JPS5947338A - Method for removing iron from acidic solution containing nickel and cobalt - Google Patents

Method for removing iron from acidic solution containing nickel and cobalt

Info

Publication number
JPS5947338A
JPS5947338A JP15774582A JP15774582A JPS5947338A JP S5947338 A JPS5947338 A JP S5947338A JP 15774582 A JP15774582 A JP 15774582A JP 15774582 A JP15774582 A JP 15774582A JP S5947338 A JPS5947338 A JP S5947338A
Authority
JP
Japan
Prior art keywords
soln
cobalt
solution
iron
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15774582A
Other languages
Japanese (ja)
Other versions
JPS6136569B2 (en
Inventor
Yukio Nagai
長井 志夫
Tetsuo Kondo
哲夫 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP15774582A priority Critical patent/JPS5947338A/en
Publication of JPS5947338A publication Critical patent/JPS5947338A/en
Publication of JPS6136569B2 publication Critical patent/JPS6136569B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To separate and remove effectively Fe from an acidic soln. as hydroxide by adding an oxidizing agent and alkali to the soln. contg. Fe and MnO2 besides Ni and Co and by carrying out a reaction while controlling the pH and oxidation-reduction potential. CONSTITUTION:Mn in an acidic soln. of Ni and Co in sulfuric acid contg. Fe and Mn as impurities is precipitated as MnO2 and suspended in the soln. An oxidizing agent contg. Ni(OH)2 and/or Co(OH)2 as the principal component is added to the soln. to keep the oxidation-reduction potential of the soln. at 950- 1250mV (vs, S, C, E). The pH of the soln. is adjusted to 3.0-4.5 by adding alkali. A reaction is carried out under said conditions to precipitate and separate Fe as hydroxide. By this method iron can be continuously removed from the soln. with a small-sized apparatus.

Description

【発明の詳細な説明】 本発明は、鉄を不純物として溶解な有し、二酸化マンガ
ンが1′I′1.子として懸濁するニッケル及びコバル
トの192性溶/I’1.から、二酸化マンガン粒子を
溶解させることなく鉄を除去する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention has dissolved iron as an impurity, and manganese dioxide is 1'I'1. 192 solution of nickel and cobalt suspended as particles/I'1. relates to a method for removing iron without dissolving manganese dioxide particles.

例えば、= ツ’r ル(7) ’In:式1;’f 
I’j17 (’) Ij’、l (1,(h、わイテ
、硫化二゛ノケル、硫化フバルト混合物をスラリーにし
てオートクレーブに装入し、空気を吹【へみ加用酸化抽
出して得られるニッケル、ii、l二び一1〕・ルl−
4主成分として含イJする抽11旨ty bgラマンン
、以41゛とを不純物として含有するfIlfε酸)l
:j・lll溶j(lである。そして、この溶液から前
記不純物を除去するンp液θ、として通常、マンガンを
+I+42.化して二酸化マンガンとした(脱マンガン
)後、F・11調!!:(するごとによって鉄を水酸化
物として沈殿さ口る(脱↑グ、)力θぐが採用されてい
る。この隙、脱釦、シだ後11+aマンガンする工程を
取ると、pH調整をする(;j;会が多くなり好ましく
ないからである。士だ、IIにiマンガンした後脱鉄す
る工程を取る場合、脱マンガン工程で生成した二酸化マ
ンガンと脱鉄1゛稈で生成した鉄の水酸化物とは、例え
ばフィルタープレスによる7)重過のりの濾過速度およ
びa+W過に関する工程の省略と設備の節約などの点か
ら別々に分−1除ノぐされるのではなく、脱鉄下(<1
後−・縞に分1誰除人さねでいる。
For example, = t'r (7) 'In: expression 1;'f
I'j17 (') Ij', l (1, (h, wite, dinochelium sulfide, and fubalt sulfide mixture was made into a slurry and charged into an autoclave, and the mixture obtained by oxidation extraction and blowing air was added. nickel, ii, l2bi1]・le l-
4 containing A as the main component, bg Raman, and fIlfε acid) containing 41 as an impurity.
:j・llll solution J(l).Then, the impurity is removed from this solution as p liquid θ, which is usually used as manganese to +I+42. After converting manganese to +I+42. to make manganese dioxide (demanganization), F・11 tone! !: (Depending on the process, a force θg is used to precipitate iron as hydroxide (de↑g). If you use this gap to remove the button and remove the 11+a manganese, the pH will be adjusted. This is because there will be a large number of groups, which is undesirable.If you take the step of removing iron after applying manganese to II, the manganese dioxide generated in the demanganization process and the iron removed 1゛Iron hydroxide is not removed separately, for example, from the viewpoint of the filtration speed of 7) heavy filtration paste by a filter press, the omission of the steps related to a+W filtration, and the saving of equipment, but is removed by removing iron. Below (<1
After that, there are people who are expelled from the stripes every minute.

