアルミニウム音用い
たことから小芒くできる。塘た、ショートテヤイ・ル効
釆も生じにくいことか判かり、本発明の方法かイ1幼l
ことが確認できた。
〔implementation? l11] Figure 2? -1. One embodiment of the present invention is shown,
The -1 plane of a p-channel ivt OS type semiconductor device is shown. In the figure, 10 is an n-type silicon substrate with an impurity concentration of 2 x lo" / sub-3, 11 is a silicon dioxide element isolation, 12 is a polycrystalline silicon gate, 13 is an aluminum source and drain, and 14 is a silicon dioxide silicon substrate. The gate insulator and the separation of the source/drain 13 and gate 12 are shown in FIG. However, since the p-type channel formed in the part 15 becomes a memetic contact, the drain current generated in the conventional Schottky source drain yhos half-m copper spear is small δ. No drawbacks were observed, and M using diffusion layers for the source and drain
It has the characteristics of an O8 type 10 type semiconductor. On the other hand, the source/drain resistor can be made small because aluminum is used for the source/drain.It is clear that the short-circuit effect is also less likely to occur, and the method of the present invention is
This was confirmed.

〔実施例2〕 第3図は本発明の他の実施例紫ボすものであって、nチ
ャネルのM OS形半導体素子の断四會示す6図に2い
て20は不純物も(度2刈0” / ttn”のp形シ
リコン基板、21は二酸化シリコンの銅矛分離、22は
多結晶シリコンのケート、23はモリブデンシリサイド
のソース・トレイン、24はヒ素のイオンナ]込魯で形
成したn形層、25はアルミニウムの配線、26は二酸
化シリコンのケート絶縁物υ」、ひソース・ドレイン2
3とゲート22の分離である。n形)5721はソース
・トレイン23が零バイアス時において、完全に窒乏化
づ一°るよう、凝度寂よひ深さが決められで↓・り、p
形シリコンノ、1、lli V(一対うるショットキ1
M1(壁全J−1/j’ )  n71’−チャイ・ル
V(Zり・」1−るショットキ障壁全下ける。
[Embodiment 2] Fig. 3 shows another embodiment of the present invention shown in purple. 0"/ttn" p-type silicon substrate, 21 is silicon dioxide copper separation, 22 is polycrystalline silicon gate, 23 is molybdenum silicide source train, 24 is n-type formed with arsenic ionizer. layer, 25 is aluminum wiring, 26 is silicon dioxide gate insulator υ', source/drain 2
3 and gate 22. n type) 5721, the concentration depth is determined so that the source train 23 is completely depleted at zero bias.
Shape Silicono, 1, lli V (pair Uru Schottky 1
M1 (all walls J-1/j') n71'-Chai Le V (Z-ri-'1-') Schottky barrier all lowered.

したかつて、Jシリブナンシリサイトのソース噂ドレイ
ン2二3eコ、pJレシリコン基板20に対してショッ
トキ接触となり、27の部分Vこ形成さ扛るn形のナヤ
イ・ルに対しでスーム性接触となるため、従来のンヨッ
トキソース・ドレイン■10S形半尋体系子に兄ら7’
Lるドレイン7(L流か小恥いといり欠点txt、児と
めらrl、ず、ソース・ドレインに拡散胎を月1いた1
1/10S形半導体素子の特41が得られた。−力、ソ
ース・ドレイ71−FL J九〇」ソース・ドレインi
/(1%リブアンシリサイド′忙用いグにとから小さく
でさる。寸だ、ショートチャネル効果も生じにくいこと
が刊かシ、+、光明の力泳が自効なことかイ1f(i 
m−Cさた。
Once, the source rumored drain 223e of J silicon silicite was in Schottky contact with the pJ resilicon substrate 20, and a smooth contact was made with the n-type Nayole forming the part V of 27. In order to become
L drain 7 (L style or a little shameful flaw txt, child and mera rl, zu, I had a spread womb in the source and drain once a month 1
A 1/10S type semiconductor device, Part 41, was obtained. -Power, Source Dray 71-FL J90” Source Drain i
/(1% Libunsilicide'It's small enough for busy people. It's obvious that the short channel effect is not likely to occur. +, Komei's force swimming is self-effective.
m-C sata.

