JP3680652B2 - Manufacturing method of H-section steel - Google Patents

Manufacturing method of H-section steel Download PDF

Info

Publication number
JP3680652B2
JP3680652B2 JP22388699A JP22388699A JP3680652B2 JP 3680652 B2 JP3680652 B2 JP 3680652B2 JP 22388699 A JP22388699 A JP 22388699A JP 22388699 A JP22388699 A JP 22388699A JP 3680652 B2 JP3680652 B2 JP 3680652B2
Authority
JP
Japan
Prior art keywords
flange
cooling
temperature
rolling
section steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22388699A
Other languages
Japanese (ja)
Other versions
JP2001047102A (en
Inventor
晃夫 藤林
誠 中世古
鶴和 有村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP22388699A priority Critical patent/JP3680652B2/en
Publication of JP2001047102A publication Critical patent/JP2001047102A/en
Application granted granted Critical
Publication of JP3680652B2 publication Critical patent/JP3680652B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、熱間圧延後、冷却を行うH形鋼の製造方法に関し、特に冷却後、矯正機あるいはプレスによる矯正作業なく能率よくH形鋼を製造する方法に関する。
【0002】
【従来の技術】
近年、建築用の部材に対する耐震性の要望が強まり、柱材や梁材用に強度や靭性に優れたH形鋼が求められ、その製造方法として制御圧延や制御冷却が適用されている。
【0003】
制御圧延や制御冷却は高強度・高靭性の鋼材の一般的な方法であり、制御圧延は1000℃以上に加熱したスラブやCCBB(continuous casting beam blank)素材を一旦中程度の厚みまで粗圧延し、その後、鋼板の温度が未再結晶温度域やあるいはその近傍の温度域で最終の仕上げ圧延を行うもので、制御冷却は圧延後加速冷却によってAr3温度以上から500℃程度まで冷却し、強度を確保するものである。
【0004】
H形鋼のフランジに対して、仕上げ圧延機後方の加速冷却装置により制御冷却を行う方法として、フランジ内外面から同時に冷却する方法(特公平5−73806号公報、以下先行技術1)、多段にスプレーノズルを配置しガイドの後方からガイドに設けたスリットを通してH形鋼のフランジ外面を冷却する方法(特開平5−317948号公報、以下先行技術2)がある。
【0005】
先行技術1の場合、H形鋼自体、図1に示すようにフランジ1,フランジ幅(H),フランジ厚み(t2),ウエブ2、ウエブ高さ(B),ウエブ厚み(t1)の各寸法が多様であるため、多品種のH形鋼を能率よく製造するためにはフランジ内面の冷却装置の幅、位置、高さ等を容易に変更できる複雑な構造とするか、あるいは冷却装置の位置調整を自在とする機構が必要であり、更に内面に冷却装置を設けるため、H形鋼との衝突の危険性もあり、安定操業の点でも問題があった。
【0006】
先行技術2の場合、スプレーノズルを多段に配置し、フランジ外面を冷却する方法であり、フランジが外面側からのみ冷却されるため加速冷却等の強冷却の場合、冷却中にフランジ外面を凹にした反り(図2(1))が発生する。冷却後、冷却床上で全体の温度が下がるにつれ、フランジ外面を凸にした曲がり(図2(2))が発生し、結局H形鋼が常温になった状態ではフランジ外面を凸にした曲がりが残留し、その後、矯正機やプレスによる矯正作業が発生していた。特に、残留曲がりがフランジ外面を凸にした曲がりは矯正作業が難しく、コスト高となっていた。
【0007】
【発明が解決しようとする課題】
上述したように、仕上げ圧延機後方の加速冷却装置により制御冷却を行う方法において、内外面から冷却する方法は装置が複雑となり、外面から冷却する方法は冷却後、矯正する工程が不可欠であった。本発明は、複雑な装置を用いることなく、外面からの冷却のみにより熱歪が少ないH形鋼の製造方法を提供する。
【0008】
【課題を解決するための手段】
本発明者等はH形鋼の冷却工程後の形状に及ぼすH形鋼各部の温度分布の影響を詳細に検討し、仕上げ圧延前におけるフランジ外面の温度分布が重要なことを把握した。すなわち、フランジ外面における温度分布を、ほぼ均一又はフィレット部3(図1中、フランジ1とウエブ2の付け根の部分)のみを低温とした後、仕上げ圧延でフランジの開き角度を零とした場合、冷却工程後においてもフランジの開き角度は零で変化せず、鉛直を保つことが可能であることを見出した。
【0009】
本発明の要旨は以下のとおりである。
【0010】
1.仕上げ圧延後、フランジ外面に冷却水を噴射し、加速冷却を行なうH形鋼の製造方法において、仕上圧延工程前にフランジ外面温度分布を、均一又はフィレット部のみを該周辺部よりも低温となるように冷却することを特徴とするフランジの開き角度が零である強度と靱性に優れたH形鋼の製造方法。
