JPS5947009A - Manufacture of h-beam with thin web thickness - Google Patents
Manufacture of h-beam with thin web thicknessInfo
- Publication number
- JPS5947009A JPS5947009A JP15679782A JP15679782A JPS5947009A JP S5947009 A JPS5947009 A JP S5947009A JP 15679782 A JP15679782 A JP 15679782A JP 15679782 A JP15679782 A JP 15679782A JP S5947009 A JPS5947009 A JP S5947009A
- Authority
- JP
- Japan
- Prior art keywords
- web
- flange
- temperature
- cooling
- flanges
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B45/00—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
- B21B45/02—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
- B21B45/0203—Cooling
- B21B45/0209—Cooling devices, e.g. using gaseous coolants
- B21B45/0215—Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/08—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Metal Rolling (AREA)
Abstract
Description
その目的はウエブ波がなく形状の優れたウエグllIl
肉H形鋼の製造方法k J)A供することにある。
周知の連シ断面係数が大きく強笈に比してれUi′性の
優れl辷つエブ薄肉H形鋼は、圧延による製造方法では
ウェブ波の問題があってtFj場に供給された例がない
。
また、溶接法によるビルドアップH形鋼ではやはり溶接
歪の問題やコストが高いなどの難点がある。
さて、圧延製造法によると、一般に前記ウェブ波の発生
は、フランジとウェブとの冷却過程における温度差に起
因する残留応力によって、ウェブの座屈限界金越える圧
縮内部応力がウェブに発生するためであって、そのため
フランジとウェブの温度を等しくするような冷ムIJ牛
段が提案されている。
しかしながらウエブンの肉H形鋼では、7ランノが比較
的厚くしかもウェブが博く、さらにウェブ高さが高いた
め、フランジとウェブの+1.A度差を少なくすること
が非常に困難で、どうし−Cも残留応力が犬きくなυ、
これに対しウェブの座M(限界が低いためウェブ波の抑
制は極めて困難である。
以下図面に従ってさらに説明する。
第1図(a) l (b)はウェブ合.肉H形鋼のウェ
ブ波に関する概略説明図である。第1図(、)に小ず;
!liリウエウェ、7ランジ2a t Zbを有−ノー
る圧延H形鋼18では、フランジ厚Ftに比しウェブ厚
Wtか薄〈さらにウェブ高さWHが高い場合たとえば・
4日」;41(b)に示す如く、熱%: f、l: ”
]’ f+j(であるが、ウェブIにウェブ波3が生じ
て製品になりにくいことkA、前述の通りである。而し
て、本発明においてウェブ博肉H形用とはウェブμ%
Wjとウェブ内+1J IIの比Wt/uが0.017
以下のもの全指し、そのτ」法bl’ 5t”、理由(
rよ前記比 t/uがO,017以上でりればウェブ波
が弁、生しにくく、0.(J17以下になると経験的に
ウェブ波が発生ずることを知見しているからでわる。
ウェブ波の発生はウェブ挫屈によるもので、ウェブ挫屈
応力は前記比wt/uの自乗T、!IIち(”’t/、
) 2に概略比例し、この(t/u) が3×10
以下になると通常の熱間圧殖−空冷の工)llではウ
ェブイノνが発生する。
次に圧延H形鋼の残留応力の発生につき>v’−性的に
説明する。第2図(a)は横軸に助間葡、縦軸にThe purpose is to create a web with an excellent shape without web waves.
Method for manufacturing H-beam steel J) A. The well-known thin-walled H-beam steel, which has a large continuous section modulus and superior Ui' properties compared to steel, has problems with web waves when manufactured by rolling, and there are examples of it being supplied to the tFj field. do not have. In addition, build-up H-beam steel produced by welding still has drawbacks such as welding distortion and high cost. According to the rolling manufacturing method, the occurrence of web waves is generally caused by the generation of compressive internal stress in the web that exceeds the buckling limit of the web due to residual stress caused by the temperature difference during the cooling process between the flange and the web. For this reason, a cold IJ step has been proposed that equalizes the temperature of the flange and web. However, in the case of web H-beam steel, the 7-run is relatively thick and has a wide web, and the web height is high, so the difference between the flange and the web is +1. It is very difficult to reduce the difference in A degree, and the residual stress between -C is too large υ,
On the other hand, it is extremely difficult to suppress web waves because the web seat M (limit) is low.It will be further explained below with reference to the drawings. FIG.
! In the rolled H-section steel 18 with 7 flange 2a t Zb, the web thickness Wt is thinner than the flange thickness Ft.