上記の実施例1ではソース・ドレインにアルミニウムT
h Jilいfcが、アルミニ3ツムとシリコンの合金
々j1、アルごニツム合金か用いつる。−刀、1)チャ
ネル(1) rvt LJ S )i;牛尋体素ゴに対
し、 −Cr:J5、アンチモンわるい&Jアンナモン
と蛍の合金等のアンチモン合金か用いンる。
In the above embodiment 1, aluminum T is used for the source and drain.
h Jil fc uses alloys of aluminum and silicon, and aluminum alloys. - Sword, 1) Channel (1) rvt LJ S ) i; For Ushijintai Sogo, - Cr: J5, antimony alloy such as antimony wari & Jannamon and firefly alloy is used.

」二M1.’iの尖7/i!I抄り2ではソース・トレ
インe(七すブプ°ンシリザイド會用いlこが、チタン
シリザイド、ニッケルシリーリイド等の−j&的な金稙
シリザイド、−またはそリプブン、チタン、ニッケル等
の御飯的な全組か用いうる。njしJfgiの形成にヒ
素のイオン打ち込みを用いたが、リン、アンチモンのイ
オン刊込みか用いつる。また、気相拡散等の拡散法介・
用いることも一〇きる。−ツバpチャネルのM OS形
半縛J体素づ−に刈してはn形層のかわしにp形層電相
いI’L、 ?、Iよく、ホウ素。
”2M1. 'i no cusp 7/i! In Section 2, the source train e (seven silicides), titanium silicide, nickel silicide, etc. Although arsenic ion implantation was used to form nj and jfgi, phosphorus and antimony ion implantation could also be used.Also, diffusion methods such as gas phase diffusion,
It can be used ten times. - The p-channel MOS type half-bound J body is cut in half, and the n-type layer is replaced by the p-type layer I'L,? , I well, boron.

カリウム等のイオン打込みか用いう/)。−りだ、気相
拡散等の仏散法が用い9る。
Use ion implantation such as potassium. - Buddha-san methods such as Rida and vapor phase diffusion are used9.

本発明は、しさい仙電圧調」シー寺の/Cめ、チャイノ
1の形成さ扛る領域に不*Iii物虻イオン打込外した
、いわゆるナヤイ・ルドーノNlo s形半zjl、体
系子にも同4求に通用tさ4)。
The present invention is based on the so-called Nayai Rudno Nlo s-shaped half-zjl, which is the so-called Nayai Rudno Nlo s-shaped half zjl, in which the non-*III ions are implanted into the area where the chino 1 is formed. It is also valid for the same question 4).

取手簡明しt(ように、チャネルに幻り、、 −(: 
*−ム祉猛触、基板に対t7−(ショラミ゛キ払触とな
るソース−ドレイン會ハ」いているので、従来のショッ
トキソース祷ドレインI’+1 OS形半専体素子に特
有のトレイン篭ωtか小さいという欠点會生じることか
くソース・ドレイン抵抗を小3くでさ4)と共VC1シ
ョートナヤイ・ル効朱−e +p(1制できる4・す点
かめる。aらに、本発明のMUS形半導体系すをCIV
IO8情成で用いgは、ソース−ドレインと基板との接
触がショットキ接触であることから、基4μに形h)j
、さ扛る寄生バイポーラへの少数キャリア注入か抑制さ
れる/こめラッチアップか用J匍jされるオリ点がある
Toride simplification t (like, illusion in the channel,, -(:
* Since there is a t7- (source-drain meeting that causes severe contact with the board), the conventional Schottky source drain I'+1 train cage peculiar to the OS type semi-dedicated element Therefore, the source/drain resistance is reduced to a small value (4), and the effect of the VC1 short circuit is also small. MUS type semiconductor system CIV
The g used in the IO8 configuration has the form h)j in the base 4μ since the contact between the source-drain and the substrate is a Schottky contact.
, there is an origin point where minority carrier injection into the parasitic bipolar is suppressed/latch-up is suppressed.

以上の祝す」でりIVl(JS形牛尋体系予の4に一自
及したか、MOS形にととlらずケート絶λぺ狭として
窒化シリコン膜など會用い/こ1■Is形半尋体素士全
触&0わ1こ9本発明を襲用しうるξとは自明でりる。
I would like to congratulate you on the above IVl (JS type gyro system design 4). It is self-evident that ξ can be applied to the present invention.