ゼfつで、前記脱鉄工程では、前記脱マンガン上稈゛C
生成した二酸化マンガンの粒子を懸濁させたままの硫酸
6゛(性溶液を処理することになるが、従来、このよう
な溶液から鉄を水酸化物と1.で沈殿させるのに1.、
?3− A、!i′Uの比較的酸化還元電位の低い溶液
のPHをアルカリで、?、θ〜ケ、左に調整するのみて
行なわれていた。しかしながら、この方υくでは、1−
記のようにP Hが上昇することにより、溶液中に懸濁
している二酸化マンガンがITfび溶液中に溶解し−C
1例えば前の脱マンガン工程で0.00n%程度まで脱
マンガンされたのが、−オーダー高い0.On%P1′
、度まで上昇する為、前の脱マンガン−L稈の意味が大
幅に減殺さね、ひいては、後工程、例えば電解精錬工程
で史に脱マンガン処理が8蟹となり、工程が繁雑になっ
ていた。
In the deiron removal step, the demanganized upper culm C
A sulfuric acid solution in which the generated manganese dioxide particles are suspended is treated with a sulfuric acid solution. Conventionally, iron is precipitated from such a solution with hydroxide and 1.
? 3- A,! What is the pH of the solution of i'U with a relatively low redox potential, using an alkali? , θ~ke, only adjustment to the left was performed. However, in this way, 1−
As the pH increases as shown above, manganese dioxide suspended in the solution dissolves into ITf and -C.
1. For example, what was demanganized to about 0.00n% in the previous demanganization step is -0.0n%, which is an order of magnitude higher. On%P1'
, the meaning of the previous demanganization-L culm is greatly diminished, and as a result, the demanganization process in the subsequent process, for example, the electrolytic refining process, becomes 8 times, making the process complicated. .

不発明は、ニッケルおよびコバルトを主成分として溶解
aイJし、二酸化マンガン粒Pが懸濁し、江つ鉄を不純
物として溶解含有する硫酸酸性溶液から鉄を水酸化物と
して沈殿分離する際、該溶液の醇化還元電位が9.ff
O〜7.230 mV (VS、 s、 c、 F、、
 )、(以下単にmVと記載する。)に乙1゛るように
1:、成分として水酸化第一ニッケル、水f’l”ノ化
へ)、2コノ・ルトの一方または両方を含イ1−4るt
’l匂化削を添加しながら、該溶液のPHをアルカリに
]:す、?、0〜/1.3に調号昏することにより、二
゛ンケルや′−Iハルl・の1叉)令−を1L1なうこ
となく、マンカ゛ンを溶用′1′させ/↓゛いて↑失を
水酸化物として沈殿させうろことを!;1111)シた
ものである。
The invention is that when nickel and cobalt are dissolved as main components, manganese dioxide grains P are suspended, and iron is precipitated and separated as a hydroxide from a sulfuric acid solution containing iron as an impurity. The solubilization-reduction potential of the solution is 9. ff
O ~ 7.230 mV (VS, s, c, F,,
), (hereinafter simply referred to as mV) contains one or both of the following: 1-4rut
'Allowing the pH of the solution to alkaline while adding nitride powder]: So? , by changing the key signature to 0~/1.3, you can dissolve the man-can into ``1''/↓'' without making the second order or ``-I Hull'''s 1st order- 1L1. ↑The scales precipitate as hydroxide! ;1111).