4 days''; as shown in 41(b), heat %: f, l: ”
]'f+j(However, as described above, web wave 3 is generated in web I and it is difficult to form a product. Therefore, in the present invention, web H type H type is defined as web μ%
The ratio Wt/u of Wj and +1J II in the web is 0.017
Refers to all of the following, its τ" method bl'5t", reason (
If the ratio t/u is 0.017 or more, it is difficult for web waves to form, and the ratio is 0.017 or more. (This is because we know from experience that web waves are generated when the temperature is J17 or lower. The generation of web waves is due to web buckling, and the web buckling stress is T, the square of the above ratio wt/u! IIchi(”'t/,
) is roughly proportional to 2, and this (t/u) is 3×10
When the temperature is below, web ino ν occurs in the normal hot pressing-air cooling process). Next, the generation of residual stress in rolled H-section steel will be explained in terms of >v'. In Figure 2 (a), the horizontal axis is Sukema, and the vertical axis is
【21
4度と温度差をとったもので、4はフランジ湿度、5は
ウェブ温度、6I:j、水冷開始後のフランツ温度を示
し、7はフランツとウェブの+7.i冒)SH差、)N
IJフランツ水冷開始後のtt、A度差金示す。
熱延終了後の初期の時間Aでitフランツに1」−縮応
力、ウェブに引張応力が生ずるV′114“犯2図(b
)に示す。この図は空冷におけるI4形(1・11の側
面図について残留応力を説明する梅弐図で、中立111
11+ 9 v、中心として右側に圧縮応力、左側に引
張応力を示す。
従って時間Aではウェブ(では火器10で示ず引張応力
、フランツには実線11で示す圧縮応力がかかっている
。時間が経過して時間Bではウェブとフランジの温度差
が開くので、ウェブの引張応力12は降伏点13を越え
、フランジの圧縮応力14は降伏点15を越え、塑性歪
が生ずる。16は中立軸である。次に温度差が小さくな
り始めた時間Cでは前記塑性歪のため応力のない状態と
なり、さらに時間りまで冷却が進行した時は前記塑性歪
に起因して、フランツに引張応力17、ウェブに圧縮応
力18が生ずる。その状態が旧聞F’(5経て、常温に
達する時点Eまでa絖し、大きな圧縮応力19がウェブ
に、大きな引張応力20がフランジQて残留する。21
は中立軸全示す。第21’2.1(c)はフランツが変
態したのちのフランツ水冷時の応力変化を示すもので、
時間りからフジンノ水冷を開始した場合、フランジとウ
ェブの温度差が逆の負(つ゛まシウェプ温度がフラン・
)温度より高く々っている)となっている例金7J″、
シ、フフンノ刀ぐ冷を終了する時間Fにいたるまでに、
ウェブの圧縮応力22は降伏点2:3を越えウェブに圧
縮の塑性変形を生ずる。25,28e、j、中立軸を示
す。
しかしながら、かかるフランツ水?省は、残゛醒応力の
絶対イ1改を不妊くすることf ’HjJ能とする。つ
まり空冷の際の常温に庫した時間Eでの9.u F拐の
ウェブ圧縮応力19、フランジ引張応力20に比して、
フランツ水6月のウェブ圧縮応力2G、フランジ引張応
力27全本例の如く非常に小δくすることができる。
fjil記贋5記動5明らかなように、応力の絶対値の
小さい時間Bに到達するまでにフン7ノとウェブの温度
差を少なくして残留応力の発生を少・ユ・くする手段や
、ウェブに圧縮応力が蓄積δれている段階においてフラ
ンジ′ff:強制冷Ill Lフランツとウェブの温度
を急速に接近あるいは逆転せしめてウェブに圧縮の塑性
変形を生せしめ応力分布を変える手段が有効であること
が判る。
そこで採用される手段としては、
(1) フランジ強制冷却
(2) ウェブ加熱
(3) ウェブ保温
などが考えられる。
そこで本発明者等はウェブ薄肉)■形鋼につき熱反射板
を用いてウェブ保温奮試みたが、ウェブ厚さの薄いH形
鋼即ちウェブ内申560wn、ウェブ厚さ6調のH形鋼
ではウェブ波の発生を抑tlilJすることに成功しな
かった。また、フランジ強制水冷を試みたが、やはシ同
様であった。
そこでフランジ強制水冷に加えウェブな:抑圧板によっ
て挟持し機械的に拘束して変形を抑jllljLウェブ
波を発生させない方法即ち本発明の方法全開発した。
本発明の方法は、熱間圧延したウェブ薄肉H形@金、フ
ランジ湿度がArl変態点以下〜250℃以上、ウェブ
温度が550℃〜100℃の温度領域において、ウェブ
全直接接触形押圧板により挾持し該ウェブ全機械的に拘
束しつつフランツタ(1川面を強制水冷し、ウェブ波の
発生を抑止すること′ff:%徴とするウェブ薄肉H形
鋼の製造方法である。
以下図面に従っで本発明をさらに詳細に隨、明する。
第3図は本発明の方法を実施する装置の一実施例の概要
図であシ、29はウェブ3(J、フランツ31a、31
bを有するH形鋼で、32a、32bは接触突起33a
