JPS5947733A - Plasma processing apparatus - Google Patents

Plasma processing apparatus

Info

Publication number
JPS5947733A
JPS5947733A JP15812982A JP15812982A JPS5947733A JP S5947733 A JPS5947733 A JP S5947733A JP 15812982 A JP15812982 A JP 15812982A JP 15812982 A JP15812982 A JP 15812982A JP S5947733 A JPS5947733 A JP S5947733A
Authority
JP
Japan
Prior art keywords
plasma
microwave
discharge
sample
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15812982A
Other languages
Japanese (ja)
Other versions
JPH0522378B2 (en
Inventor
Keizo Suzuki
敬三 鈴木
Takeshi Ninomiya
健 二宮
Shigeru Nishimatsu
西松 茂
Sadayuki Okudaira
奥平 定之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15812982A priority Critical patent/JPS5947733A/en
Publication of JPS5947733A publication Critical patent/JPS5947733A/en
Publication of JPH0522378B2 publication Critical patent/JPH0522378B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32357Generation remote from the workpiece, e.g. down-stream

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To variably control in wide range parameters of plasma for plasma processing while a sample temperature is kept low, by providing an energy modulation means which modulates amplitude of energy to be supplied to a plasma generating means. CONSTITUTION:After a vacuum chamber consisting of a reaction chamber 1 and a discharge chamber 2 is exhausted, a discharge gas G is supplied to the vacuum chamber through a needle valve 3. A microwave is propagated through a waveguide 7 and is then sent to the inside of discharge tube 8. A power modulator 12 is connected between a microwave generator 6 and a power supply 11. A magnetic field is formed in a part of region within the discharge chamber 2 and reaction chamber 1 by an electromagnet 9 and a permanent magnet 10. When a microwave field is supplied to the discharge chamber 2 under such condition, the microwave discharge having magnetic field is generated and thereby plasma is formed. The active ion and neutral radical formed in such plasma are sent to the surface of sample 4 on the sample board 5 and etching is here carried out. The high density, high electron temperature plasma and low density, low electron temperature plasma are periodrically generated in the discharge chamber 2.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はプラズマを用いて試料表面の処理を行なうプラ
ズマプロセス装置の改良に係り、特に、この棹の装置に
おいてエツチング、デポジションを行なうだめのプラズ
マの特性を広範囲に可変、制御可能にする手段に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to improvement of a plasma processing apparatus for treating the surface of a sample using plasma. The present invention relates to a means for making it possible to vary and control the characteristics of a wide range of properties.

〔従来技術〕[Prior art]

第1図は、従来のプラズマプロセス装置の−構成例を示
したものであり、これは有磁場マイクロ波プラズマエツ
チング装置(J(,5uzuki et at。
FIG. 1 shows an example of the configuration of a conventional plasma processing apparatus, which is a magnetic field microwave plasma etching apparatus (J(, 5uzuki et at.

:JJAP  16 (1977)1979 )とj山
林しているものである。同図において、反応室工および
放電室2からなる真空室が排気系14によって真空(約
I Q = ’l’orr )に排気された後、ニード
ルパルプ3を介して放電ガスGが所定の圧力(101〜
10−I Torr )になるように真空室中に導入さ
れる。
:JJAP 16 (1977) 1979). In the figure, after a vacuum chamber consisting of a reaction chamber and a discharge chamber 2 is evacuated to a vacuum (approximately IQ = 'l'orr) by an exhaust system 14, a discharge gas G is pumped through a needle pulp 3 to a predetermined pressure. (101~
10-I Torr) into the vacuum chamber.

マイクロ波発振器(通常、マグネトロン)6で発生した
マイクロ波(周波数が1〜l0GH2,通常2.45G
H2)は導波管7を伝播して放電室2を形成する放電管
8の内部に導入される。この放電管8はマイクロ波を通
過させるために絶縁物(通常、石英またはアルミナ)で
作られている。
Microwaves (frequency: 1 to 10GH2, usually 2.45G) generated by a microwave oscillator (usually a magnetron) 6
H2) propagates through the waveguide 7 and is introduced into the discharge tube 8 forming the discharge chamber 2. This discharge tube 8 is made of an insulator (usually quartz or alumina) to allow microwaves to pass through.

