JPS6113625A - Plasma processor - Google Patents

Plasma processor

Info

Publication number
JPS6113625A
JPS6113625A JP13311784A JP13311784A JPS6113625A JP S6113625 A JPS6113625 A JP S6113625A JP 13311784 A JP13311784 A JP 13311784A JP 13311784 A JP13311784 A JP 13311784A JP S6113625 A JPS6113625 A JP S6113625A
Authority
JP
Japan
Prior art keywords
plasma
ion
plasma processing
controlled
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13311784A
Other languages
Japanese (ja)
Other versions
JPH0469415B2 (en
Inventor
Toru Otsubo
徹 大坪
Susumu Aiuchi
進 相内
Takashi Kamimura
隆 上村
Minoru Noguchi
稔 野口
Teru Fujii
藤井 輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13311784A priority Critical patent/JPS6113625A/en
Priority to KR1019840006435A priority patent/KR890004881B1/en
Priority to DE8484112571T priority patent/DE3482076D1/en
Priority to EP84112571A priority patent/EP0140294B1/en
Priority to US06/662,014 priority patent/US4808258A/en
Publication of JPS6113625A publication Critical patent/JPS6113625A/en
Publication of JPH0469415B2 publication Critical patent/JPH0469415B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32146Amplitude modulation, includes pulsing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/517Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using a combination of discharges covered by two or more of groups C23C16/503 - C23C16/515
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32155Frequency modulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32155Frequency modulation
    • H01J37/32165Plural frequencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To improve the plasma processing characteristics by a method wherein a discharging device and an ion accelerating device are respectively provided with a power modulating means and a modulating or controlling means for impressed voltage. CONSTITUTION:Microwaves generated by a magnetron 12 enter into a processing chamber 9 to produce plasma resistant to gas at specified pressure utilizing a magnet 9. At this time, the magnetron output is AM-modulated by control signals from a control power supply 13. At high field strength A1, the cyclotron is operated at high speed raising the electron temperature while if the time B1, B2 corresponding to the strength A1, A2 are controlled, the electron temperature distribution may be also controlled. Besides, if the strength A1, A2 are specified to meet the pertinent requirements for producing respectively ion C and radical D while the time B1, B2 are specified at the rate required for both compounds, the reactants may be controlled to be optimum. On the other hand, if signals A1, A2 are transmitted 21 to stage 10 within the time band B1 corresponding to the signal A1, ion may be supplied with large energy to AM-modulate an impressed high frequency voltage for controlling ion energy distribution. FM modulation may be also effective to improve the plasma processing characteristics.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、半導体装置の製造に好適とされたプラズマ処
理装置に関し、特に反応種の組成比やイオンエネルギ分
布が制御可とされたプラズマ処理装置に関するものであ
る。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a plasma processing apparatus suitable for manufacturing semiconductor devices, and particularly to a plasma processing apparatus in which the composition ratio of reactive species and ion energy distribution can be controlled. It is related to.

〔発明の背景〕[Background of the invention]

プラズマ処理装置においては、排気によって真空状態に
おかれた処理室に処理ガスを導入し、これを例えばマイ
クロ波によってプラズマ状態化したうえプラズマ中のイ
オンをイオン加速手段によって被処理物に入射せしめる
ことにより何等かの処理が行なわれるものとなっている
In a plasma processing apparatus, a processing gas is introduced into a processing chamber that is kept in a vacuum state by evacuation, is converted into a plasma state by microwaves, and then ions in the plasma are made to enter the object to be processed using ion acceleration means. Some kind of processing is performed.

具体的な処理内容としてはパターンを形成するドライエ
ツチングや膜を形成するプラズマ已■などがあるが、近
年半導体装置の高集積化に伴い1μ専前後の微細なパタ
ーンをエツチングすることや高品質な膜を形成すること
が要求されるようになっているのが実状である。これま
で例えばマイクロ波を用いたプラズマ処理装置としては
特開昭56−13480号公報に開示されたものが知ら
れているが、プラズマ処理特性を高精度に制御し得ない
ものとなっている。
Specific processing includes dry etching to form patterns and plasma etching to form films, but in recent years, as semiconductor devices have become more highly integrated, it has become increasingly important to etch fine patterns of around 1 μm and to achieve high quality. The reality is that it is increasingly required to form a film. Until now, for example, a plasma processing apparatus using microwaves has been known, such as that disclosed in Japanese Patent Laid-Open No. 13480/1983, but it is not possible to control plasma processing characteristics with high precision.