本発明を適用する1悦鉄1べき硫酸酸11I溶ltりは
、その主成分がニッケルおtひコへル)=Cあるから、
添加する酸化剤としては、ニソうル、二Jハルト以外の
金属元末を含イ1゛するものζJ1該溶酸溶液rJ中す
るのて好ましくないので、例えば金属ニッケルまたはニ
ッケルマットの電解精錬工程で生成する不純物を含有す
る電解廃液(陽極jl’e )からコバルトを除去する
ために、?ti解廃液を”If11素ガスによる耐化処
理と炭酸ニッケルによる中和処理とを施してコバルトの
大部分を沈殿させ、ニッケルが−・部共沈して随伴して
得られる1:成分が/J(酊化第、2ニッケルおよび水
酸化第2コバルトの形伸の1′り一ソウル、コバルト沈
殿物が最も好ましい。何となれば、該澱物は、上記の酸
化剤としての条件をflH,H足し、多少の鉄はaイJ
しているがマンガンを殆んと含有していム゛いことの他
に、該澱物中に高品位で含有さ4するニノうルおよびコ
バルトの回収処理がこの脱鉄処理と同時に?Jないイu
るからである。なお、111己lidぐ1勿の品fI7
は、旧゛」θ〜lI0、Co  汐〜、20、F’e 
: j; 〜/3 XMn : 0. /各市宿%以−
Fである。
The main component of the 11I sulfuric acid solution to which the present invention is applied is nickel (nickel) = C.
The oxidizing agent to be added is one containing a metal base other than Nisol and NiHard because it is not preferable to add it to the molten acid solution, for example, in the electrolytic refining process of metallic nickel or nickel matte. In order to remove cobalt from the electrolytic waste solution (anode jl'e) containing impurities produced in ? Ti decomposition waste liquid is subjected to "proofing treatment with If11 elemental gas and neutralization treatment with nickel carbonate to precipitate most of the cobalt, and nickel is co-precipitated and accompanied by 1: component / The cobalt precipitate is the most preferred. Add H, some iron is ai J
However, in addition to the fact that it contains almost no manganese, is it possible that the recovery process for Ni-no-U and cobalt, which are contained in high grade in the sediment, is carried out at the same time as this iron removal process? J no i u
This is because that. In addition, 111 self-lid items fI7
is the old ゛'' θ~lI0, Co 汐~, 20, F'e
: j; ~/3 XMn : 0. /Each city/inn%
It is F.

(me酸酪酸性溶液ら本発明方法により鉄を水酸化物と
して沈殿分離するには、該溶液を液l!ui ’ 33
〜乙3 C、PH: 3.0〜ヶ、!i、酸化還元電位
:qkθ〜/2!i0mVの範囲内に紐持するように管
理することが8四′である。口れらのうち液;晶を、?
3−〜乙3Cにするのは1.ys C,V:満ては(<
発明方法により脱鉄を?j”、’f −) だ後の例え
ばフィルターフレスによるi)、3過が、マンガンおよ
び鉄片イj澱物(以下脱鉄澱物という。)のII詰りの
為困つ111になり易く、一方43Cを超えると、j況
鉄およびマンガンの溶解IIIJ+にの効果がぞill
トド温度の場合よりもさして増大しないσ)みならず、
熱エネルギーのより多い消費や反応槽、配管、ポンプ等
の装置J=4 ’t″Cの耐4:!h性、耐食性に′対
する対策が8四′と/するからで、1ノ、る。1°ト(
る二3、θ〜夕、汐にするのは、[・II 3. o 
A< fl;l:iてはII(rり(lx Ic、が充
分進行ぜず、脱鉄の11的のj・1−成か1・了11分
とムリ、−J5 PHh”1.3 ヲm エロトヤ4.
’lすll1arJ、反1心が充分進行しない上に主成
分としてfl; (fLでいるニッケル、コバルトなど
の水))+2化物が共沈してきてニッケルやコバルトの
11又率をJliz1勺からてt’l+る。すJに、酸
化還元電位を9!iθ〜/部OmVとf:rるように主
成分として水酸化第コニノケル、承部ン化第フニlバル
トの一方または両方を1′シイI’−4る酸化剤を添加
するのは、9jOmV未満ては生成している二酸化マン
ガンの液中への溶解がわこり易く、/、2.SOmVを
超えると添加するニッケルや:1バルトる、、>−イJ
する酸化剤が多きに過ぎ、該酸化1111がA33反ル
ミ、の士−小、1υζ殿物中に混入し、前述したと同様
ニッケルやコバルトの収シ(・りをJflなうからであ
る。
(In order to precipitate and separate iron as a hydroxide by the method of the present invention from a me acid butyric acid solution, the solution is converted into a liquid l!ui' 33
~ Otsu 3 C, PH: 3.0 ~ months,! i, redox potential: qkθ~/2! It is 84' to manage to keep it within the range of i0mV. The liquid in my mouth; the crystal?
3-~Otsu 3C is 1. ys C, V: satisfies (<
De-ironization through an invented method? i), 3 filtration using a filter Fres, for example, after filtration is likely to result in trouble 111 due to II clogging of manganese and iron sludge (hereinafter referred to as iron-free sludge); on the other hand, If the temperature exceeds 43C, the effect on the dissolution of iron and manganese will be reduced.
Not only does σ not increase much more than in the case of sea lion temperature,
This is because measures against higher consumption of thermal energy, equipment such as reaction vessels, piping, pumps, etc. .1° (
Ru23, θ~Evening, the sea is [・II 3. o
A<fl;l:i is II(rri(lx Ic), and it takes 11 minutes to complete the 11th test of iron removal, -J5 PHh"1.3 Wom Erotoya 4.
'lsll1arJ, the anti-uniform core does not progress sufficiently, and fl; (water of nickel, cobalt, etc. in fL)) +2 compounds co-precipitate, and the 11-pronged ratio of nickel and cobalt is removed from Jliz1x. t'l+ru. The redox potential is 9! Adding an oxidizing agent containing one or both of hydroxide and hydroxide as the main components so that iθ~/part OmV and f:r is 9jOmV. Otherwise, the manganese dioxide produced tends to be easily dissolved in the liquid, and/or 2. Nickel added when SOmV is exceeded: 1 balt, >-i J
This is because there is too much oxidizing agent, and the oxidized 1111 is mixed into the A33 anti-luminous, non-luminous, and 1υζ precipitates, resulting in the collection of nickel and cobalt as described above.