11はマイクロ波発振器6を動作させるための電源であ
る。電磁石9と永久磁石10とによシ放電室2と反応室
1の一部とに磁場が形成される。この状態で放電室2に
マイクロ波発振器6にエシマ・fクロ波電界が供給され
ると、磁場とマイクロ波電界との相剰作用によシ有磁場
マイクロ波放電が発生し、プラズマが形成される。
11 is a power source for operating the microwave oscillator 6; A magnetic field is formed in the discharge chamber 2 and a part of the reaction chamber 1 by the electromagnet 9 and the permanent magnet 10 . In this state, when an eshima f chromatic electric field is supplied to the microwave oscillator 6 in the discharge chamber 2, a magnetic field microwave discharge is generated due to the mutual interaction between the magnetic field and the microwave electric field, and a plasma is formed. Ru.

プラズマ中で形成された活性なイオン、中性ラジカルが
試料5上に置かれた試料4の表面に到達してエツチング
が行なわれる。例えば、SIウェーハからなる試料4を
CF 4カスでエツチングする場合には、CF4分子が
プラズマ中で分解して出来るF” 、CFn” (n=
1〜3)等のイオンや、F。
Active ions and neutral radicals formed in the plasma reach the surface of the sample 4 placed on the sample 5, and etching is performed. For example, when etching sample 4 made of an SI wafer with CF4 scum, CF4 molecules are decomposed in the plasma to form F", CFn" (n=
1 to 3), and F.

CFn(n=1〜3)等の中性ラジカルがBi試刺4の
・111 表面に入射し、反応する。その結果、揮発%の物質5j
F4を形成してS1原子を8’試料4の表面から奪い去
ることによってエツチングが実行される。半導体素子の
絶縁材料として辿常用いられる5f02 もCF4ガス
の放電中で同様にエツチングされる。但し、Siのエツ
チングに寄与する粒子は主にF”、Fであp、5iOz
のエツチングに寄与する粒子は主にCpn”(11=l
〜3)である。
Neutral radicals such as CFn (n=1 to 3) enter the .111 surface of the Bi test stick 4 and react. As a result, the volatile % substance 5j
Etching is performed by forming F4 and stripping S1 atoms from the surface of the 8' sample 4. 5f02, which is commonly used as an insulating material for semiconductor devices, is similarly etched during the discharge of CF4 gas. However, the particles that contribute to Si etching are mainly F'', Fp, 5iOz
The particles that contribute to etching are mainly Cpn'' (11=l
~3).

また、F” 、C@Fn” (n=1〜3)等のイオン
によシエッチングが行なわれる場合は第2図中)に示し
たようにエツチングは試料4の表向に対して垂直に進行
し、マスク15の通シのエツチングが行なわれる(非等
方エツチング)。一方、F、 CFn(n=1〜3)等
の中性ラジカルによシエッチングが行なわれる場合は第
2図(a)に示したようにエツチングの進行方向は等方
向となってマスク4の下部にサイドエツチング現象が発
生する(等方エツチング)。すなわち、エツチングを行
なう粒子がイオンであるのか、中性ラジカルであるのか
、または両者の割合がどの程度であるのかによってエツ
チングの断面形状が異なってくる。
In addition, when etching is performed using ions such as F'' and C@Fn'' (n=1 to 3), the etching is perpendicular to the surface of sample 4, as shown in Figure 2). As the etching progresses, etching is performed through the mask 15 (anisotropic etching). On the other hand, when etching is performed using neutral radicals such as F and CFn (n=1 to 3), the etching progresses in the same direction as shown in FIG. A side etching phenomenon occurs at the bottom (isotropic etching). That is, the cross-sectional shape of the etching differs depending on whether the particles to be etched are ions or neutral radicals, or the ratio of the two.

実際の半導体素子の製造工程においては、(1)  S
 ’ HS iOx等の被エツチング材料のエツチング
速度比(選択比)の広範囲な制御、および (2)エツチングの断面形状の広範囲な制御が望まれる
。このような制御を行なうには、プラズマ中で形成され
、試料4の表面に入射するイオンと中性ラジカルとの比
やイオン種、中性ラジカル種を広範囲に制御することが
必要となる。その制御には、イオンや中性ラジカルを形
成するプラズマのパラメータ(電子温度やプラズマ密度
)を広範囲に制御することが必要となる。このパラメー
タの制御のためにはプラズマ発生に用いる電力、例えば
、マイクロ波電力、を広範囲に制御することが必要とな
る。
In the actual manufacturing process of semiconductor devices, (1) S
' A wide range of control over the etching rate ratio (selectivity) of the material to be etched, such as HS iOx, and (2) a wide range of control over the cross-sectional shape of the etching are desired. In order to carry out such control, it is necessary to control over a wide range the ratio of ions to neutral radicals formed in the plasma and incident on the surface of the sample 4, the ion species, and the neutral radical species. To control this, it is necessary to control over a wide range of plasma parameters (electron temperature and plasma density) that form ions and neutral radicals. In order to control this parameter, it is necessary to control the power used for plasma generation, for example, microwave power, over a wide range.