即ち、第1図はそのプラズマ処理装置の概略構成を示す
が、これによると処理室1外周部には導波管4およびマ
グネット7が図示の如くに設けられており、駆動電源6
によってマグネトロン5より発生されるマイクロ波は処
理室1に導入されるものとなっている。
That is, FIG. 1 shows a schematic configuration of the plasma processing apparatus, and according to this, a waveguide 4 and a magnet 7 are provided on the outer periphery of the processing chamber 1 as shown, and a drive power source 6
Microwaves generated by the magnetron 5 are introduced into the processing chamber 1.

さて、処理室1内にガス導入口(図示せず)より処理ガ
スを導入し、また、処理室1内を排気装R(図示せず)
で排気しつつ一定圧力にした状態でマグネトロン5より
マイクロ波を導入すれば、処理室1内にはプラズマが発
生されるところとなるものである。一方、ステージ2に
高周波電源8より高周波電圧を印加すれば、これによっ
て発生する電界でプラズマ中のイオンが加速されステー
ジ2上に載置されたウェハ3に入射するところとなるも
のである。
Now, the processing gas is introduced into the processing chamber 1 from the gas inlet (not shown), and the processing chamber 1 is exhausted by an exhaust system R (not shown).
If microwaves are introduced from the magnetron 5 while the chamber is being evacuated and kept at a constant pressure, plasma will be generated within the processing chamber 1. On the other hand, if a high frequency voltage is applied to the stage 2 from the high frequency power supply 8, the ions in the plasma will be accelerated by the electric field generated thereby and will be incident on the wafer 3 placed on the stage 2.

このようにこれまでのプラズマ処理装置にあっては例え
ばマイクロ波電力を制御することによってプラズマ密度
を制御し得る一方、高周波電圧によってはウェハに入射
するイオンのエネルギを制御し得るものとなっている。
In this way, conventional plasma processing equipment can control the plasma density by controlling the microwave power, for example, but it can also control the energy of the ions incident on the wafer depending on the radio frequency voltage. .

しかしながら、制御可とされるものはプラズマの平均的
な密度と電子温度、更にはウェハに入射するイオンエネ
ルギの平均値だけとなっている。一般にプラズマ処理特
性を更に高精度に制御するためには電子温度の分布や、
プラズマ中で発生するイオン、ラジカルの種類とそれら
の比率をプラズマ内での反応条件に応じて制御する必要
があり、また、ウェハに入射するイオンエネルギの分布
も処理反応に応じて制御される必要がある。即ち、これ
までのプラズマ処理装置にあっては、電子温度の分布や
反応種の組成比、イオンエネルギ分布を制御し得ないも
のとなっている。
However, the only things that can be controlled are the average plasma density and electron temperature, as well as the average value of the ion energy incident on the wafer. In general, in order to control plasma processing characteristics with higher precision, it is necessary to control the electron temperature distribution,
The types of ions and radicals generated in the plasma and their ratio must be controlled according to the reaction conditions within the plasma, and the distribution of ion energy incident on the wafer must also be controlled according to the processing reaction. There is. That is, in conventional plasma processing apparatuses, it is not possible to control the electron temperature distribution, the composition ratio of reactive species, and the ion energy distribution.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、電子温度の分布や反応種の・ 3 組成比、イオンエネルギの分布を制御することによって
プラズマ処理特性が向上されるようにしたプラズマ処理
装置を供するにある。
An object of the present invention is to provide a plasma processing apparatus in which plasma processing characteristics are improved by controlling the distribution of electron temperature, the composition ratio of reactive species, and the distribution of ion energy.

〔発明の概要〕[Summary of the invention]

この目的のため本発明は、処理ガスをプラズマ状態化す
る放電手段には放電電力変調手段を、プラズマ中のイオ
ンを加速するイオン加速手段には印加電圧の変調あるい
は制御手段を設けるようになしたものである。
For this purpose, the present invention provides a discharge power modulation means for the discharge means for converting the processing gas into a plasma state, and a means for modulating or controlling the applied voltage for the ion acceleration means for accelerating ions in the plasma. It is something.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を第2図から第5図により説明する。 The present invention will be explained below with reference to FIGS. 2 to 5.