以I−・の条件て脱鉄反応を准?1さDわG1、比Ij
・シ的小型の装置て連続的に/〜/Iu:r間で液中の
マ/ガ゛ンθ度を0.0/g、/l以Fに糸11持しズ
ニ:I”、 1.’にM′七回稈度のl1itt n、
を?Jなうことがてきる。
Is the iron removal reaction possible under the following conditions? 1saDwaG1, ratioIj
・Continuously use a small device to adjust the magnification/gain θ degree in the liquid between / and /Iu:r to 0.0/g, and hold the thread 11 from /l to F:I", 1 .' to M' 7th culm degree l1itt n,
of? J Something will happen.

以1・−1’)f: /l14例につりゾC比較例に共
に説明する。
Hereinafter, 1.-1') f: /l will be explained together with 14 examples and a comparison example.

実施例 1′1、おにびΩ、Og/fのマンガンを1・鈍物とし
てafJ′4るニノラルおよびコバルトの硫酸酸性溶液
全、該溶液中のマンガンを殆んと二酸化マンガンとして
?!; h<うさせ1;食言l′、酸化マンガンをその
ま\懸濁させた溶ン+’tとし、た後、該溶液から鉄を
1余大するために、該溶tff、とNj 、、 Co、
Feをそれぞれ、3g、10.9各屯h;%含イJする
含ニッケル、コバルト穀物を約/30g/lのスラリー
と゛した酸化剤と、PH調整用として汐5.?θg/l
の水酸化ナトリウト溶、′^とを連続的に、攪拌機をf
+iifえた反応槽に供給し、」−バーフローした液は
別の反応槽に受は入れ、前と同様に水酸化すトリウム溶
液によるPH調整を?Tなって脱鉄反応を終j−させる
。反応終液はやはりこの反応槽からオーバーフロ・−に
よって−III又する。
Example 1'1, Onibi Ω, Og/f of manganese as 1. afJ'4 as a blunt substance, a total of the sulfuric acid acidic solution of ninoral and cobalt, with most of the manganese in the solution as manganese dioxide? ! ; h<Usase 1; Eating l', manganese oxide is suspended as it is as a solution+'t, and then, in order to increase the amount of iron from the solution by 1, the solution Tff and Nj, , Co.
An oxidizing agent containing nickel-containing and cobalt grains containing 3 g/l and 10.9 ton h;% of Fe respectively, and a slurry of about 30 g/l of nickel-containing cobalt grains, and 5.0 g/l of nickel and cobalt grains for pH adjustment. ? θg/l
of sodium hydroxide solution, ′^ and continuously, using a stirrer f
+iif was supplied to the reaction tank, and the liquid that flowed was received in another reaction tank, and the pH was adjusted with thorium hydroxide solution as before. The iron removal reaction is completed at T. The final reaction solution is also removed from this reaction vessel by overflow.

第1表に各側の供試酸性液の組成および反応条f′1.
を、また第2表に第1表中の各側に対応する反1ノシ・
終液の濃度および脱鉄穀物の品位を示す。
Table 1 shows the composition of the acidic liquid tested on each side and the reaction condition f'1.
, and Table 2 shows the anti-1-no-shi corresponding to each side in Table 1.
It shows the concentration of the final solution and the quality of the iron-free grain.