しかしながら、試料4の温度を低く (100C以下)
保つことが実用的に望まれるため、従来の装置ではプラ
ズマ発生電力を十分に大きくすることができないという
問題点があった。
However, the temperature of sample 4 was lowered (below 100C).
Since it is practically desired to maintain the plasma power, there is a problem in that the plasma generation power cannot be sufficiently increased in conventional devices.

以上は、プラズマエツチング装置についてのものである
が、プラズマデポジション装?#等の他のプラズマプロ
セス装置においてもイオンと中性ラジカルとの比やイオ
ン種、中性ラジカル種を試料の温度を低く保ったままで
広範囲に制御することが望まれていることは同様である
The above is about plasma etching equipment, but what about plasma deposition equipment? Similarly, in other plasma processing equipment such as #, it is desired to control the ratio of ions to neutral radicals, ion species, and neutral radical species over a wide range while keeping the sample temperature low. .

〔発明の目的〕[Purpose of the invention]

したがって、本発明の目的は、試料温度を低く保ったま
までプラズマプロセス用プラズマのパラメータを広範囲
に可変制御可能にするプラズマプロセス装置を提供する
ことにある。
Accordingly, an object of the present invention is to provide a plasma processing apparatus that allows the parameters of plasma for plasma processing to be variably controlled over a wide range while keeping the sample temperature low.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために本発明においては、真空室に
放電ガスを導入するガス導入手段と、真空室中にて放電
ガスのプラズマを形成するプラズマ形成手段と、真空室
中においてプラズマ中の活性粒子を入射させることによ
って表面処理を行なうべき試料を載置する試料台と、プ
ラズマが強プラズマ状態と弱プラズマまだはプラズマ消
滅状態とを周期的に形成するようにプラズマ形成手段に
供給するエネルギーの大きさを変調するエネルギー変調
手段と罠よってプラズマプロセス装置e[成したことを
特徴としている。
In order to achieve the above object, the present invention includes a gas introducing means for introducing a discharge gas into a vacuum chamber, a plasma forming means for forming a plasma of the discharge gas in the vacuum chamber, and a plasma forming means for forming a discharge gas plasma in the vacuum chamber. A sample stage on which a sample to be surface-treated is placed by injecting particles, and energy supplied to the plasma forming means so that the plasma periodically forms a strong plasma state, a weak plasma state, and a plasma extinction state. The plasma processing apparatus e is characterized by an energy modulation means for modulating the size and a trap.

かかる本発明の特徴的な構成1cjって高密度、高電子
温度のプラズマ(強プラズマ状態)と低密度、低電子温
度のプラズマ(弱プラズマ状態またはプラズマ消滅状態
)とを周期的に発生できるようになるため試料の温度を
低く保ったままで高密度、高電子m度のプラズマを容易
に得ることが可能となる。その上、プラズマ発生状態と
プラズマ消滅状態とでは発生するイオン、中性ラジカル
の量及びその種類を異ならせることができるためエネル
ギー変調時のデュWティを変えることによって試料の表
面処理に寄与するイオンと中性ラジカルとの比や、イオ
ン種、中性ラジカル捕ヲ広範囲に制御可能となる。
The characteristic configuration 1cj of the present invention is such that plasma with high density and high electron temperature (strong plasma state) and plasma with low density and low electron temperature (weak plasma state or plasma extinction state) can be generated periodically. Therefore, it is possible to easily obtain a high-density, high-electron plasma while keeping the temperature of the sample low. Furthermore, since the amount and type of generated ions and neutral radicals can be made different between the plasma generation state and the plasma extinction state, by changing the duty W during energy modulation, ions that contribute to the surface treatment of the sample can be made different. The ratio of ions to neutral radicals, ion species, and neutral radical capture can be controlled over a wide range.

その結果、高性能で、かつ、応用軸回の広いプラズマプ
ロセス4−¥置が提供できるようになった。
As a result, it has become possible to provide a high-performance plasma process with a wide range of applications.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図を用いて詳訓に説明する。 Hereinafter, the present invention will be explained in detail using figures.