r 33b + 33c + 33dffiVniえ
図示していない抑圧装置によってウェブ30の上下に押
しつけられている直接接触形押圧板(以下単に押圧板と
云う)である。34 a 、 34 b (II。
ノズル群35a 、35bを備えた冷却ノズル函で、制
御バルブ36a 、36bi介して給水管37 a 、
37bに接続され、7ランジ31a、31bの外側に
冷却水を噴霧する。
H形鋼は図示していないロールガングにより仕上圧延機
から強’1il)玲却場に運ばれ、前記ノズル群35a
、35bによシ強制冷却される。この際前記押圧板3
2a 、32bによってクコ−1300部分が接触突起
33a〜33dによっで’3+、b (挟持されている
ため、前記ウェブ波3に1発生しないかもしくは発生し
ても極めて僅かとなる。
次にフランジ冷却について好適な手順ケ示す。
熱間仕上圧延機を出たウェブ尚肉H形鋼は逐次放冷によ
って温度低下するが、該H形鋼のフランジ温度がArl
変態点以下〜250℃以上、ウェブ温度が550〜10
0℃の温度領域においてウェブ拘束とフランジ外側冷却
全実施するが、フランジ外側の冷却開始温度1゛lと冷
却終了温度T2の間の温度条件TI−’r2が次の(1
)式を満足するように冷却すると良い結果が得られる。
ここにAW;ウェブの断面積
AF:フランジの断面私
σy;ウェブの降伏点(水冷終了時)
σr;常溝時のウェブ残留応力
σt;空冷状j、+JjでウェブがZ!(?i 終了時
の温度−まで低下したときのフジ7)とウーノの温度差
ΔTによる応力(サイズ別にね’7 Q目1111から
予測設定)
Tl;水冷開始714度
T2;水冷終了温度
TI−rl’12;フランジの必要冷却温度ΔTW;フ
ラン・ゾ水冷中に低下するウェブの、、II7を度(経
験値から予測設定)
α :線膨張係数
E ;ヤング率
R,In2;常数項で
R1=O
R2=400
本発明において7ランジ外側面のQ力11j+1始温度
(jAr1変態点以下とする理由は、Arl 変態点よ
り高温で冷却を開始すると材質欠陥を生ずるためであり
、また250℃見、上とするのは、25 (1’U以下
であると目的とするウェブ波の抑制が困難となるからで
ある。さらにウェブ温度f 550℃〜1.00℃とす
るのは、7ランジ温度との関係において、550℃以上
ではウェブ拘束の効果がなく、また100℃以下では本
発明によってウェブ波全抑1tllすることが不可能と
なるためである。いずれにしても本発明の温度領域は、
第2図において説明した通りフランジとウェブの温度差
が要点であり、変態域および応力全考慮して前記温度領
域内において冷却開始温度を設定することが望ましい。
本発明において、温度条件を好適にするためには、本発
明の許容条件内においてフランジおよびウェブの保温又
は加熱あるいは時として冷却金加えても差支えないが、
なるべく熱延まま自然放熱過程において温度条件を最適
化することが好ましい。
さて、前記直接接触形押圧板については、断熱性の材料
で構成されている場合、ウェブとの接触面積は広くても
良いが、機械的強度の点から熱伝導率の高い金属材音用
いる際は、ウェブとの接触面積はすくない方が望ましい
。従って1(11記)6施例(第3図)では接触突起(
条もしく iJ、線又は点J、ソ触)を用いて好適な結
果ライ!)だ。接触部位や(冴力虫面積、接触点はよシ
少ない方が良いが、ウェブ波防止と云う目的達成のため
には広く分布θせた方が好結果が得られる。
次に前記押圧板による被押圧H形6”rFq Cす1イ
11位長さ当9の押圧力P(ton/、、)は次式によ
って求められる。
P=に−Wt
K二常数(通常0.03 to”7m 、mm3)〜v
、:ウエブ厚(叫)
また本発明において前記接触突起33 a =3 :3
dはウェブ曲り量として3 tmn 14度の直線性を
保つ範囲において、すべてがウェブに接触し−Cいなく
とも良いことが認められた。
次にフランジ外側強制冷却の実施例と自然冷ハ1月(空
冷)との比較を次の第1表に示す。
第1表のウェブ縛肉H形鋼の寸法は、ウェブ高さ598
間、フランジ巾】96wn、ウェブ1駅6朔、7ランジ
厚19闘であり、冷却水■i密度は195 l/m2r
minである。
次に本発明にかかる実施例装量1′についで説明−Jる
。
第4図と第5図は、粗および仕上圧タル機によって熱間
圧延され熱間鋸断機によって19[定寸法に切断された
ウェブ錫肉H形鋼38に)・」シラニブ拘束、フランジ
強制水冷する装置の1111面図およ(ド1に面図であ
って、39 a 、 39 nr;J’、JR送ロール
、4(la。
40bは直接接触形押圧板、41a、4]nは前記抑圧
板に固着された接触笑起で、42a、42bは前記押圧
&41a、41nに取付けられたピストンロンドで、シ
リンダー43a、43hと共に前記押圧板40 a 、
40 bを介して接触突起41a〜4]nをH形鋼3
8のウェブ44に押しつける機能金儲えている。
前日己シリンダー43a 、43bは補強板45を有す
る剛性の高いビーム46に固着されており、該ビーム4
6は支持ビーム47によって支持され、該支持ビーム4
7は支持柱48に剛に支持されてイル。43c〜43f
は前記ピストン及びシリンダーに代表される抑圧装置と
同様の装置であるので説明を省略する。
前記搬送ロール39 a r 39 nの下方にはビッ
ト49が設けられておシ、該ビット49の作業床50に
は前記ピストンしラド42b1シリンダー43bによシ
下部押圧板40’ bが支持されている。
51はシリンダー43bの台座を示す。
搬送o−ル39a+39bは片持軸受装置52a。
52bに支持されでいるので、下部抑圧板40bの昇降
を妨げることはない。53a 、53bはフランジ外側
の冷却ノズル函で、給水管54a。
54bは支持面55a 、55bに通水自在に接続され
ておシ、該支持面55a 、55bは、給水本管56a
、56bに昇降自在に支承されている。
従ってH形鋼38の寸法が変ってフランジd」の異なる
場合でも、適切な位置に冷却ノズル函53a。
53bt−もって来ることが出来る。また支灼函55a