第     /     八 第    ノ    人 第1表および第2表から明らかなように、好ましい反ル
L:条件で得られた実す市例/、ノおよび3の反1厄、
終液はいずれも充分脱鉄されているのみならず、マンガ
ン濃度もfj(試酸性液中のそれと同様の0.0/P/
を以1:が糾持されている。しかしなから、几巾(例/
ては11ニツケル、コバルト穀物の添加を行4J゛わな
かったので、充分酸化還元電位が]二昇せず、?ぞっで
供試酸性液中には0.00りg/J Lかなかったマン
ガン濃度が懸濁していたマンガンの溶解により反1心終
7(1,中にはθ、0.3g/lに増大している。また
、Jt較例)では逆に含ニッケル、コハルl−殿46の
添加(1;が多ずぎるので、反応終液のマンガン濃度は
充分低いけねとも、未反応の含ニッケル、コバルトji
i才物が脱鉄11り物に混入していることが判る。
As is clear from Tables 1 and 2, the preferred anti-ru L: fruit market example obtained under the condition /, ノ and 3 anti-1 misfortune,
Not only is the final solution sufficiently deironated, but the manganese concentration is fj (0.0/P/, which is similar to that in the test acidic solution).
1: is maintained. However, because of this, it is difficult to
However, since 11 nickel and cobalt grains were not added at 4 J, the redox potential did not increase sufficiently. The manganese concentration in the test acidic solution was 0.00g/JL, but due to the dissolution of the suspended manganese, the concentration of manganese was 0.3g/L. In addition, in Jt comparison example), conversely, there was too much addition of nickel-containing Kohar l-46 (1;), so even if the manganese concentration in the final reaction solution was low enough, unreacted Contains nickel and cobalt
It can be seen that I-Saimono is mixed in with the iron-free 11 items.

以1−の例は、ニッケルおよび=Jパル) 全溶解+:
3(1’ f ル4ii1 酷l’I’Q性r* 液ニ
、ニッケルおよびニーrバルトを含イJする醇化剤を適
用する場合について説明したか、ニッケルとコバルトの
いずれかのみを含有する1装化剤にも同様の条件で反応
させることができる。±1こ、ニッケルおよびコバルト
k 溶1眸>イjする塩酸酸性溶液につい−(も5’;
’i似の条f′lてJl−::、J川てきる。
The examples in 1- below are nickel and = Jpal) Total dissolution +:
3 (1' f Le 4ii1 Severe l'I'Q property r* The case where a thickening agent containing liquid nickel and nickel is applied is explained, or it contains only either nickel or cobalt. The reaction can also be carried out under similar conditions for a charging agent.
'i similar article f'lte Jl-::, J river comes.

以上から明らかなように不発明は、二〕うル市、f]j
′rオ′l’J針工(Hyにおける陽極廃液か「、−1
バルトを・除去する際に必然的に生成するl、:jh拘
る一1処理l[kにス、1【7て/%程程度トド少11
1添加するのI)で、1へ々ノ(埋I伐中に懸濁してい
る二酸化マンガンが溶解1−るのを完全に防市しつつ上
記添加物中のニッケルと:1バルトとを回収するものて
あり、ひいては従来脱鉄1:稈でマンガン濃度が増大し
たために+j& %! 鉄1稈の後工程例えば塩化コバ
ルト溶液か「、σ)=IパルI・の電解採取の工程で必
須とされる1記塩化:Iバルト溶液中の脱マンガン処理
の下数等を皆無にするか大幅に減少させるものであり、
経済的価値が極めて高い。
As is clear from the above, non-invention is
'rO'l'J Needlework (Anode waste liquid in Hy?',-1
The process that is inevitably generated when removing the bart is approximately 7% less than 11.
By adding 1), nickel and balt in the above additives are recovered while completely preventing the dissolution of manganese dioxide suspended in the burial. Conventional iron removal 1: Due to the increased manganese concentration in the culm, +j&%! 1. Chlorination: It eliminates or greatly reduces the number of demanganizing treatments in the Baltic solution,
It has extremely high economic value.