第3図は本発明によるマイクロ波プラズマプロセス装置
の基本構成を示したものである。同図において、反応室
1及び放電室2からなる真空室が排気系14によって約
10−’Torrに排気された後、ニードルパルプ3を
介して放電ガスGが所定の圧力(10−5〜10−IT
Orr )になるように真空室中に導入される。マグネ
トロンのようなマイクロ波発振器6で発生した周波数が
2.45GH2のマイクロ波は導波管7を伝播して放電
室2を形成する放電管8の内部に導入される。この放′
醒庁8はマイクロ波を通過させるため石英又はアルミナ
のような絶縁物からつくられている。マイクロ波発振器
6とマイクロ波発振器6を駆動するための電源11との
間には電力変調器12が接続されている。
FIG. 3 shows the basic configuration of a microwave plasma processing apparatus according to the present invention. In the figure, after a vacuum chamber consisting of a reaction chamber 1 and a discharge chamber 2 is evacuated to approximately 10 Torr by an exhaust system 14, a discharge gas G is pumped through a needle pulp 3 to a predetermined pressure (10-5 to 10 Torr). -IT
Orr) is introduced into the vacuum chamber. Microwaves having a frequency of 2.45 GH2 generated by a microwave oscillator 6 such as a magnetron propagate through a waveguide 7 and are introduced into a discharge tube 8 forming a discharge chamber 2 . This release
The chamber 8 is made of an insulating material such as quartz or alumina to allow microwaves to pass through. A power modulator 12 is connected between the microwave oscillator 6 and a power source 11 for driving the microwave oscillator 6.

電磁石9と永久磁石10とに工υ放電室2と反応室工の
一部領域とに磁場が形成される。この状態で放電室2に
マイクロ波発振器6によシマイクロ波電界が供給される
と、磁場とマイクロ波電界との相剰作用により有磁場マ
イクロ波放電が発生し、プラズマが形成される。このプ
ラズマ中で形成された活性なイオンおよび中性ラジカル
が試料台5上に置かれた試料4の表面に到達してエツチ
ングが行なわれる。
A magnetic field is formed between the electromagnet 9 and the permanent magnet 10 in the discharge chamber 2 and a partial region of the reaction chamber. When a microwave electric field is supplied to the discharge chamber 2 by the microwave oscillator 6 in this state, a magnetic field microwave discharge is generated due to the mutual action of the magnetic field and the microwave electric field, and plasma is formed. Active ions and neutral radicals formed in this plasma reach the surface of the sample 4 placed on the sample stage 5, and etching is performed.

さて、本実施例と第1図の従来例との異なる点は、マイ
クロ波発振器6とマイクロ波発振器6の駆動用電源11
との間に電力変調器12を挿入した点である。電力変調
器12は、たとえばマイクロ波発振器6のエミッション
電流f:3極真空管で制御することによって容易に実現
できる。これに、lニジ、マイクロ波出力を変調または
チョップすることが可能になる。この結果、放′亀室2
には高密度、高電子温度のプラズマと低密度、低電子温
度のプラズマとが周期的に発生する。表現を変えると、
強プラズマ状態と弱プラズマ状態(またはプラズマ消滅
状態)とが周期的に放電室2に現われるととKなる。放
電室2に供給するマイクロ波電力の平均値、つまり、デ
ユティを一定にしておけば、試料4の温度を上げること
な〈従来装置では得られなかった高密度、高電子温度プ
ラズマを周期的に得ることができる。高密度、高電子温
度プラズマ(強プラズマ状態)では試料4の表面に入射
するイオン量を中性ラジカル量に比べ極めて大きくする
ことができる。一方、低密度、低電子温度プラズマ(弱
プラズマ状態)またはプラズマ消滅状態では試料4の表
面に入射する粒子で表面処理に寄与するのは中性ラジカ
ルが主になる。また、高密度、高電子温度プラズマ中と
低密度、低電子温度プラズマ中とでは発生するイオン種
、中性ラジカル種は異なることになる。
Now, the difference between this embodiment and the conventional example shown in FIG. 1 is that the microwave oscillator 6 and the driving power supply 11
This is the point where the power modulator 12 is inserted between the two. The power modulator 12 can be easily realized, for example, by controlling the emission current f of the microwave oscillator 6 using a triode vacuum tube. Additionally, it is possible to modulate or chop the microwave output. As a result, the release turtle room 2
A high-density, high-electron-temperature plasma and a low-density, low-electron-temperature plasma are periodically generated. If you change the expression,
When a strong plasma state and a weak plasma state (or plasma extinction state) appear periodically in the discharge chamber 2, K is obtained. By keeping the average value of the microwave power supplied to the discharge chamber 2, that is, the duty, constant, the temperature of the sample 4 can be kept constant. Obtainable. In high-density, high-electron-temperature plasma (strong plasma state), the amount of ions incident on the surface of the sample 4 can be made extremely large compared to the amount of neutral radicals. On the other hand, in a low-density, low-electron-temperature plasma (weak plasma state) or in a plasma extinction state, neutral radicals are the main particles incident on the surface of the sample 4 that contribute to surface treatment. Further, the ion species and neutral radical species generated in a high-density, high-electron-temperature plasma are different from those in a low-density, low-electron-temperature plasma.