先ず、本発明によるプラズマ処理装置の一例での概略構
成について説明する。第2図はその構成を示したもので
ある。これによると処理室9の周囲には導波管11およ
びマグネット15が設けられ、導波管11の一端側に取
付されたマグネトロン12には駆動電源14の他、放電
変調手段としてのコントロール電源13が接続されるよ
うになりている。また、処理室9内部に配されたス・ 
4 ・ テーク10には、マツチングボックス19、高周波増幅
器20を介し信号発生器21より高周波電圧が印加され
るものとなっている。更に処理室9には処理ガス供給装
置(図示せず)からのガス供給管17と排気装置(図示
せず)への排気管18が接続されているが、プラズマを
発生させる際処理室9内部にはガス供給管17より一定
量の処理用ガスが導入される一方、その内部は排気管1
8によって排気されその内部は数Torr〜10−4T
orrの設定圧力に保たれるようになっている。このよ
うな状態で駆動電源14によりマグネトロン12を動作
させれば、マグネトロン12で発生されたマイクロ波は
導波管11内部を伝播されたうえ処理室9に入ってマグ
ネット15からの磁場により電子サイクロトロン共鳴を
起こすが、これにより処理室9内部では強いプラズマが
発生するところとなるものである。この際にコントロー
ル電源13からの制御信号によっ【マグネトロン12の
出力を第3図に示す如くに、■変調してその強度なA、
 、 A、といった具合に変化せしめてやれば、強度が
A、である場合には電界強度が強いことによって電子の
サイクロトロン運動が速くなり、これがために電子温度
は高くなるといりものである。また、強度がA、である
場合は電界強度が弱くなることによって電子のサイクロ
トロン運動は遅くなり、電子温度は低くなるというもの
である。したがって、強度A、 、 A、はもとよりそ
れら各々に対する時間Bt 、B*の比も制御すれば、
電子温度の分布が任意に制御可能となるものである。
First, a schematic configuration of an example of a plasma processing apparatus according to the present invention will be described. FIG. 2 shows its configuration. According to this, a waveguide 11 and a magnet 15 are provided around the processing chamber 9, and a magnetron 12 attached to one end of the waveguide 11 has a drive power source 14 and a control power source 13 as a discharge modulation means. is now connected. In addition, the
4. A high frequency voltage is applied to the take 10 from a signal generator 21 via a matching box 19 and a high frequency amplifier 20. Furthermore, a gas supply pipe 17 from a processing gas supply device (not shown) and an exhaust pipe 18 to an exhaust device (not shown) are connected to the processing chamber 9. A certain amount of processing gas is introduced from the gas supply pipe 17, while the inside is connected to the exhaust pipe 1.
The internal pressure is several Torr to 10-4T.
The pressure is maintained at the set pressure of orr. When the magnetron 12 is operated by the driving power supply 14 in this state, the microwaves generated by the magnetron 12 are propagated inside the waveguide 11 and then enter the processing chamber 9, where the magnetic field from the magnet 15 causes the electron cyclotron to be activated. This causes resonance, which causes strong plasma to be generated inside the processing chamber 9. At this time, the control signal from the control power supply 13 modulates the output of the magnetron 12 as shown in FIG.
, A, and so on, when the electric field strength is A, the cyclotron motion of the electrons becomes faster due to the stronger electric field strength, which causes the electron temperature to rise. Moreover, when the strength is A, the electric field strength becomes weaker, so that the cyclotron motion of the electrons becomes slower and the electron temperature becomes lower. Therefore, if we control not only the intensities A, , A, but also the ratio of the times Bt and B* to each of them, we get
The distribution of electron temperature can be controlled arbitrarily.

