JP2007216251A - Unequal legged angle iron of unequal thickness strength of which is different in long side and short side and method of manufacturing it - Google Patents

Unequal legged angle iron of unequal thickness strength of which is different in long side and short side and method of manufacturing it Download PDF

Info

Publication number
JP2007216251A
JP2007216251A JP2006038101A JP2006038101A JP2007216251A JP 2007216251 A JP2007216251 A JP 2007216251A JP 2006038101 A JP2006038101 A JP 2006038101A JP 2006038101 A JP2006038101 A JP 2006038101A JP 2007216251 A JP2007216251 A JP 2007216251A
Authority
JP
Japan
Prior art keywords
unequal
flange
web
strength
short side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006038101A
Other languages
Japanese (ja)
Inventor
Kazutaka Kobayashi
一貴 小林
Kazuhiko Inoue
和彦 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006038101A priority Critical patent/JP2007216251A/en
Publication of JP2007216251A publication Critical patent/JP2007216251A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an unequal legged angle iron of unequal thickness in which the product strain is reduced and which has strength difference between the web and the flange in the unequal legged angle iron of the unequal thickness which is different in the thickness and the width of the web and the flange. <P>SOLUTION: By performing the controlled cooling of the flange (the short side) part while restraining the rolled stock of the unequal legged angle iron of the unequal thickness in every pass with a side guide in the front and the rear of an intermediate rolling mill which is arranged in the early stage of a finishing mill and the surface temperature of the flange (the short side) part in the front of the finishing mill is taken as 800-600°C. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、長辺と短辺の強度が異なる不等辺不等厚山形鋼およびその製造方法に関するものである。   The present invention relates to an unequal side unequal thick angle steel having different long side and short side strengths and a method of manufacturing the same.

造船所で大型船等の各種船舶を建造する際には、所定寸法に切断した厚鋼板を溶接して船体の外板をヒ゛ルトアッフ゜する。船体の外板には、その裏側長手方向にT型、L型等各種形状のロンジ材が溶接されて、外板を補強する構造となっている。   When building various types of ships such as large ships at shipyards, thick steel plates cut to the specified dimensions are welded to build up the outer plate of the hull. The outer plate of the hull is structured to reinforce the outer plate by welding long shapes of various shapes such as T-type and L-type in the longitudinal direction on the back side.

船体の外板補強に使用されるロンジ材の一つとして、不等辺不等厚山形鋼が用いられている。該不等辺不等厚山形鋼は、通常、熱間圧延方法で製造される。   As one of the long materials used for reinforcing the outer plate of the hull, unequal sides and unequal thickness steels are used. The unequal side unequal thick angle steel is usually manufactured by a hot rolling method.

一方、同じく船体用の補強材として用いられているT型ロンジ材は、素材を厚板等の鋼板から切出して、溶接法により製作される。従って、このT型ロンジ材は、必要に応じてフランジとウエブの強度を自由に組合わせることができるという利点があるが、溶接してT型形状にするため手間とコストがかかるという問題点がある。   On the other hand, a T-shaped longi material that is also used as a reinforcing material for hulls is manufactured by cutting a material from a steel plate such as a thick plate and welding it. Therefore, this T-type longe material has the advantage that the strength of the flange and the web can be freely combined as needed, but there is a problem that it takes time and cost to weld it into a T-shape. is there.

そこで、発明者等は、熱間圧延法によりフランジ(短辺側)とウエブ(長辺側)の強度が異なる不等辺不等厚山形鋼の製造方法を種々検討した。   Accordingly, the inventors have studied various methods for manufacturing unequal side unequal thick angle steel having different strengths of the flange (short side) and the web (long side) by hot rolling.