したがって、電力変調のデユティや高出力時と低出力時
の出力比を変えることによl)表面処理に寄与するイオ
ンと中性ラジカルとの比や、イオン種、中性ラジカルイ
1を広範囲に制御することが可能となる。
Therefore, by changing the duty of power modulation and the output ratio between high output and low output, l) the ratio of ions to neutral radicals that contribute to surface treatment, ion species, and neutral radicals can be controlled over a wide range. It becomes possible to do so.

第4図は(力変調器12によってマイクロ波発振器6へ
の電力を変調した時に、放電室2に供給されるマイクロ
波電力の時間的変化を示したものである。マイクロ波電
力が最大(P、、、、)時と最低(Pffi+n)時と
の時間間隔をτ1.τ2としである。
FIG. 4 shows the temporal change in the microwave power supplied to the discharge chamber 2 when the power modulator 12 modulates the power to the microwave oscillator 6. , , ,) and the lowest (Pffi+n) time are assumed to be τ1.τ2.

τ0=τ1+τ2は変調の周期である。P、1!と比T
1/Toは試料4の温度を低く保つ条件から相互に関係
を持ち、 I P、n、、 −−(400Wa t tτ0 が望ましい。そして、τ1は、プラズマ中のイオンの滞
在時間(=10−5sec)より十分長く、中性ラジカ
ルの反応室1内での滞在時間(=10−’5ea)より
十分短いことが望ましい。即ち、 10−5Sec(r l(10−1g(y2が望ましい
τ0=τ1+τ2 is the modulation period. P, 1! and ratio T
1/To has a mutual relationship based on the conditions for keeping the temperature of the sample 4 low, and I P, n, -- (400W t tτ0 is desirable. And τ1 is the residence time of ions in the plasma (=10- It is desirable that the reaction time is sufficiently longer than 5 sec) and sufficiently shorter than the residence time of the neutral radical in the reaction chamber 1 (=10-'5ea). That is, 10-5 Sec (r l (10-1 g (y2) is desirable).

なお、τ2は試料(加熱)外性がほとんどなく輻射冷却
時間に相当するので、他の水冷試料手段を用いなくても
低温に保てる。
Note that since τ2 has almost no sample (heating) externality and corresponds to the radiation cooling time, the sample can be kept at a low temperature without using any other water-cooling sample means.

τ!とτ2の比率によってすよ水冷手段を必要とする場
合もある。
τ! Depending on the ratio of and τ2, water cooling means may be required.

第5図は、放電室2へ供給するマイクrl波、−1.c
力を変調するだめの別の手段を示したものである。
FIG. 5 shows the microwave RL waves supplied to the discharge chamber 2, -1. c.
This shows another means of modulating force.

つまυ、マイクロ波を伝播する導波・R7の途中に電気
的導体物質でできたシャッター13が設けられている。
A shutter 13 made of an electrically conductive material is provided in the middle of the waveguide R7 that propagates the microwave.

シャッター13を矢印で示した如く機械的に開閉するこ
とによりノj%波菅7を曲過するマイクロ波電力を変調
することができる。もちろん反射波によるマグネトロン
6の保獲はア・インレーターなどを用いて行うのが望ま
しい。
By mechanically opening and closing the shutter 13 as shown by the arrows, it is possible to modulate the microwave power passing through the noj% wave tube 7. Of course, it is desirable to capture the magnetron 6 using reflected waves using an inlater or the like.