* s5bと給水%’ 54 a r 54 bとの
間にテレスコープ式の伸縮自在通水継手を用いると冷却
ノズル函53a 、53bを111後進自在となしうる
ので、H形/A38のウェブ高さが異なった場合でも適
切な1%i壽距1lIIを保つことが出来る。6r却i
/Ct、i水スゾレイ、気水スプレィ等必値な冷却IJ
どにあわせて適宜手段を採用する。
さて、^11記搬送ロール39a〜39nによって押圧
板’ 40 a〜40bの間に運はれて来たH形鋼38
に対し、あらかじめ待機位置にあっ/ζ」二部押圧板4
0 a i、J:、シリンダー43a1 ピストンロッ
ド42 & fK介して下降され、同時に抑圧板下部4
0bはシリンダー43b1 ピストンロッド42bによ
シ上昇され、それぞれH形鋼38のウェブ44の上下面
に接し所定の押圧力がウェブ44に加えられる。ついで
H形鋼38の7ランノ外側面に冷却ノズル1t53a、
53bi介して気水llft’A’;が行なわれる。こ
の操作子1−は同時でも、あるいは時間的に多少前後し
ても支部ハないことが1沼められた。
第6図、第7図は抑圧板が多数分1III1. してい
る実施例装置の側面図および正面図であシ、第4図、第
5図の如くウェブの長軸方向に伸ひる長い条接触突起と
異なシ、接触突起4 ]、 c 、 41 dは複叙の
刃型突起全形成しておシ、搬送ロール39a〜39nの
間からH形鋼38の幅方向でウェブ44に上下から接触
している。第6図、第7図において、第4図、第5図と
同一番号(送り文字は異なる場合がある)又は同一符号
のものはわ、ν1j1:が同一であるため説明は省略す
る。
第6図、第7図の装置では搬送ロールはなるべく小径の
ものを用い、シリンダー類は任意数のものが同時作動す
るよう制御装置が付加きれている。
以上詳細に述べた如く、本発明の方法によれば良質の経
済性に富むウェブ博肉H形鋼全提供することができる。[21
4 is the flange humidity, 5 is the web temperature, 6I:j is the Franz temperature after the start of water cooling, and 7 is the +7. i)SH difference,)N
The tt and A degree difference after starting IJ Franz water cooling are shown. At the initial time A after the end of hot rolling, a 1"-compression stress is generated in the Franz and a tensile stress is generated in the web.
). This figure is a Ume-2 figure that explains the residual stress for the side view of the I4 type (1.11) in air cooling, and the neutral 111
11+9 v, with compressive stress on the right and tensile stress on the left centered. Therefore, at time A, tensile stress is applied to the web (not shown in the firearm 10), and compressive stress is applied to Franz, shown by the solid line 11.As time passes and at time B, the temperature difference between the web and the flange increases, so the web tension The stress 12 exceeds the yield point 13, the compressive stress 14 of the flange exceeds the yield point 15, and plastic strain occurs.16 is the neutral axis.Next, at time C when the temperature difference begins to decrease, due to the plastic strain When the stress-free state is reached and cooling proceeds for a further time, a tensile stress of 17 is generated in the Franz and a compressive stress of 18 is generated in the web due to the plastic strain. Until point E is reached, a large compressive stress 19 remains in the web and a large tensile stress 20 remains in the flange Q. 21
indicates the entire neutral axis. No. 21'2.1 (c) shows the stress change during Franz water cooling after Franz transformation,
If Fujino water cooling is started at a certain time, the temperature difference between the flange and the web will be negative (that is, the web temperature will be lower than the flange temperature).