特許文献1には、不等辺不等厚山形鋼の水冷に関する技術が開示されている。具体的には、不等辺不等厚山形鋼のウエブ(長辺側)の厚さt、フランジ(短辺側)の厚さtがt≦15mmでかつt/t≧1.2の関係にある不等辺不等厚山形鋼を製造する際は、仕上げ圧延直後の各辺の温度が異なるため冷却中に大曲りやウエブ波を生じ易い。そこで、仕上げ圧延前の各辺をその厚さに応じて、ウエブよりフランジが急冷されるように、冷却速度を調整しながら冷却し、各辺の温度を変態点又はその直下で概ね等しくした後、軽圧下で仕上げ圧延をおこなうことにより、大曲りやウエブ波を防止するための冷却方法が開示されている。 Patent Document 1 discloses a technique related to water cooling of unequal side unequal thick angle steel. Specifically, the thickness t 1 of the unequal side unequal thickness angle steel and the flange (short side) thickness t 2 are t 1 ≦ 15 mm and t 2 / t 1 ≧ 1. When manufacturing unequal side unequal thick angle steels having a relationship of .2, the temperature of each side immediately after finish rolling is different, so that large bending and web waves are likely to occur during cooling. Therefore, after each side before finish rolling is cooled while adjusting the cooling rate so that the flange is quenched from the web according to the thickness, the temperature of each side is approximately equal at or below the transformation point. A cooling method for preventing large bending and web waves by performing finish rolling under light pressure is disclosed.

又、特許文献2にも不等辺不等厚山形鋼の圧延に関する技術が開示されている。これも、圧延途中及び圧延後に強制冷却を施すことにより、大曲を防止する冷却方法に関するものである。   Also, Patent Document 2 discloses a technique related to rolling of unequal sides and unequal thick angle steel. This also relates to a cooling method for preventing overturning by performing forced cooling during and after rolling.

よって、フランジ(短辺側)とウエブ(長辺側)の強度が異なる不等辺不等厚山形鋼を熱間圧延法により製造する方法に関する先行文献は見あたらない。
特開昭53−40670号公報 特開昭53−55458号公報
Therefore, there is no prior literature relating to a method for producing unequal side unequal thick angle steel having different strengths of the flange (short side) and the web (long side) by hot rolling.
JP-A-53-40670 JP-A-53-55458

上述したように、不等辺不等厚山形鋼はウエブ、フランジの厚、幅が異なるので、圧延法で製造する場合は、製品の各部位で冷却速度が異なり、製品の歪みを発生し易い。従って、製品歪みも少なく、更にウエブとフランジに強度差がある不等辺不等厚山形鋼を熱間圧延法で製造することは難しい。なお、本文中の強度とは、引張強さおよび降伏強さの両方をいう。   As described above, the unequal-side unequal thickness angle steel has different web and flange thicknesses and widths. Therefore, when manufactured by the rolling method, the cooling rate is different at each part of the product and the product is likely to be distorted. Therefore, it is difficult to produce an unequal unequal thick angle steel having a small product distortion and a difference in strength between the web and the flange by the hot rolling method. The strength in the text means both tensile strength and yield strength.

本発明は上記した課題を解決するためになされたものである。   The present invention has been made to solve the above-described problems.

本発明は、その課題を解決するために以下のような構成をとる。   The present invention adopts the following configuration in order to solve the problem.

第一の発明は、フランジ(短辺側)部の強度がウエブ(長辺側)部の強度より高いことを特徴とする不等辺不等厚山形鋼である。   The first invention is an unequal side unequal thickness angle steel characterized in that the strength of the flange (short side) portion is higher than the strength of the web (long side) portion.

第二の発明は、フランジ(短辺側)部の強度がウエブ(長辺側)部の強度より40MPa以上高いことを特徴とする不等辺不等厚山形鋼である。   A second invention is an unequal side unequal thick angle steel characterized in that the strength of the flange (short side) portion is 40 MPa or higher than the strength of the web (long side) portion.

第三の発明は、仕上圧延機前段に配置された中間圧延機の前後面で、圧延材を各パス毎に、サイドガイドで拘束しながらフランジ(短辺側)部を、制御冷却することを特徴とする不等辺不等厚山形鋼の製造方法である。   The third invention is to control and cool the flange (short side) portion while restraining the rolling material with a side guide for each pass on the front and rear surfaces of the intermediate rolling mill arranged in the preceding stage of the finish rolling mill. It is a manufacturing method of the characteristic unequal side unequal thick angle steel.