以上は有磁場マイクロ波放電を用いたプラズマプロセス
装置について述べたが、他のプラズマプロセス装置(例
えばRF放電を用いたもの)においてもプラズマを発生
維持させるだめの電力(例えばRF電力)に変調を加え
れば同様の効果が得られることは当然である。また、放
電ガスの侃類を変えることに、!ニジエツチング作用や
デポジション作用を行なわせ得ることは云うまでもない
The above description has been about plasma processing equipment that uses magnetic field microwave discharge, but other plasma processing equipment (such as those that use RF discharge) can also modulate the power (such as RF power) required to generate and maintain plasma. It goes without saying that the same effect can be obtained by adding it. Also, to change the type of discharge gas! Needless to say, it is possible to perform a nitrogen-etching action or a deposition action.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く、本発明によって高密度、高電子温度の
プラズマ(強プラズマ状態)と低密度、低電子温度(弱
プラズマ状態)またはプラズマ消滅状態とを周期的に発
生できるようになるためデユティの上限値を抑えておけ
ば試料の温度を低く保ったままで高密度、高電子温度の
プラズマを容易に得ることができる。そのため、プラズ
マのパラメータを広範囲に可変、制御することが可能と
なる。その上、強プラズマ状態と弱プラズマ状態とでは
発生するイオン、中性ラジカルの量およびこれらの徨類
を異ならせることができるためエオルギー変調時のデユ
ティを変えることによって試料の表面処理に寄与するイ
オンと中性ラジカルとの比や、イオン種、中性ラジカル
種を広範囲に制御可能となる。
As described above, the present invention enables periodic generation of high density, high electron temperature plasma (strong plasma state) and low density, low electron temperature (weak plasma state) or plasma extinction state, thereby reducing duty. By suppressing the upper limit, it is possible to easily obtain plasma with high density and high electron temperature while keeping the temperature of the sample low. Therefore, it becomes possible to vary and control plasma parameters over a wide range. Furthermore, since the amount of ions and neutral radicals generated and these substances can be made different between the strong plasma state and the weak plasma state, by changing the duty during eorgic modulation, the ions that contribute to the surface treatment of the sample can be changed. It becomes possible to control the ratio of ions and neutral radicals, ion species, and neutral radical species over a wide range.

その結果、本発明によって高性能で、かつ、応用範囲の
広いプラズマプロセス装置が提供できるようKなった。
As a result, the present invention has made it possible to provide a plasma processing apparatus with high performance and a wide range of applications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のプラズマプロセス装置の基本構成図、第
2図はエツチング断面形状の説明図、第3図は本発明に
よるプラズマプロセス装置の基本構成図、第4図はマイ
クロ波電力の変調例を示す図、第5図は本発明の別の実
施例の部分構成図である。 1・・・反応室、2・・・放電室、3・・・ニードルバ
ルブ、4・・・試料、訃・・試料台、6・・・マイクロ
波発振器、7・・・導波管、8・・・放電管、9・・・
准磁石、10・・・永久磁石、11・・・マイクロ波発
振器用、妬動屯源、12・・・変調器、13・・・シャ
ッター、14・・・排気用、第 12 ′第22 (a)      <b) IF
Fig. 1 is a basic configuration diagram of a conventional plasma processing apparatus, Fig. 2 is an explanatory diagram of an etching cross-sectional shape, Fig. 3 is a basic configuration diagram of a plasma processing apparatus according to the present invention, and Fig. 4 is an example of modulation of microwave power. FIG. 5 is a partial configuration diagram of another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Reaction chamber, 2... Discharge chamber, 3... Needle valve, 4... Sample, body... Sample stage, 6... Microwave oscillator, 7... Waveguide, 8 ...Discharge tube, 9...
Semi-magnet, 10... Permanent magnet, 11... For microwave oscillator, Jellybeam source, 12... Modulator, 13... Shutter, 14... For exhaust, 12th 22nd ( a) <b) IF

Claims (1)

【特許請求の範囲】[Claims] 1.1空室中に放電ガスを導入するガス導入手段と、上
記真空室中にて上記放電ガスのプラズマを形成するプラ
ズマ形成手段と、上記真空室中において上記プラズマ中
の活性粒子を入射させることによって表面処理を行なう
べき試料を載置する試料台と、上記プラズマが強プラズ
マ状態と弱プラズマ状態またはプラズマ消滅状態とを周
期的に形成するように上記プラズマ形成手段に供給する
エネルギーの大きさを変調するエネルギー変調手段とを
備えてなることを特徴とするプラズマプロセス装置。 2、上記プラズマ形成手段が上記真空室中に導入された
上記放′亀ガスにマイクロ彼電界と磁界とを印加する手
段からなることを特徴とする第1項のプラズマプロセス
装置。 3、上記マイクロ波電界印加手段が上記マイクロ波を発
生する発振器と、上記発振器を駆動する電源と、発生し
た上記マイクロ波を上記真空室へ導く導波管とからなり
、かつ、上記磁界印加手段が上記真空室の外周に設けら
れf’Wt磁石からなることを特徴とする第2項のプラ
ズマプロセス装置。 4、上記エネルギー変調手段が上記電源と上記発振器と
の間に設けられた電力変8周器からなることを特徴とす
る第3項のプラズマプロセス装置。 5、上記エネルギー変調手段が上記導波管中に設けられ
たシャッタからなることを特徴とする第3項のプラズマ
プロセス装置。
1.1 A gas introducing means for introducing a discharge gas into the empty chamber, a plasma forming means for forming a plasma of the discharge gas in the vacuum chamber, and an active particle in the plasma injected into the vacuum chamber. A sample stage on which a sample to be surface-treated is placed, and the amount of energy supplied to the plasma forming means so that the plasma periodically forms a strong plasma state, a weak plasma state, or a plasma extinction state. A plasma processing apparatus characterized by comprising: energy modulation means for modulating energy. 2. The plasma processing apparatus according to item 1, wherein the plasma forming means comprises means for applying a microelectric field and a magnetic field to the released gas introduced into the vacuum chamber. 3. The microwave electric field applying means comprises an oscillator that generates the microwave, a power source that drives the oscillator, and a waveguide that guides the generated microwave to the vacuum chamber, and the magnetic field applying means 2. The plasma processing apparatus according to item 2, wherein the f'Wt magnet is provided around the outer periphery of the vacuum chamber. 4. The plasma processing apparatus according to item 3, wherein the energy modulation means comprises an eight-frequency power converter provided between the power source and the oscillator. 5. The plasma processing apparatus according to item 3, wherein the energy modulation means comprises a shutter provided in the waveguide.
JP15812982A 1982-09-13 1982-09-13 Plasma processing apparatus Granted JPS5947733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15812982A JPS5947733A (en) 1982-09-13 1982-09-13 Plasma processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15812982A JPS5947733A (en) 1982-09-13 1982-09-13 Plasma processing apparatus