例えばプラズマ処理を行なう際に必要な反応種がイオン
CとラジカルDであるとした場合、イオンCを生成する
電子温度は高く、ラジカルDを生成する電子温度は低く
なっている。よって強度人、をイオンCを生成するのに
好適な条件に設定する一方、強度A、をラジカルDを生
成するのに好適な条件に設定し、更にイオンCとラジカ
ルDの必要な割合に応じ時間B、 、 B、を設定する
場合は、プラズマ中に発生する反応種が最適に制御され
ることになるものである。
For example, when the reactive species required for plasma processing are ions C and radicals D, the electron temperature for generating ions C is high, and the electron temperature for generating radicals D is low. Therefore, the intensity A is set to a condition suitable for generating ions C, while the intensity A is set to a condition suitable for generating radicals D, and further according to the required ratio of ions C and radicals D. When setting the times B, , B, the reactive species generated in the plasma are optimally controlled.

また、信号発生器21によって第3図に示す如くの信号
を発生したうえこれを高周波増幅器20゜マツチングボ
ックス19を介しステージ10に印加すれば、その信号
の強弱に応じてプラズマ中のイオンが加速されたうえウ
ェハ16に入射されるというものである。即ち、AI対
応の時間B、帯ではイオンは強い電界によって加速され
大きなエネルギをもつことになる一方、A、対応の時間
B。
Furthermore, if a signal as shown in FIG. 3 is generated by the signal generator 21 and then applied to the stage 10 via the high frequency amplifier 20° matching box 19, ions in the plasma will be generated depending on the strength of the signal. The light is accelerated and then incident on the wafer 16. That is, at time B, which corresponds to AI, ions are accelerated by a strong electric field and have large energy, while at time B, which corresponds to A.

帯では加速電界が弱くイオンエネルギは小さくなるとい
5わげである。したがって、A、 、 A、の大きさに
よりイオンエネルギの大きさを制御し得、また、B11
B、の比によりそれぞれのイオン量の割合を制御し得る
ことになり、結果的に印加高周波電圧を、W変調してや
ればイオンエネルギの分布が制御されることになるもの
である。
In the band, the accelerating electric field is weak and the ion energy is said to be small. Therefore, the magnitude of ion energy can be controlled by the magnitude of A, , A, and B11
The ratio of each ion amount can be controlled by the ratio of B, and as a result, if the applied high frequency voltage is modulated by W, the distribution of ion energy can be controlled.

本実施例では強度なA、 、 A、、時間をB1. B
2と分げているが、本発明はこれに限定されるものでは
なく強度1時間を任意にコントロールし、変調できるこ
とはいうまでもない。
In this example, the intensity A, , A, , time is set to B1. B
However, the present invention is not limited to this, and it goes without saying that the intensity of 1 hour can be arbitrarily controlled and modulated.

第4図は本発明によるプラズマ処理装置の他、 7 の態様での構成を示したものである。図示の如く本態様
でのものが第2図に示すものと異なるところは、イオン
の加速手段がグリッド電極22とされていることのみで
ある。この場合信号発生器24は第5図に示す如くの波
形(波形は任意)の交流重畳直流信号を発生するが、こ
れがパワー増幅器25で100〜1000 Vの電圧に
増幅されたうえグリッド電極22に印加されるようにな
っているものである。したがって、印加電圧が■、であ
る間処理室9内のプラズマイオンは加速大にして引き出
され、高いイオンエネルギでウェハ16に入射する一方
、印加電圧がVl(<Vl)である間は低いエネルギで
ウェハ16に入射することになるわけである。この際周
期的に印加される電圧V+ 、Vtの印加時間χ1.チ
を制御すれば、各エネルギ対応のプラズマイオンのイオ
ン量が制御されることになる。一般にグリッド電極22
に印加される電圧の波形を所定に制御する場合は、ウェ
ハに入射されるプラズマイオンのエネルギ分布を所望に
制御し得るものである。
FIG. 4 shows the configuration of the plasma processing apparatus according to the present invention as well as another aspect of the present invention. As shown in the figure, the only difference between this embodiment and the one shown in FIG. 2 is that the ion acceleration means is a grid electrode 22. In this case, the signal generator 24 generates an AC superimposed DC signal with a waveform as shown in FIG. It is designed to be applied. Therefore, while the applied voltage is Vl (<Vl), the plasma ions in the processing chamber 9 are extracted with high acceleration and are incident on the wafer 16 with high ion energy, while while the applied voltage is Vl (<Vl), the plasma ions in the processing chamber 9 are extracted with high acceleration. Therefore, the light is incident on the wafer 16. At this time, the voltage V+, which is applied periodically, and the application time χ1 of Vt. By controlling the amount of plasma ions corresponding to each energy, the amount of plasma ions corresponding to each energy can be controlled. Generally grid electrode 22
When the waveform of the voltage applied to the wafer is controlled in a predetermined manner, the energy distribution of plasma ions incident on the wafer can be controlled as desired.