第四の発明は、仕上圧延機前面におけるフランジ(短辺側)部の表面温度を800〜600℃とすることを特徴とする第三の発明に記載の不等辺不等厚山形鋼の製造方法である。   4th invention sets the surface temperature of the flange (short side) part in a finish rolling mill front surface to 800-600 degreeC, The manufacturing method of the unequal side unequal thickness angle steel as described in 3rd invention characterized by the above-mentioned. It is.

圧延中及び後における不等辺不等厚山形鋼のフランジ(短辺側)部を制御冷却してフランジ(短辺側)部の強度をウエブ(長辺側)部の強度よりも高くしたので、船体外板の内面に溶接されるウエブ(長辺側)部は溶接が容易である従来成分ままで、フランジ(短辺側)部の強度を高めることが出来るようになった。また、これにより、フランジ(短辺側)部とウエブ(長辺側)部の強度を必要に応じて変化させることができ、ユーザーにおいて船体設計の自由度が増すこととなる。   Since the flange (short side) part of the unequal side unequal thickness angle steel during and after rolling is controlled and cooled, the strength of the flange (short side) part is made higher than the strength of the web (long side) part. The strength of the flange (short side) part can be increased while the web (long side) part welded to the inner surface of the hull outer plate remains a conventional component that is easy to weld. This also allows the strength of the flange (short side) portion and the web (long side) portion to be changed as necessary, increasing the degree of freedom in hull design for the user.

本発明者等は、鋭意検討を重ねた結果、中間圧延機の前後面サイドガイドを使った圧延材の冷却方法により本課題を解決できることを見出し、本発明を完成させたものである。   As a result of intensive studies, the present inventors have found that this problem can be solved by a method of cooling a rolled material using front and rear side guides of an intermediate rolling mill, and have completed the present invention.

本発明の製造工程について図を参照して、説明する。   The manufacturing process of the present invention will be described with reference to the drawings.

1.製造工程について
図2に本願発明の不等辺不等厚山形鋼の外観形状を示す。
図2(a)は不等辺不等厚山形鋼13の外観形状を示す斜視図であり、11はウエブ(長辺側)部、12はフランジ(短辺側)部を示す。図2(b)はその断面図であり、ウエブ(長辺側)部11の幅をl、肉厚をt、フランジ(短辺側)部12の幅をl、肉厚をtとすると、通常l>l 、 t<tの関係にある。
1. Manufacturing Process FIG. 2 shows the appearance of the unequal side unequal thick angle steel of the present invention.
FIG. 2A is a perspective view showing the external shape of the unequal side unequal thick angle steel 13, 11 is a web (long side) portion, and 12 is a flange (short side) portion. FIG. 2B is a cross-sectional view thereof. The width of the web (long side) portion 11 is l 1 , the thickness is t 1 , the width of the flange (short side) portion 12 is l 2 , and the thickness is t. When 2, the relationship of the normal l 1> l 2, t 1 <t 2.

図4は、形鋼の圧延ラインを説明する図である。Fはブルーム等を均一に加熱する加熱炉を、BDはフ゛レークタ゛ウンミルを、R1は粗圧延機を、R2は中間圧延機を意味する。このR2ミルの前後面には水冷設備付きサイト゛カ゛イト゛が設置されており圧延材の制御冷却が行われる。FMは仕上圧延機で圧延材の最終形状が決められる。HSホットソーで圧延材は長手方向に切断される。そして、CB冷却床に送られる。   FIG. 4 is a diagram for explaining a rolling line for shape steel. F is a heating furnace for uniformly heating the blooms, BD is a breaker down mill, R1 is a roughing mill, and R2 is an intermediate rolling mill. Site guides with water cooling equipment are installed on the front and rear surfaces of the R2 mill to control and cool the rolled material. FM is a finishing mill, and the final shape of the rolled material is determined. The rolled material is cut in the longitudinal direction with an HS hot saw. Then, it is sent to the CB cooling bed.