Publications (2)

Publication Number Publication Date
JPS5947733A true JPS5947733A (en) 1984-03-17
JPH0522378B2 JPH0522378B2 (en) 1993-03-29

Family

ID=15664916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15812982A Granted JPS5947733A (en) 1982-09-13 1982-09-13 Plasma processing apparatus

Country Status (1)

Country Link
JP (1) JPS5947733A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61131451A (en) * 1984-11-30 1986-06-19 Canon Inc Dry etching apparatus
JPS63209129A (en) * 1987-02-25 1988-08-30 Plasma Haitetsuku:Kk Plasma treatment
JPS6473716A (en) * 1987-09-16 1989-03-20 Sumitomo Metal Ind Plasma device
JPH01214122A (en) * 1988-02-23 1989-08-28 Tel Sagami Ltd Plasma processing method
JPH01226152A (en) * 1988-03-07 1989-09-08 Hitachi Ltd Method and equipment for microwave plasma treatment
JPH0897208A (en) * 1995-08-11 1996-04-12 Nec Corp Plasma chemical vapor deposition method and its equipment and manufacture of multilayered interconnection
US6942813B2 (en) 2003-03-05 2005-09-13 Applied Materials, Inc. Method of etching magnetic and ferroelectric materials using a pulsed bias source
US7682518B2 (en) 2003-08-28 2010-03-23 Applied Materials, Inc. Process for etching a metal layer suitable for use in photomask fabrication
US7786019B2 (en) 2006-12-18 2010-08-31 Applied Materials, Inc. Multi-step photomask etching with chlorine for uniformity control
US7790334B2 (en) 2005-01-27 2010-09-07 Applied Materials, Inc. Method for photomask plasma etching using a protected mask
US7829243B2 (en) 2005-01-27 2010-11-09 Applied Materials, Inc. Method for plasma etching a chromium layer suitable for photomask fabrication
US7879510B2 (en) 2005-01-08 2011-02-01 Applied Materials, Inc. Method for quartz photomask plasma etching
JP2014135512A (en) * 2007-08-17 2014-07-24 Tokyo Electron Ltd Plasma etching method
KR20140143316A (en) 2013-06-06 2014-12-16 가부시키가이샤 히다치 하이테크놀로지즈 Plasma processing apparatus and plasma processing method
KR20220027803A (en) 2020-08-27 2022-03-08 주식회사 히타치하이테크 plasma processing unit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4983764A (en) * 1972-12-15 1974-08-12
JPS50128238A (en) * 1974-03-18 1975-10-09
JPS52141443A (en) * 1976-05-21 1977-11-25 Nippon Electric Co Method of etching films
JPS56155535A (en) * 1980-05-02 1981-12-01 Nippon Telegr & Teleph Corp <Ntt> Film forming device utilizing plasma
JPS5732637A (en) * 1980-08-06 1982-02-22 Mitsubishi Electric Corp Dry etching apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4983764A (en) * 1972-12-15 1974-08-12
JPS50128238A (en) * 1974-03-18 1975-10-09
JPS52141443A (en) * 1976-05-21 1977-11-25 Nippon Electric Co Method of etching films
JPS56155535A (en) * 1980-05-02 1981-12-01 Nippon Telegr & Teleph Corp <Ntt> Film forming device utilizing plasma
JPS5732637A (en) * 1980-08-06 1982-02-22 Mitsubishi Electric Corp Dry etching apparatus