) is higher than the temperature), for example gold 7J'',
Shi, by the time F is reached when Fufunno Togurei ends,
The compressive stress 22 in the web exceeds the yield point 2:3 and causes compressive plastic deformation in the web. 25, 28e, j, neutral axes are shown. However, does it take Franz water? The Ministry is capable of sterilizing the absolute A1 change of residual awakening stress. In other words, 9. Compared to the web compressive stress of 19 and flange tensile stress of 20,
The web compressive stress 2G and the flange tensile stress 27 of Franz Water June can all be made very small δ as in this example. fjil record 5 record 5 As is clear, there is a means to reduce the generation of residual stress by reducing the temperature difference between the feed 7 and the web before reaching time B where the absolute value of stress is small. At the stage where compressive stress is accumulated in the web, it is effective to rapidly bring the temperatures of the flange and the web closer to each other or reverse them to cause compressive plastic deformation in the web and change the stress distribution. It turns out that. Possible means for this purpose include (1) forced flange cooling, (2) web heating, and (3) web insulation. Therefore, the present inventors tried to insulate the web by using a heat reflecting plate for the thin-walled (thin-web) section steel. We were not successful in suppressing the generation of waves. I also tried forced water cooling on the flange, but the same result occurred. Therefore, in addition to forced water cooling of the flange, the web was clamped and mechanically restrained by suppression plates to suppress deformation and prevent the generation of web waves, that is, the entire method of the present invention was developed. The method of the present invention uses a hot-rolled web thin-walled H-shaped @gold, a flange humidity of below the Arl transformation point to 250°C or higher, and a web temperature of 550°C to 100°C, using a web full direct contact press plate. This is a method for manufacturing a thin-walled H-beam steel web in which the entire web is mechanically restrained and the web is forcibly cooled with water to suppress the generation of web waves. The present invention will be explained in more detail in the following. Figure 3 is a schematic diagram of an embodiment of an apparatus for carrying out the method of the present invention, and 29 is a web 3 (J, Franz 31a, 31
32a and 32b are contact protrusions 33a.
r 33b + 33c + 33dffiVni This is a direct contact type pressing plate (hereinafter simply referred to as a pressing plate) which is pressed against the top and bottom of the web 30 by a suppressing device (not shown). 34a, 34b (II. Cooling nozzle box equipped with nozzle groups 35a, 35b, water supply pipes 37a, 34b via control valves 36a, 36bi
37b, and sprays cooling water on the outside of the seven lunges 31a, 31b. The H-shaped steel is transported from the finishing mill to the rolling mill by a roll gang (not shown), and is passed through the nozzle group 35a.
, 35b. At this time, the pressing plate 3
2a and 32b, the wolfberry 1300 portion is held between the contact protrusions 33a to 33d by '3+, b (because it is held between the web waves 3, 1 does not occur in the web wave 3, or even if it does occur, it is extremely small.Next, the flange A suitable procedure for cooling is shown below.The temperature of the web-thickened H-beam steel after exiting the hot finishing rolling mill is gradually lowered by cooling, but the temperature of the flange of the H-beam steel is lower than Arl.
Below transformation point to above 250℃, web temperature 550-10
Web restraint and cooling on the outside of the flange are all carried out in the temperature range of 0°C, but the temperature condition TI-'r2 between the cooling start temperature 1゛l and the cooling end temperature T2 on the outside of the flange is as follows (1
) Good results can be obtained by cooling to satisfy the formula. Here, AW; Cross-sectional area of the web AF: Cross-sectional area of the flange I σy; Yield point of the web (at the end of water cooling) σr; Residual stress of the web in normal groove σt; Web in the air-cooled state j, +Jj is Z! Stress due to the temperature difference ΔT between Fuji 7 and Uno when the temperature drops to (?i end temperature -) (by size '7 Predicted setting from Q 1111) Tl; Water cooling start 714 degrees T2; Water cooling end temperature TI- rl'12; Required cooling temperature of flange ΔTW; Furan-Zo of the web that decreases during water cooling, II7 degrees (estimated setting from empirical values) α: Coefficient of linear expansion E; Young's modulus R, In2; R1 in constant terms = O R2 = 400 In the present invention, the reason why the Q force 11j + 1 initial temperature of the outer surface of the 7 langes is set to below the transformation point is that starting cooling at a temperature higher than the Arl transformation point causes material defects, and , is set above 25 (1'U) because it becomes difficult to suppress the desired web waves.Furthermore, the web temperature f is set at 550°C to 1.00°C because 7 range temperature This is because, in relation to ,
As explained in FIG. 2, the temperature difference between the flange and the web is the key point, and it is desirable to set the cooling start temperature within the temperature range, taking into account the transformation range and all stresses. In the present invention, in order to make the temperature conditions suitable, the flange and web may be kept warm or heated within the allowable conditions of the present invention, or cooling may be added at times.