4、区間の1ハ1年な成力 第1図Qよソース・ドレインにショットキ接触を用い7
CnチャネルのIVI U S形午導体素子の等側回路
、第2図は本元印」の−実施例である牛4俸累子のII
/l−1111図、第3図をユ本発明の他の実施例であ
る半導体素子の)!jT ’I川用を示す。
4. Section 1 is 1-year formation power Figure 1 Q Using Schottky contact for source and drain 7
Cn channel IVI U S-shaped conductor element equilateral circuit, Fig. 2 is an example of the original seal II
/l-1111 and FIG. 3 of a semiconductor device which is another embodiment of the present invention)! jT 'I River use is shown.

■・・・・・・ケート、2・・・・・・ソース、3・・
・・・・ドレイン、4・・・・・・ショットキ障壁、5
・・・・・チャネル、IO・・・・・・シリコン基板、
11・・・・・・系子分丙13.12・・・・・・ケー
ト、l:r・・・・ソース−トレイン、14・・・・ゲ
ートe 様?/Iνよびソース・ド1/インとケートの
分’41’i X16・・・・・・チャネル、20・・
・・・・ンリコン基4R121・・・・・・素子分離、
22・・・・・・ケー1−123・・・・・・ソース・
ドレイン、24・・・・・・n ylジノ【I、25・
・・・・h己かR126・・・・・・ゲート絶縁物およ
びソース・ドレインとゲートの分離、27・・・・・・
チャネル 特r「出願人 H本電10′屯砧公社
■...Kate, 2...Sauce, 3...
...Drain, 4...Schottky barrier, 5
...Channel, IO...Silicon substrate,
11... System molecule C 13. 12... Kate, l:r... Source-train, 14... Gate e? /Iν and source do 1/in and Kate's minute '41'i X16... Channel, 20...
...Nricon group 4R121...Element separation,
22・・・・・・K1-123・・・・・・Source・
Drain, 24...n yl Jino [I, 25.
....R126...Gate insulator and separation of source/drain and gate, 27...
Channel special r "Applicant H Honden 10' Tunkei Public Corporation

Claims (1)

【特許請求の範囲】[Claims] (1)チャネルに対し−Cオーム性接触、基板に対し、
てショットキ接触とするソースおよびドレイン全相いる
こと全特徴とするパノiIS形半導体素子。 (2j  pチャネルに対しては、アルミニウムあるい
はアルミニウム合金kX”チャネルに対しては、アンチ
モンめるいQまアンナモン合金をソース2よびドレイン
に用い、チャネルに対し1オーム性接触、基板に対し1
シヨツトキ接触とすることを特徴とする特ff論求の範
囲第1項記載のMIs形半導体累子。 (32ソース近傍2よひドレイン近傍にpチャネルに対
してflptk層、nチャネルに対してはn形層を形成
し、チャネルに対してメーム性接触、基板に対してショ
ットキ政触とすることを特徴とする%FF紬求0範囲第
1項記載のMIS形十専体素子。
(1) -C ohmic contact to the channel, to the substrate,
A pano-iIS type semiconductor device characterized in that all phases of the source and drain are made into Schottky contacts. (For the 2j p-channel, aluminum or aluminum alloy k
The MIs type semiconductor resistor according to item 1 of the scope of the special ff discussion, characterized in that it has a shot contact. (32) Form a flptk layer for a p-channel and an n-type layer for an n-channel near the source and 2-drain near the drain, and make memetic contact with the channel and Schottky contact with the substrate. The MIS type decadal element as described in item 1, characterized by %FF 0 range.
JP15681682A 1982-09-10 1982-09-10 Mis type semiconductor element Pending JPS5947767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15681682A JPS5947767A (en) 1982-09-10 1982-09-10 Mis type semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15681682A JPS5947767A (en) 1982-09-10 1982-09-10 Mis type semiconductor element

Publications (1)

Publication Number Publication Date
JPS5947767A true JPS5947767A (en) 1984-03-17

Family

ID=15635957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15681682A Pending JPS5947767A (en) 1982-09-10 1982-09-10 Mis type semiconductor element

Country Status (1)