出願人  住友金属鉱+llI、式会社代理人 弁理]
:中伺11A成
Applicant Sumitomo Metal Mining + llI, company agent patent attorney]
:Nakavisit 11A

Claims (1)

【特許請求の範囲】[Claims] (1)  ニッケルおよびコバルトを主成分として溶f
W 音有し、ニー酸化マンガンが1カ子として(V濁し
、11つ鉄をイく鈍物とし−C溶解な有する硫酸酸性溶
C命から鉄を4(酸化物として沈殿公然する方法におい
て1.1に溶液の酸化還元′旧位がq夕0〜/〕!;Q
mV(vs、 s、 C,E、 )になるように主成分
として水1浚化第2ニッケル、水酸化第λコバルトの一
方又は両方をaイjする酸化剤を添加しながら、該溶j
(17,のPI−1をアルカリにより3.0〜/l−,
5に調整することを特徴とするニッケルおよびコバルト
を含イJする酸性溶液から鉄を除去する方法。
(1) Molten f containing nickel and cobalt as main components
In the method of precipitating iron from sulfuric acid acidic solution C, which has a sulfuric acid solution and dissolves iron as an oxide, .1, the oxidation-reduction 'old position of the solution is q 0~/]!;Q
mV (vs, s, C, E,
(17, PI-1 with alkali at 3.0~/l-,
5. A method for removing iron from an acidic solution containing nickel and cobalt.
JP15774582A 1982-09-10 1982-09-10 Method for removing iron from acidic solution containing nickel and cobalt Granted JPS5947338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15774582A JPS5947338A (en) 1982-09-10 1982-09-10 Method for removing iron from acidic solution containing nickel and cobalt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15774582A JPS5947338A (en) 1982-09-10 1982-09-10 Method for removing iron from acidic solution containing nickel and cobalt

Publications (2)

Publication Number Publication Date
JPS5947338A true JPS5947338A (en) 1984-03-17
JPS6136569B2 JPS6136569B2 (en) 1986-08-19

Family

ID=15656420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15774582A Granted JPS5947338A (en) 1982-09-10 1982-09-10 Method for removing iron from acidic solution containing nickel and cobalt

Country Status (1)

Country Link
JP (1) JPS5947338A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001515146A (en) * 1997-08-15 2001-09-18 コミンコ・エンジニアリング・サービス・リミテッド Method of hydrometallurgical extraction of nickel and cobalt from chloride-assisted sulfide ore or laterite ore

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001515146A (en) * 1997-08-15 2001-09-18 コミンコ・エンジニアリング・サービス・リミテッド Method of hydrometallurgical extraction of nickel and cobalt from chloride-assisted sulfide ore or laterite ore

Also Published As

Publication number Publication date
JPS6136569B2 (en) 1986-08-19

Similar Documents

Publication Publication Date Title
JP3203707B2 (en) Method for recovering valuable metals from oxide ore
JP3385997B2 (en) Method of recovering valuable metals from oxide ore
TW201739097A (en) Processing method for lithium ion battery scrap
MXPA00005341A (en) A method of purifying acid leaching solution.
US4097575A (en) Roast-neutralization-leach technique for the treatment of laterite ore
NO141417B (en) PROCEDURES FOR EXCLUDING OXYDIC, MAGNESIUM AND NICKEL COBBOL-CONTAINING ORE
JPH024663B2 (en)
JPH11277075A (en) Method for removing/fixing arsenic existing in iron sulfate solution
US3914375A (en) Method of removing selenium from copper solution
JPS59164639A (en) Separation of arsenic
US10662502B2 (en) Systems and methods for improved metal recovery using ammonia leaching
CN113481541B (en) Method for recovering manganese metal by using electrolytic manganese slag leachate
JP2011129336A (en) Recovery method of manganese from battery
JP4215547B2 (en) Cobalt recovery method
CN111180819B (en) Preparation method of battery-grade Ni-Co-Mn mixed solution and battery-grade Mn solution
CA1147970A (en) Process for cobalt recovery from mixed sulfides
JPS5947338A (en) Method for removing iron from acidic solution containing nickel and cobalt
CN113921932B (en) Precursor solution, preparation method thereof, positive electrode material and lithium ion battery
US1286400A (en) Process of treating ores.
CN113897490A (en) Defluorination method and application of lithium ion battery anode material leaching solution
JPS6345130A (en) Removal of zinc from aqueous solution acidified with sulfuric acid
JPS5943535B2 (en) Method for removing manganese from acidic solutions containing nickel and cobalt
CN111807391B (en) Method for preparing magnesium sulfate by utilizing gold concentrate biological oxidation waste liquid
JPH10263557A (en) Treatment of selenium-containing waste water
JP4399628B2 (en) Treatment method of zinc leaching residue