It is preferable to optimize the temperature conditions during the natural heat dissipation process during hot rolling. Now, regarding the above-mentioned direct contact press plate, if it is made of a heat insulating material, the contact area with the web may be wide, but from the viewpoint of mechanical strength, when using a metal material with high thermal conductivity, It is desirable that the contact area with the web be small. Therefore, in Example 1 (Article 11) 6 (Fig. 3), the contact protrusion (
Use the row or iJ, line or point J, or touch) to get the desired result! )is. Although it is better to have fewer contact areas and contact points, in order to achieve the goal of preventing web waves, it is better to have a wider distribution θ.Next, using the pressure plate The pressing force P (ton/,) of the pressed H type 6" rFq C 1 I 11 Length 9 is obtained by the following formula. , mm3)~v
, : Web thickness (scream) Also, in the present invention, the contact protrusion 33 a = 3 : 3
It was found that within the range where d maintains the linearity of 3 tmn 14 degrees as the amount of web bending, everything contacts the web and -C does not need to be present. Next, Table 1 below shows a comparison between an example of forced cooling on the outside of the flange and natural cooling (air cooling). The dimensions of the web-bound H-section steel in Table 1 are web height 598
The width of the flange is 96wn, the web 1 station is 6mm, the thickness of 7 lunges is 19mm, and the cooling water density is 195 l/m2r.
It is min. Next, an embodiment of the loading amount 1' according to the present invention will be explained. Figures 4 and 5 show a web tin-walled H-beam 38 that was hot-rolled by a rough and finishing mill and cut to a fixed size by a hot-saw machine. 1111 side view of the water cooling device and (1) side view, 39a, 39nr; 42a and 42b are piston ronds attached to the presser plates 41a and 41n, which are attached to the presser plates 40a and 41n together with the cylinders 43a and 43h, respectively.
40b to the contact protrusions 41a to 4]n to the H-shaped steel 3
The ability to impose on the web 44 of 8 is making money. The previous cylinders 43a and 43b are fixed to a highly rigid beam 46 having a reinforcing plate 45, and the beam 4
6 is supported by a support beam 47, the support beam 4
7 is rigidly supported by a support column 48. 43c~43f
Since this is a device similar to the suppression device represented by the piston and cylinder, the explanation will be omitted. A bit 49 is provided below the conveyor rolls 39 a r 39 n, and a lower pressing plate 40'b is supported on the working floor 50 of the bit 49 by the piston rod 42b1 cylinder 43b. There is. 51 indicates the base of the cylinder 43b. The conveyor wheels 39a+39b have a cantilever bearing device 52a. Since it is supported by the lower suppressing plate 40b, the vertical movement of the lower suppressing plate 40b is not hindered. 53a and 53b are cooling nozzle boxes on the outside of the flange, and a water supply pipe 54a. 54b is connected to the support surfaces 55a and 55b so that water can freely flow therethrough, and the support surfaces 55a and 55b are connected to the water supply main pipe 56a.
, 56b so as to be movable up and down. Therefore, even if the dimensions of the H-shaped steel 38 change and the flange d'' is different, the cooling nozzle box 53a can be placed in an appropriate position. You can bring 53bt. Also, Shirobako 55a
*If a telescopic water flow joint is used between s5b and water supply%' 54 a r 54 b, the cooling nozzle boxes 53a and 53b can be moved backwards by 111 degrees, so the web height of H type/A38 Even if the values are different, an appropriate 1%i distance 1lII can be maintained. 6 r i
/Ct, i water ssolei, air water spray, etc. must-have cooling IJ
Adopt appropriate measures depending on the situation. Now, the H-shaped steel 38 carried between the pressing plates 40a and 40b by the transport rolls 39a to 39n described in ^11.
In contrast, the two-part press plate 4 is in the standby position in advance.
0 a i, J: Cylinder 43a1 is lowered via piston rod 42 & fK, and at the same time lower part of suppression plate 4
0b is raised by the cylinder 43b1 and the piston rod 42b, and comes into contact with the upper and lower surfaces of the web 44 of the H-shaped steel 38, respectively, and a predetermined pressing force is applied to the web 44. Next, a cooling nozzle 1t53a is installed on the outer surface of the 7-run H-shaped steel 38.