中間圧延機R2の前後面での不等辺不等厚山形鋼13の冷却方法を図1に示す。
中間圧延機R2から各パス毎に送り出された又は送り込まれる不等辺不等厚山形鋼13のフランジ(短辺側)部12の制御冷却が行われる。制御冷却は、圧延方向に設置された冷却ノズルによってフランジ(短辺側)12の外面および/または内面をサイドガイドで拘束しながら冷却される。これにより、フランジ(短辺側)12の冷却速度は、ウエブ(長辺側)部11よりも早くなり、フランジ(短辺側)12の強度をウエブ(長辺側)部11の強度よりも大きくできる。また、サイドガイドで拘束しながら冷却を行うので、圧延中に圧延材が大曲を生じて圧延不能となることもない。
FIG. 1 shows a cooling method of the unequal side unequal thick angle steel 13 on the front and rear surfaces of the intermediate rolling mill R2.
Controlled cooling of the flange (short side) portion 12 of the unequal side unequal thick angle steel 13 sent out or sent from the intermediate rolling mill R2 for each pass is performed. The controlled cooling is performed while the outer surface and / or the inner surface of the flange (short side) 12 is constrained by a side guide by a cooling nozzle installed in the rolling direction. Thereby, the cooling rate of the flange (short side) 12 is faster than that of the web (long side) 11, and the strength of the flange (short side) 12 is higher than the strength of the web (long side) 11. Can be big. Further, since the cooling is performed while being restrained by the side guide, the rolled material does not have a large bend during rolling and does not become unrollable.

本願の製造方法は上述した圧延設備を使って、中間圧延機R2において、フランジ(短辺側)部12を強冷却による制御冷却を行うと共に、圧延後に製品に発生する曲がりを防止するために冷却中はサイドガイドにより、不等辺不等厚山形鋼13を圧延方向に拘束して冷却を行う。更に、中間圧延機R2における圧延を終了して、仕上圧延機FMでの形状制御が正常に行われるように、仕上圧延機前面におけるフランジ(短辺側)部12の表面温度を800〜600℃とする。即ち圧延後の製品冷却中にAr1変態点を通過する事による圧延材の大曲がり変形を防止するためであり、好ましくは700〜600℃とするのがよい。   In the intermediate rolling mill R2, the manufacturing method of the present application performs control cooling by strong cooling of the flange (short side) portion 12 in the intermediate rolling mill R2 and cooling in order to prevent bending generated in the product after rolling. The inside is cooled by restraining the unequal unequal thickness steel 13 in the rolling direction by a side guide. Furthermore, the surface temperature of the flange (short side) portion 12 on the front surface of the finishing mill is set to 800 to 600 ° C. so that the rolling in the intermediate rolling mill R2 is finished and the shape control in the finishing mill FM is normally performed. And That is, it is for preventing the bending deformation of the rolling material by passing through the Ar1 transformation point during product cooling after rolling, preferably 700 to 600 ° C.

従来技術による不等辺不等厚山形鋼13の製造においては、製品形状の確保に重点がおかれるので、ウエブ(長辺側)部11とフランジ(短辺側)部12の間で極端な冷却差をつけないようにしている。従って、肉厚が厚いフランジ(短辺側)部12の冷却速度は、一般的にウエブ(長辺側)部11より遅くなるので、フランジ部の強度を上げるうえでは不利となる。そこで、本願発明ではフランジ(短辺側)部12を積極的に制御冷却して、強度上昇を図った。これに伴いフランジとウエブの冷却速度差が大きくなるので、製品歪みは拡大する方向になる。   In the manufacture of the unequal side unequal thick angle steel 13 according to the prior art, since an emphasis is placed on ensuring the product shape, extreme cooling between the web (long side) portion 11 and the flange (short side) portion 12 is required. I try not to make a difference. Accordingly, the cooling rate of the thick flange (short side) portion 12 is generally slower than that of the web (long side) portion 11, which is disadvantageous in increasing the strength of the flange portion. Therefore, in the present invention, the flange (short side) portion 12 is actively controlled and cooled to increase the strength. Along with this, the difference in cooling rate between the flange and the web increases, so that the product distortion increases.