・ 8 ・ 以上本発明をマイクロ波を用いたプラズマ処理装置に例
を採って説明したが、これに限定されることなくプラズ
マ発生とイオンエネルギを個別に制御し得る構成であれ
ば十分本発明が適用可能である。また、以上の例ではマ
イクロ波や高周波電圧に対する。W変調の状態は第3図
に示す如く単に2つとされているが、これに限定される
ことなく最適なプラズマ組成比やイオンエネルギ分布を
得べく一般に2以上の状態に任意に設定されればよい。
・ 8 ・ Although the present invention has been explained above by taking a plasma processing apparatus using microwaves as an example, the present invention is not limited to this, and the present invention can be applied as long as it is a configuration in which plasma generation and ion energy can be individually controlled. Applicable. Moreover, in the above example, it applies to microwaves and high-frequency voltages. Although the W modulation state is simply two as shown in Fig. 3, it is not limited to this, but generally it can be arbitrarily set to two or more states in order to obtain the optimal plasma composition ratio and ion energy distribution. good.

更にマイクロ波や高周波電圧に対する変調形式は、W変
調であるとして説明されているが、■変調であってもプ
ラズマ特性やイオンエネルギが変化するから1.W変調
に限定されることはなくy変調によっても同様な効果が
得られる。
Furthermore, the modulation format for microwaves and high-frequency voltages is explained as W modulation, but even with modulation, the plasma characteristics and ion energy change; The present invention is not limited to W modulation, and similar effects can be obtained by Y modulation.

〔発明の効果〕〔Effect of the invention〕

以上説明したよ5に本発明は、プラズマ処理装置に放電
変調手段、印加電圧変調手段を新たに設けるよさになし
たものである。したがって、本発明による場合は、電子
温度の分布や反応種の組成比、イオンエネルギ分布が制
御され得、プラズマ処理特性の向上が図れるという効果
がある。
As explained above, the present invention is advantageous in that a plasma processing apparatus is newly provided with a discharge modulating means and an applied voltage modulating means. Therefore, according to the present invention, the electron temperature distribution, the composition ratio of reactive species, and the ion energy distribution can be controlled, and the plasma processing characteristics can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、マイクロ波を用いたプラズマ処理装置の概略
構成を示す図、第2図は、本発明によるプラズマ処理装
置の一例での概略構成を示す図、第3図は、本発明に係
るへ変調されたマグネトロン出力波形を示す図、第4図
は、本発明によるプラズマ処理装置の他の態様での構成
を示す図、第5図は、その構成におけるグリッド電極に
印加される電圧の一例での波形を示す図である。 9・・・処理室、10・・・ステージ、11・・・導波
管、12・・・マグネトロン、13・・・コントロール
電源、 14・・・(マグネトロン)駆動電源、第7図 第 2 図
FIG. 1 is a diagram showing a schematic configuration of a plasma processing apparatus using microwaves, FIG. 2 is a diagram showing a schematic configuration of an example of a plasma processing apparatus according to the present invention, and FIG. 3 is a diagram showing a schematic configuration of an example of a plasma processing apparatus according to the present invention. FIG. 4 is a diagram showing the configuration of another aspect of the plasma processing apparatus according to the present invention, and FIG. 5 is an example of the voltage applied to the grid electrode in that configuration. FIG. 9...Processing chamber, 10...Stage, 11...Waveguide, 12...Magnetron, 13...Control power supply, 14...(Magnetron) drive power supply, Fig. 7, Fig. 2

Claims (4)