Air/water llft'A'; is carried out via 53bi. It was a nuisance that this operator 1- could not be used at the same time or even if there was a slight delay in time. In Figures 6 and 7, the number of suppression plates is 1III1. 4 and 5, the contact projections 4, c, and 41 d are different from the long strip contact projections extending in the longitudinal direction of the web, as shown in FIGS. 4 and 5. The blade-shaped protrusions are fully formed and contact the web 44 from above and below in the width direction of the H-beam 38 between the conveyor rolls 39a to 39n. In FIGS. 6 and 7, those having the same numbers (the leading characters may be different) or the same symbols as those in FIGS. 4 and 5 have the same ν1j1:, so a description thereof will be omitted. In the apparatuses shown in FIGS. 6 and 7, the diameter of the transport roll is as small as possible, and a control device is added so that any number of cylinders can be operated simultaneously. As described in detail above, according to the method of the present invention, it is possible to provide a high-quality, economical web wide-walled H-beam steel.
第1図(a) 、 (b)はH形鋼の横断面および縦断
面概要図、第2図(a) 、 (b) 、 (c)はH
形鋼の冷却過程における残留応力説明図、第3図は本発
明方法の実施要領説明図、第4図、第5図はオ・発明方
法全実施するための一実施例装置側面および正1Iji
概lir&図、第6図、8′X7図は異なった拠−施
イ(1]装置の側面および正面概略図である。
1・・・ウェブ、18・・・H形eM、2 A + 2
b・・シリンダ、3・・・ウェブ波、4・・・フラン
ツ温度、5・・・ウェブ温度、6・・・フランジ温ハt
17・・・フランツとウェブ温度差、8・・・フランジ
とウェブ砧1〜度差、9゜16.21,25.28・・
・中立幅1,10,12゜17.20,24.27・・
・引張応力、11 、14゜18.19,22.26・
・・圧縮応力、13,15゜23・・・降伏点、29・
・・II形蛯、30・・・ウェブ、31 a 、 3
l b ”・フランジ、32 a 、 32 b −直
接接触形押圧板、33a〜33d・・・接触突起、34
a 、 34 b ・・−冷却ノズル函、35a 、
35b・・・ノズル群、36a 、36b・・・パルプ
、378゜37b・・・給水管。
系 l聞
(b) 、((2)
$30
JOJ/ ffFigures 1 (a) and (b) are cross-sectional and vertical cross-sectional schematic diagrams of H-beam steel, and Figure 2 (a), (b), and (c) are H-beams.
Fig. 3 is an explanatory diagram of residual stress in the cooling process of shaped steel, Fig. 3 is an explanatory diagram of the implementation procedure of the method of the present invention, Figs.
Figures 6 and 8'X7 are side and front schematic views of the device with different bases (1): 1... web, 18... H-shaped eM, 2 A + 2
b...Cylinder, 3...Web wave, 4...Franz temperature, 5...Web temperature, 6...Flange temperature
17... Temperature difference between Franz and web, 8... Difference between flange and web 1 to 1 degree, 9° 16.21, 25.28...
・Neutral width 1, 10, 12° 17.20, 24.27...
・Tensile stress, 11, 14° 18.19, 22.26・
...Compressive stress, 13,15°23...Yield point, 29.
...II form, 30...web, 31 a, 3
l b ”・flange, 32 a , 32 b - direct contact type press plate, 33 a to 33 d... contact protrusion, 34
a, 34 b...-cooling nozzle box, 35a,
35b... Nozzle group, 36a, 36b... Pulp, 378° 37b... Water supply pipe. System 1 (b), ((2)
$30 JOJ/ff
Claims (1)
l変態点以下〜250℃以上、ウェブ温度が550℃〜
100℃の温度領域において、ウェブ全直接接触形押圧
抜によシ挾持し該ウェブを機械的に拘束しつつフランジ
外側面を強制水冷し、ウェブ波の発生を抑止すること全
特徴とするウェブ薄肉■1形鋼の製造方法。A hot-rolled web thin-walled H section steel is heated to a Franz temperature of Ar.