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61131451A (en) * 1984-11-30 1986-06-19 Canon Inc Dry etching apparatus
JPS63209129A (en) * 1987-02-25 1988-08-30 Plasma Haitetsuku:Kk Plasma treatment
JPS6473716A (en) * 1987-09-16 1989-03-20 Sumitomo Metal Ind Plasma device
JPH01214122A (en) * 1988-02-23 1989-08-28 Tel Sagami Ltd Plasma processing method
JPH01226152A (en) * 1988-03-07 1989-09-08 Hitachi Ltd Method and equipment for microwave plasma treatment
JPH0897208A (en) * 1995-08-11 1996-04-12 Nec Corp Plasma chemical vapor deposition method and its equipment and manufacture of multilayered interconnection
US6942813B2 (en) 2003-03-05 2005-09-13 Applied Materials, Inc. Method of etching magnetic and ferroelectric materials using a pulsed bias source
US7682518B2 (en) 2003-08-28 2010-03-23 Applied Materials, Inc. Process for etching a metal layer suitable for use in photomask fabrication
US7879510B2 (en) 2005-01-08 2011-02-01 Applied Materials, Inc. Method for quartz photomask plasma etching
US7829243B2 (en) 2005-01-27 2010-11-09 Applied Materials, Inc. Method for plasma etching a chromium layer suitable for photomask fabrication
US7790334B2 (en) 2005-01-27 2010-09-07 Applied Materials, Inc. Method for photomask plasma etching using a protected mask
US7786019B2 (en) 2006-12-18 2010-08-31 Applied Materials, Inc. Multi-step photomask etching with chlorine for uniformity control
JP2014135512A (en) * 2007-08-17 2014-07-24 Tokyo Electron Ltd Plasma etching method
KR20140143316A (en) 2013-06-06 2014-12-16 가부시키가이샤 히다치 하이테크놀로지즈 Plasma processing apparatus and plasma processing method
KR20160011221A (en) 2013-06-06 2016-01-29 가부시키가이샤 히다치 하이테크놀로지즈 Plasma processing apparatus and plasma processing method
US9336999B2 (en) 2013-06-06 2016-05-10 Hitachi High-Technologies Corporation Plasma processing apparatus and plasma processing method
US10192718B2 (en) 2013-06-06 2019-01-29 Hitachi High-Technologies Corporation Plasma processing apparatus and plasma processing method
US11004658B2 (en) 2013-06-06 2021-05-11 Hitachi High-Tech Corporation Plasma processing apparatus and plasma processing method
KR20220027803A (en) 2020-08-27 2022-03-08 주식회사 히타치하이테크 plasma processing unit
US12009180B2 (en) 2020-08-27 2024-06-11 Hitachi High-Tech Corporation Plasma processing apparatus

Also Published As

Publication number Publication date
JPH0522378B2 (en) 1993-03-29

Similar Documents

Publication Publication Date Title
JP2792558B2 (en) Surface treatment device and surface treatment method
KR890004881B1 (en) Plasma treating method and device thereof
US8337713B2 (en) Methods for RF pulsing of a narrow gap capacitively coupled reactor
JPS5947733A (en) Plasma processing apparatus
JP2570090B2 (en) Dry etching equipment
JPH1074733A (en) Surface wave plasma treating device
JPH0469415B2 (en)
JPH01184923A (en) Plasma processor optimum for etching, ashing, film formation and the like
JP2569019B2 (en) Etching method and apparatus
JP2662219B2 (en) Plasma processing equipment
JP3186689B2 (en) Plasma processing method and apparatus
JPH01184922A (en) Plasma processor useful for etching, ashing, film formation and the like
JPH08315998A (en) Microwave plasma treatment device
JP2000150196A (en) Plasma processing method and its device
JPH07288191A (en) Plasma treatment method and apparatus therefor
JPH0368771A (en) Microwave plasma treating device
JPH06104210A (en) Microwave plasma treatment device
JPH0570930B2 (en)
JP2615070B2 (en) Etching method
JP3082331B2 (en) Semiconductor manufacturing apparatus and semiconductor device manufacturing method
JPS63126196A (en) Plasma source employing microwave excitation
JP2675000B2 (en) Plasma processing equipment
JPH0252855B2 (en)
JP2727747B2 (en) Microwave plasma generator
KR20000044561A (en) Pulse type plasma etching method with improved etching speed