【特許請求の範囲】[Claims] 1.処理室内に導入された処理ガスをプラズマ状態化す
る放電手段と、プラズマ中のイオンを加速し被処理物に
入射せしめるイオン加速手段とを有してなるプラズマ処
理装置において、放電手段、イオン加速手段にそれぞれ
放電電圧変調手段、印加電圧の変調あるいは制御手段を
設けた構成を特徴とするプラズマ処理装置。
1. In a plasma processing apparatus comprising a discharge means for converting a processing gas introduced into a processing chamber into a plasma state, and an ion acceleration means for accelerating ions in the plasma and making them incident on an object to be processed, the discharge means, the ion acceleration means A plasma processing apparatus characterized in that each of the plasma processing apparatuses is provided with a discharge voltage modulation means and an applied voltage modulation or control means.
2.放電変調手段、印加電圧変調手段による変調はAM
変調、FM変調の何れかとされる特許請求の範囲第1項
記載のプラズマ処理装置。
2. Modulation by discharge modulation means and applied voltage modulation means is AM.
The plasma processing apparatus according to claim 1, which uses either modulation or FM modulation.
3.放電手段による処理ガスのプラズマ状態化は、マイ
クロ波と磁場とによる電子サイクロトロン共鳴によって
行なわれる特許請求の範囲第1項記載のプラズマ処理装
置。
3. 2. The plasma processing apparatus according to claim 1, wherein the plasma state of the processing gas by the discharge means is performed by electron cyclotron resonance using microwaves and a magnetic field.
4.イオン加速手段がグリッド電極である場合には、該
電極には交流成分重畳直流電圧が印加される特許請求の
範囲第1項記載のプラズマ処理装置。
4. 2. The plasma processing apparatus according to claim 1, wherein when the ion accelerating means is a grid electrode, a DC voltage with an AC component superimposed is applied to the grid electrode.
JP13311784A 1983-10-19 1984-06-29 Plasma processor Granted JPS6113625A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP13311784A JPS6113625A (en) 1984-06-29 1984-06-29 Plasma processor
KR1019840006435A KR890004881B1 (en) 1983-10-19 1984-10-17 Plasma treating method and device thereof
DE8484112571T DE3482076D1 (en) 1983-10-19 1984-10-18 PLASMA PROCESSING METHOD AND DEVICE FOR USING THIS METHOD.
EP84112571A EP0140294B1 (en) 1983-10-19 1984-10-18 Plasma processing method and apparatus for carrying out the same
US06/662,014 US4808258A (en) 1983-10-19 1984-10-18 Plasma processing method and apparatus for carrying out the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13311784A JPS6113625A (en) 1984-06-29 1984-06-29 Plasma processor

Publications (2)

Publication Number Publication Date
JPS6113625A true JPS6113625A (en) 1986-01-21
JPH0469415B2 JPH0469415B2 (en) 1992-11-06

Family

ID=15097188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13311784A Granted JPS6113625A (en) 1983-10-19 1984-06-29 Plasma processor

Country Status (1)