l Transformation point or lower to 250°C or higher, web temperature 550°C or higher
A thin web that is characterized by the fact that in a temperature range of 100°C, the entire web is clamped by direct contact pressure extraction, the web is mechanically restrained, and the outer surface of the flange is forcibly cooled with water, thereby suppressing the generation of web waves. ■1 Method of manufacturing section steel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15679782A JPS5947009A (en) | 1982-09-10 | 1982-09-10 | Manufacture of h-beam with thin web thickness |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15679782A JPS5947009A (en) | 1982-09-10 | 1982-09-10 | Manufacture of h-beam with thin web thickness |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5947009A true JPS5947009A (en) | 1984-03-16 |
JPS6243766B2 JPS6243766B2 (en) | 1987-09-16 |
Family
ID=15635521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15679782A Granted JPS5947009A (en) | 1982-09-10 | 1982-09-10 | Manufacture of h-beam with thin web thickness |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5947009A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60248818A (en) * | 1984-05-23 | 1985-12-09 | Nippon Steel Corp | Manufacture of h-beam having thin web |
JPS61119331A (en) * | 1984-11-14 | 1986-06-06 | Yoshizo Yamamoto | Method and device for annealing of casting made of aluminum alloy |
JPS62146216A (en) * | 1985-12-18 | 1987-06-30 | Sumitomo Metal Ind Ltd | Skid |
JPH04259327A (en) * | 1991-02-14 | 1992-09-14 | Sumitomo Metal Ind Ltd | Method for heating wide flange shape |
US5191778A (en) * | 1990-06-21 | 1993-03-09 | Nippon Steel Corporation | Process for producing thin-webbed h-beam steel |
US5259229A (en) * | 1990-06-21 | 1993-11-09 | Nippon Steel Corporation | Apparatus for cooling thin-webbed H-beam steel |
JP2000033423A (en) * | 1998-06-27 | 2000-02-02 | Sms Schloeman Siemag Ag | Method for minimizing internal stress minimizing and adjusting shape steel simultaneously method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01156087A (en) * | 1987-12-15 | 1989-06-19 | Fujitsu Ltd | Detection of end of printing paper on printer device |
-
1982
- 1982-09-10 JP JP15679782A patent/JPS5947009A/en active Granted
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60248818A (en) * | 1984-05-23 | 1985-12-09 | Nippon Steel Corp | Manufacture of h-beam having thin web |
JPH0521968B2 (en) * | 1984-05-23 | 1993-03-26 | Nippon Steel Corp | |
JPS61119331A (en) * | 1984-11-14 | 1986-06-06 | Yoshizo Yamamoto | Method and device for annealing of casting made of aluminum alloy |
JPS62146216A (en) * | 1985-12-18 | 1987-06-30 | Sumitomo Metal Ind Ltd | Skid |
JPH0459366B2 (en) * | 1985-12-18 | 1992-09-22 | Sumitomo Kinzoku Kogyo Kk | |
US5191778A (en) * | 1990-06-21 | 1993-03-09 | Nippon Steel Corporation | Process for producing thin-webbed h-beam steel |
US5259229A (en) * | 1990-06-21 | 1993-11-09 | Nippon Steel Corporation | Apparatus for cooling thin-webbed H-beam steel |
JPH04259327A (en) * | 1991-02-14 | 1992-09-14 | Sumitomo Metal Ind Ltd | Method for heating wide flange shape |
JP2000033423A (en) * | 1998-06-27 | 2000-02-02 | Sms Schloeman Siemag Ag | Method for minimizing internal stress minimizing and adjusting shape steel simultaneously method |
Also Published As
Publication number | Publication date |
---|---|
JPS6243766B2 (en) | 1987-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6720894B2 (en) | Steel sheet cooling method, steel sheet cooling device, and steel sheet manufacturing method | |
JPS5947009A (en) | Manufacture of h-beam with thin web thickness | |
JP6521193B1 (en) | Steel plate manufacturing equipment and steel plate manufacturing method | |
JP6915737B2 (en) | Manufacturing method of hat-shaped steel sheet pile | |
JPWO2002102537A1 (en) | Rail manufacturing method and manufacturing equipment | |
JP2002301501A (en) | T section and method for manufacturing the same | |
JP2007216251A (en) | Unequal legged angle iron of unequal thickness strength of which is different in long side and short side and method of manufacturing it | |
KR101064173B1 (en) | Cooling device of T-shaped steel hot rolling line, T-steel manufacturing equipment, and manufacturing method | |
JP3680652B2 (en) | Manufacturing method of H-section steel | |
JPH0910820A (en) | Method and device for cooling shape | |
JP3463614B2 (en) | Manufacturing method of H-section steel | |
KR100941848B1 (en) | Method of roughing mill for slab' gap | |
JP3671577B2 (en) | Manufacturing method of T-section steel | |
JP7207564B2 (en) | Coil skid and steel plate manufacturing method | |
KR102462023B1 (en) | Cooling method for reducing coil collapse in hot rolling mill of extra strength coil rolled steel | |
JP3496531B2 (en) | Manufacturing method of channel steel | |
JPS60200913A (en) | Manufacture of high tensile invert superior in weldability | |
JP2000061501A (en) | Manufacture of u-shaped steel sheet pile | |
JP6481671B2 (en) | Manufacturing method of linear steel sheet pile and linear steel sheet pile | |
JP2003205301A (en) | Unequal angle steel having unequal thickness, method and device for manufacturing it | |
JP2582748B2 (en) | Method for manufacturing thin web H-section steel | |
JPH11319945A (en) | Manufacture of steel plate and its device | |
KR0136170B1 (en) | Method for preventing loose winding of hot coil using water spray | |
JPH10216826A (en) | Manufacture of t-shape steel | |
JPH0692009B2 (en) | Shaped steel manufacturing method |