そこで、圧延材をサイドガイドを使って拘束冷却し、さらに、仕上げ圧延機噛込み前のフランジ(短辺側)部12の温度を制限することにより、ウエブ(長辺側)部11とフランジ(短辺側)部12の間に強度差を設けるとともに、歪みの少ない不等辺不等厚山形鋼13が製造できるようになった。   Therefore, the rolling material is constrained and cooled using a side guide, and further, the temperature of the flange (short side) portion 12 before biting into the finish rolling mill is limited, whereby the web (long side) portion 11 and the flange ( In addition to providing a difference in strength between the short side portions 12, it was possible to manufacture the unequal side unequal thick angle steel 13 with less distortion.

2.圧延製品について
図3に本願発明の製造方法によって製造された不等辺不等厚山形鋼13を船体のロンジ材に使用した例を示す。本図は、建造中の船体ブロックの一部を示す図である。不等辺不等厚山形鋼13のウエブ(長辺側)部11が船体外板に溶接接合されており、フランジ(短辺側)部12はフリーとなっている。この事例では、溶接されるウエブ(長辺側)部11は、溶接部靱性が良好であることが要求される。一方フリー側になるフランジ(短辺側)部12は船体外板の捻れ等に対して強いこと、即ちウエブ(長辺側)部11よりも強度が高いことが有利となる。従ってフランジ(短辺側)部12の強度は、ウエブ(長辺側)部11の強度より40MPa以上高くなるのが好ましい。
2. About Rolled Product FIG. 3 shows an example in which an unequal side unequal thick angle steel 13 manufactured by the manufacturing method of the present invention is used as a longage material for a hull. This figure is a diagram showing a part of a hull block under construction. The web (long side) portion 11 of the unequal side unequal thick angle steel 13 is welded to the hull outer plate, and the flange (short side) portion 12 is free. In this case, the web (long side) portion 11 to be welded is required to have good weld toughness. On the other hand, it is advantageous that the flange (short side) portion 12 on the free side is strong against twisting of the hull outer plate, that is, the strength is higher than that of the web (long side) portion 11. Accordingly, the strength of the flange (short side) portion 12 is preferably 40 MPa or higher than the strength of the web (long side) portion 11.

よって、本願発明の製造方法により製造された不等辺不等厚山形鋼13は、上述した用途を十分満足に満足することができる。
Therefore, the unequal side unequal thick angle steel 13 manufactured by the manufacturing method of the present invention can satisfy the above-mentioned application sufficiently satisfactorily.

形鋼工場で圧延される不等辺不等厚山形鋼13に本願発明を適用した。   The present invention was applied to an unequal side unequal thick angle steel 13 rolled at a shape steel factory.

試験材として用いたブルームの成分組成は表1に示す鋼1を用いた。本成分は通常、軟鋼に用いる成分組成である。   Steel 1 shown in Table 1 was used as the component composition of the bloom used as the test material. This component is a component composition normally used for mild steel.

次に,仕上げ圧延前の中間圧延機の前後面で、用いて不等辺不等厚山形鋼13のフランジ(短辺側)部12を制御冷却した。その結果を表2に示す。   Next, the flange (short side) portion 12 of the unequal side unequal thick angle steel 13 was controlled and cooled on the front and rear surfaces of the intermediate rolling mill before finish rolling. The results are shown in Table 2.

No.1〜3は、本発明例であり、水量とミル回転数を変化させたもので、フランジ部を制御冷却し、ウエブ部は空冷による場合で、フランジ部の強度がウエブの強度より高く、その強度差は40MPa以上が得られた。   No. 1 to 3 are examples of the present invention, in which the amount of water and the mill rotational speed are changed, the flange portion is controlled and cooled, and the web portion is air-cooled. The strength of the flange portion is higher than the strength of the web. The strength difference was 40 MPa or more.

No.4〜6も,本発明例であり、フランジ部の冷却水量をさらに低減したものであるが、フランジ部の強度がウエブ部の強度より高く、その強度差は40MPa以上が得られた。   No. 4 to 6 are also examples of the present invention, and the amount of cooling water in the flange portion was further reduced, but the strength of the flange portion was higher than the strength of the web portion, and the difference in strength was 40 MPa or more.