Country Link
JP (1) JPS6113625A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63288021A (en) * 1986-10-17 1988-11-25 Hitachi Ltd Method and device for plasma processing
JPS63311726A (en) * 1987-06-15 1988-12-20 Ulvac Corp Microwave plasma processor
US4795529A (en) * 1986-10-17 1989-01-03 Hitachi, Ltd. Plasma treating method and apparatus therefor
JPH02503614A (en) * 1987-06-01 1990-10-25 コミッサレ・ア・レナジイ・アトミック Etching method using gas plasma
JPH03218627A (en) * 1989-02-15 1991-09-26 Hitachi Ltd Method and device for plasma etching
JPH06342769A (en) * 1992-08-21 1994-12-13 Nissin Electric Co Ltd Etching method and device
JPH08181125A (en) * 1994-10-27 1996-07-12 Nec Corp Plasma treatment and device thereof
JPH09139364A (en) * 1995-11-14 1997-05-27 Nec Corp Neutral particle beam processor
US6372654B1 (en) 1999-04-07 2002-04-16 Nec Corporation Apparatus for fabricating a semiconductor device and method of doing the same
US7112533B2 (en) 2000-08-31 2006-09-26 Micron Technology, Inc. Plasma etching system and method
US7611993B2 (en) 2002-04-26 2009-11-03 Hitachi High-Technologies Corporation Plasma processing method and plasma processing apparatus
CN103298235A (en) * 2012-02-22 2013-09-11 朗姆研究公司 State-based adjustment of power and frequency
CN110627644A (en) * 2019-09-09 2019-12-31 株洲千金药业股份有限公司 Capsinoid compound, pharmaceutically acceptable salt thereof, and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5779621A (en) * 1980-11-05 1982-05-18 Mitsubishi Electric Corp Plasma processing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5779621A (en) * 1980-11-05 1982-05-18 Mitsubishi Electric Corp Plasma processing device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63288021A (en) * 1986-10-17 1988-11-25 Hitachi Ltd Method and device for plasma processing
US4795529A (en) * 1986-10-17 1989-01-03 Hitachi, Ltd. Plasma treating method and apparatus therefor
JPH02503614A (en) * 1987-06-01 1990-10-25 コミッサレ・ア・レナジイ・アトミック Etching method using gas plasma
JPS63311726A (en) * 1987-06-15 1988-12-20 Ulvac Corp Microwave plasma processor
US5900162A (en) * 1989-02-15 1999-05-04 Hitachi, Ltd. Plasma etching method and apparatus
JPH03218627A (en) * 1989-02-15 1991-09-26 Hitachi Ltd Method and device for plasma etching
US6165377A (en) * 1989-02-15 2000-12-26 Hitachi, Ltd. Plasma etching method and apparatus
JPH06342769A (en) * 1992-08-21 1994-12-13 Nissin Electric Co Ltd Etching method and device
JPH08181125A (en) * 1994-10-27 1996-07-12 Nec Corp Plasma treatment and device thereof
JPH09139364A (en) * 1995-11-14 1997-05-27 Nec Corp Neutral particle beam processor
US6372654B1 (en) 1999-04-07 2002-04-16 Nec Corporation Apparatus for fabricating a semiconductor device and method of doing the same
US7112533B2 (en) 2000-08-31 2006-09-26 Micron Technology, Inc. Plasma etching system and method
US7507672B1 (en) 2000-08-31 2009-03-24 Micron Technology, Inc. Plasma etching system and method
US7611993B2 (en) 2002-04-26 2009-11-03 Hitachi High-Technologies Corporation Plasma processing method and plasma processing apparatus
CN103298235A (en) * 2012-02-22 2013-09-11 朗姆研究公司 State-based adjustment of power and frequency
CN110627644A (en) * 2019-09-09 2019-12-31 株洲千金药业股份有限公司 Capsinoid compound, pharmaceutically acceptable salt thereof, and preparation method and application thereof
CN110627644B (en) * 2019-09-09 2022-06-07 株洲千金药业股份有限公司 Capsinoid compound, pharmaceutically acceptable salt thereof, and preparation method and application thereof

Also Published As

Publication number Publication date
JPH0469415B2 (en) 1992-11-06

Similar Documents

Publication Publication Date Title
KR890004881B1 (en) Plasma treating method and device thereof
KR930004713B1 (en) Plasma exciting apparatus using modulation step and its method
JPS6113625A (en) Plasma processor
JPH01149965A (en) Plasma reactor
JP3424182B2 (en) Surface treatment equipment
JPS5947733A (en) Plasma processing apparatus
JPS63155728A (en) Plasma processor
JP2791287B2 (en) Plasma etching method and apparatus
JP3186689B2 (en) Plasma processing method and apparatus
JP2569019B2 (en) Etching method and apparatus
US5324388A (en) Dry etching method and dry etching apparatus
JP2000150196A (en) Plasma processing method and its device
JPH0766918B2 (en) Plasma processing device
JPH08315998A (en) Microwave plasma treatment device
JPS627131A (en) Dry-etching device
JPH0570930B2 (en)
KR930001857B1 (en) Treating method and apparatus using plasma
JP3082331B2 (en) Semiconductor manufacturing apparatus and semiconductor device manufacturing method
JPH01187824A (en) Plasma processor
JPS6390132A (en) Surface-treatment apparatus
JP2639292B2 (en) ECR plasma processing equipment
JP3296392B2 (en) Dry etching method
JPS611024A (en) Manufacturing apparatus of semiconductor circuit
JP2649914B2 (en) Microwave plasma generator
JP2515885B2 (en) Plasma processing device