Country Link
JP (1) JPS5947767A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59181669A (en) * 1983-03-31 1984-10-16 Toshiba Corp Mos type semiconductor device
JPS61129863A (en) * 1984-11-28 1986-06-17 Hitachi Ltd Semiconductor device and manufacture thereof
JP2007049182A (en) * 1999-12-16 2007-02-22 Spinnaker Semiconductor Inc System and method of mosfet device
US7358550B2 (en) 2004-03-26 2008-04-15 Kabushiki Kaisha Toshiba Field effect transistor
US7589381B2 (en) 2003-09-05 2009-09-15 Kabushiki Kaisha Toshiba Field effect transistor and manufacturing method thereof
JP2010045394A (en) * 2003-09-05 2010-02-25 Toshiba Corp Field-effect transistor and method of manufacturing the same
US9140365B1 (en) 2012-09-11 2015-09-22 Engineered Seal Products, Inc. Outer seal
US9423030B2 (en) 2007-04-27 2016-08-23 Deere & Company Outer pin seal
US20160377180A1 (en) * 2015-06-24 2016-12-29 Engineered Seal Products, Inc. Double sided outer seal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5766671A (en) * 1980-10-09 1982-04-22 Fujitsu Ltd Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5766671A (en) * 1980-10-09 1982-04-22 Fujitsu Ltd Semiconductor device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59181669A (en) * 1983-03-31 1984-10-16 Toshiba Corp Mos type semiconductor device
JPH055184B2 (en) * 1983-03-31 1993-01-21 Tokyo Shibaura Electric Co
JPS61129863A (en) * 1984-11-28 1986-06-17 Hitachi Ltd Semiconductor device and manufacture thereof
JP2007049182A (en) * 1999-12-16 2007-02-22 Spinnaker Semiconductor Inc System and method of mosfet device
JP2010045394A (en) * 2003-09-05 2010-02-25 Toshiba Corp Field-effect transistor and method of manufacturing the same
US7589381B2 (en) 2003-09-05 2009-09-15 Kabushiki Kaisha Toshiba Field effect transistor and manufacturing method thereof
US7479674B2 (en) 2004-03-26 2009-01-20 Kabushiki Kaisha Toshiba Field effect transistor
CN100446271C (en) * 2004-03-26 2008-12-24 株式会社东芝 Field effect transistor
US7358550B2 (en) 2004-03-26 2008-04-15 Kabushiki Kaisha Toshiba Field effect transistor
US9423030B2 (en) 2007-04-27 2016-08-23 Deere & Company Outer pin seal
US9140365B1 (en) 2012-09-11 2015-09-22 Engineered Seal Products, Inc. Outer seal
US9879783B1 (en) 2012-09-11 2018-01-30 Engineered Seal Products, Inc. Outer seal
US20160377180A1 (en) * 2015-06-24 2016-12-29 Engineered Seal Products, Inc. Double sided outer seal
US10520094B2 (en) 2015-06-24 2019-12-31 Engineered Seal Products, Inc. Double sided outer seal

Similar Documents

Publication Publication Date Title
Snoeys et al. A new NMOS layout structure for radiation tolerance
US4120707A (en) Process of fabricating junction isolated IGFET and bipolar transistor integrated circuit by diffusion
US9041156B2 (en) Semiconductor reference voltage generating device
JPS5947767A (en) Mis type semiconductor element
KR910007163A (en) Integrated circuit device and manufacturing method thereof
KR840005927A (en) Semiconductor integrated circuit device and manufacturing method thereof
JPS57153469A (en) Insulated gate type field effect transistor
JPS5921170B2 (en) MOS type semiconductor device
JPH0360149A (en) Vdmos/logic integrated circuit composed of diode
JPH0582067B2 (en)
JPH0656890B2 (en) Vertical conductivity type MOS-FET
JP2002190575A (en) Semiconductor device and manufacturing method thereof
EP0921619A3 (en) A power source circuit of a semiconductor integrated circuit
JPS6043027B2 (en) Method for manufacturing integrated circuit device using complementary field effect transistors
JPS6020571A (en) Semiconductor device
JPH05206387A (en) Semiconductor integrated circuit
RU2298856C2 (en) Method for manufacturing silicon-on-sapphire mis transistor
JPH07202010A (en) Dual gate type cmos semiconductor device
JPH0812917B2 (en) Method of operating MIS transistor and MIS transistor
JPS5864064A (en) Manufacture of semiconductor device
JPS6212665B2 (en)
JPS62104068A (en) Semiconductor integrated circuit device
JPH0485956A (en) Semiconductor bidirectional switch
JPS5896766A (en) Semiconductor device
JPS5812359A (en) Semiconductor device