No.7〜10は、比較例であり、No.7とNo.8は、フランジ部とウエブ部の両方を制御冷却した場合で、フランジ部とウエブ部の間に強度差は生じなかった。   No. Nos. 7 to 10 are comparative examples. 7 and no. No. 8 was a case where both the flange portion and the web portion were controlled and cooled, and there was no difference in strength between the flange portion and the web portion.

No.9はフランジ部を空冷、ウエブ部を制御冷却した場合で、ウエブ部の強度がフランジ部の強度より高くなった。   No. No. 9 is a case where the flange portion is air-cooled and the web portion is controlled and the strength of the web portion is higher than the strength of the flange portion.

No.10はフランジ部、ウエブ部ともに空冷した場合で、フランジ部、ウエブ部共に強度レベルは同じとなった。   No. 10 is a case where both the flange portion and the web portion are air-cooled, and the strength level is the same for both the flange portion and the web portion.

本発明は、ウエブとフランジを有する各種形鋼に応用できる。   The present invention can be applied to various shapes having a web and a flange.

フランジの冷却方法を説明する図である。It is a figure explaining the cooling method of a flange. 不等辺不等厚山形鋼の部位を説明する図である。It is a figure explaining the site | part of an unequal side unequal thickness angle steel. 本発明の不等辺不等厚山形鋼を船体のロンジ材に適用した例を示す図である。It is a figure which shows the example which applied the unequal side unequal thickness angle steel of this invention to the longi material of a hull. 製造工程を説明するレイアウト図である。It is a layout diagram explaining a manufacturing process.

符号の説明Explanation of symbols

11 ウエブ(長辺側)
12 フランジ(短辺側)
13 不等辺不等厚山形鋼
ウエブ厚さ
フランジ厚さ
ウエブ幅
フランジ幅
11 Web (long side)
12 Flange (short side)
13 Unequal side unequal thickness angle steel t 1 web thickness t 2 flange thickness l 1 web width l 2 flange width

Claims (4)

フランジ(短辺側)部の強度がウエブ(長辺側)部の強度より高いことを特徴とする不等辺不等厚山形鋼。
Unequal side unequal thick angle steel characterized in that the strength of the flange (short side) portion is higher than the strength of the web (long side) portion.
フランジ(短辺側)部の強度がウエブ(長辺側)部の強度より40MPa以上高いことを特徴とする不等辺不等厚山形鋼。
Unequal side unequal thick angle steel characterized in that the strength of the flange (short side) portion is 40 MPa or more higher than the strength of the web (long side) portion.
仕上圧延機前段に配置された中間圧延機の前後面で、圧延材を各パス毎に、サイドガイドで拘束しながらフランジ(短辺側)部を、制御冷却することを特徴とする不等辺不等厚山形鋼の製造方法。
The unequal sides are characterized in that the flange (short side) part is controlled and cooled on the front and rear faces of the intermediate rolling mill arranged in the preceding stage of the finishing mill while restraining the rolled material with a side guide for each pass. Method for producing equal thickness angle steel.
仕上圧延機前面におけるフランジ(短辺側)部の表面温度を800〜600℃とすることを特徴とする請求項3記載の不等辺不等厚山形鋼の製造方法。
The method for producing an unequal side unequal thickness angle steel according to claim 3, wherein the surface temperature of the flange (short side) portion on the front face of the finishing mill is set to 800 to 600 ° C.
JP2006038101A 2006-02-15 2006-02-15 Unequal legged angle iron of unequal thickness strength of which is different in long side and short side and method of manufacturing it Pending JP2007216251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006038101A JP2007216251A (en) 2006-02-15 2006-02-15 Unequal legged angle iron of unequal thickness strength of which is different in long side and short side and method of manufacturing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006038101A JP2007216251A (en) 2006-02-15 2006-02-15 Unequal legged angle iron of unequal thickness strength of which is different in long side and short side and method of manufacturing it

Publications (1)

Publication Number Publication Date
JP2007216251A true JP2007216251A (en) 2007-08-30

Family

ID=38494052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006038101A Pending JP2007216251A (en) 2006-02-15 2006-02-15 Unequal legged angle iron of unequal thickness strength of which is different in long side and short side and method of manufacturing it

Country Status (1)

Country Link
JP (1) JP2007216251A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100854895B1 (en) 2007-10-23 2008-08-28 현대제철 주식회사 Apparatus for producing inverted angle and method thereof
CN101229564B (en) * 2008-02-26 2011-06-22 重庆钢铁(集团)有限责任公司 Manufacturing method of increasing high strength flat-bulb steel low temperature impact properties percent of pass
KR101159905B1 (en) 2009-06-26 2012-06-25 현대제철 주식회사 Cooling method for inverted angle
CN102672045A (en) * 2012-05-08 2012-09-19 江门市南洋船舶工程有限公司 Simple die assembly for flat-bulb steel cold machining
CN111339613A (en) * 2020-02-25 2020-06-26 北京国网富达科技发展有限责任公司 Arc apex angle double-limb thick angle steel and design method thereof
CN113083914A (en) * 2021-03-31 2021-07-09 东北大学 Cooling method for controlling side bending deformation of marine L-shaped steel after rolling

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100854895B1 (en) 2007-10-23 2008-08-28 현대제철 주식회사 Apparatus for producing inverted angle and method thereof
CN101229564B (en) * 2008-02-26 2011-06-22 重庆钢铁(集团)有限责任公司 Manufacturing method of increasing high strength flat-bulb steel low temperature impact properties percent of pass
KR101159905B1 (en) 2009-06-26 2012-06-25 현대제철 주식회사 Cooling method for inverted angle
CN102672045A (en) * 2012-05-08 2012-09-19 江门市南洋船舶工程有限公司 Simple die assembly for flat-bulb steel cold machining
CN111339613A (en) * 2020-02-25 2020-06-26 北京国网富达科技发展有限责任公司 Arc apex angle double-limb thick angle steel and design method thereof
CN113083914A (en) * 2021-03-31 2021-07-09 东北大学 Cooling method for controlling side bending deformation of marine L-shaped steel after rolling
CN113083914B (en) * 2021-03-31 2022-02-22 东北大学 Cooling method for controlling side bending deformation of marine L-shaped steel after rolling

Similar Documents

Publication Publication Date Title
CN100500914C (en) Method for rolling thick specification low-alloy structure steel plate by using middle and thin plate blank
JP2007216251A (en) Unequal legged angle iron of unequal thickness strength of which is different in long side and short side and method of manufacturing it
WO2020209060A1 (en) Square steel tube, method for manufacturing same, and building structure
JP2007331027A (en) Method of manufacturing hot-rolled t-shape steel for hull reinforcing member and hot-rolled t-shape steel
JP2008254063A (en) Hot rolled t-shaped steel
JP5726114B2 (en) Recycling method of used roll composite rolls
JP5268431B2 (en) Recycling method of used roll composite rolls
CN113550433B (en) Hot-rolled X-shaped steel and hot-rolling forming process thereof
JP2009119513A (en) Method for hot-rolling steel sheet pile, and hot-rolling machine
JPH0525924B2 (en)
JP4890325B2 (en) Structural member and manufacturing method thereof
JP4767898B2 (en) Structural member and manufacturing method thereof
JP5152791B2 (en) Method for producing Cr-Ni type stainless steel strip capable of preventing occurrence of ear cracks in hot rolling
JP2943326B2 (en) Method for manufacturing H-section steel
JPH10156408A (en) Die for edging press of slab for hot rolling and edging method
JP3631581B2 (en) Manufacturing method of thin steel sheet for processing with excellent formability using hot rolling continuous process
JP3711090B2 (en) Hot width reduction press mold
JP4452254B2 (en) Manufacturing method of hot-rolled steel sheet
JP2005021960A (en) Manufacturing method and manufacturing apparatus for steel plate
JP3490814B2 (en) Manufacturing method of aluminum alloy plate with excellent flatness
JP5760074B2 (en) Recycled composite roll
JPH0526853B2 (en)
JPH10156401A (en) Method for hot-rolling dead soft steel
JP2771042B2 (en) Method and apparatus for manufacturing thin web H-section steel
JP4556744B2 (en) Manufacturing method of unequal side unequal thickness angle steel