【0011】
【発明の実施の形態】
図4は本発明の製造の実施の形態を示す概略図である。スラブを加熱炉7により加熱後、ブレークダウンミル8によりH形鋼形状の素材に圧延し、第1の粗圧延機群9及び第2の粗圧延機群11でのリバース圧延により、各部寸法を圧延成形する。その後、仕上げ圧延を行うが、本発明では仕上げ圧延前にフィレット部を外側より冷却し、フランジ外面の温度分布を均一、又は温度分布においてフィレット部を低温とする。本発明での均一とは、本発明の目的を達成しうる程度に実質的に均一であればよく、例えば、フィレット部の温度がフランジ部の温度に比べて+30℃から−50℃の範囲内にあれば良い。なお、ここでフィレット部の温度とはフランジ上端または下端から1/2Bにおける外面復熱温度、フランジ温度とはフランジ上端または下端から1/4Bの位置における外面復熱温度である。
【0012】
フィレット部は、熱的に容量が大きく冷却されにくく、仕上げ圧延前のフランジ外面温度分布では高温となり、冷却工程後の熱歪による変形の原因となるため冷却する。冷却は粗圧延工程以降、仕上げ圧延前に実施すればよく、特にその時期、方法は規定しないが、本実施例では設備コストを考慮し、粗圧延機の前後に設けられたサイドガイド10a,10bに、ノズル高さとスプレー幅の変更が可能なスプレーノズルで、フランジ外面のフィレット部を選択的に冷却する冷却機構を組み込み、フランジ外面よりフィレット部を冷却した。
【0013】
冷却後、仕上げ圧延機12の竪ロール5a、5b、水平ロール6a,6bとのギャップを調整し、圧延後のフランジの開き角度を零に仕上げた後、冷却装置13によりフランジ外面を加速冷却し、その後、熱間切断機で所定の長さに切断後、冷却床14に室温まで放置した。
【0014】
【実施例】
本発明の効果を実施例により説明する。以下に図4に示す設備配置列を用いて、仕上げ圧延終了時点のウエブ高さHが572mm,フランジ幅Bが510mm,ウエブ厚みが60mm,フランジ厚み80mm,長さ13mのH形鋼を製造した実施例について、説明する。
【0015】
本実施例では、板厚250mmのスラブを加熱炉7により1250℃に加熱後、ブレークダウンミル8によりH形鋼形状の素材に圧延し、第1の粗圧延機群9及び第2の粗圧延機群11でのリバース圧延により、各部寸法を圧延成形する。リバース圧延は制御圧延とした。粗圧延後、ユニバーサル方式の粗圧延機11によりリバース圧延し、フィレット部を冷却後、仕上げ圧延を行い、その後、フランジを加速冷却する。
【0016】
フィレット部の冷却は、第2の粗圧延機11前後の長さ各々10mのサイドガイド10a,10bに設けた冷却装置により、フランジ外面部のフィレット部を幅70mmに亘って水量密度1500l/minm2で,冷却した。その結果、約900℃となったフランジ外面部においてフィレット部のみ約850℃と低温となり、フィレット部を冷却しない場合と比較して約150℃低下していた。
【0017】
仕上げ圧延機12の直前では、復熱し、約20〜30℃温度が上昇する。尚、フランジ外面の温度はフランジ上端又は下端から1/4Bの位置における外面復熱温度で、フィレット部の温度は1/2Bにおける温度とした。
【0018】
仕上げ圧延では、粗圧延終了時、フランジの開き角度αが0.46度と外側に開いた形状を、開き角度αを零となるように圧延し、フランジを鉛直とした。その後、冷却装置13にH形鋼を搬入し、後端が装置内に入ったと同時に冷却水を水量密度1500l/minm2で噴射し、オッシレーションさせながら120秒間冷却した。冷却復熱後、上述したフランジ外面温度は500℃で長手方向に均一であった。
【0019】
冷却後、熱間切断機で採寸,切断後、冷却床に搬送し、自然放冷を行なった。常温となった時点でも、フランジの開き角度αは零であり、矯正する必要はなかった。
【0020】
次に、比較例1〜3として、フランジ外面冷却の有無及び冷却実施時期により、フランジ外面の温度分布を変化させ、H形鋼を製造した。それぞれの比較例は本発明の実施例と同じく図4に示す設備配置列を用い、製造した。
【0021】
比較例1は、粗圧延の段階で、フランジ外面冷却をせずに、仕上げ圧延を行うもので
粗圧延後、仕上げ圧延前のフランジ外面の温度分布はフィレット部が1000℃、フランジが900℃とフィレット部が高温となった中高の形状となっている。
【0022】
比較例2は、粗圧延の段階で、第2の粗圧延機のサイドガイドに組み込んだ冷却装置によりフランジ全幅を冷却するもので、冷却後、フランジ外面の温度分布はフィレット部が高温となった中高の形状であるが、フィレット部が850℃、フランジが800℃となった。
【0023】
比較例3は、仕上げ圧延前には、フランジ外面の冷却は行なわず、仕上げ圧延後の加速冷却の直前にフィレット部のみを冷却した。冷却は上述した本発明の実施例における粗圧延時のフィレット冷却条件と同等の条件で行なった。以上、いずれの比較例でも、仕上げ圧延ではフランジの開き角度を零とし、フランジを立てた形状とした。
その後、強度を向上させるための加速冷却を行ない、熱間切断機で採寸,切断後、冷却床に搬送し、自然放冷を行なった。
【0024】
常温となった時点で、図5に示すフランジの足先部の外寸法Hc,フランジの中央部Htを測定した。表1に本発明実施例の測定結果と合わせて示す。いずれの比較例の場合でも、矯正機の繰り返し曲げによるフランジの開き角度の矯正が必要であった。比較例1の場合、フランジの内側への倒れこみが大きく、フランジの開き角度を零とすることは難しかった。比較例2,3は比較例1よりフランジの内側への倒れこみが小さかったものの矯正作業が必要であった。
【0025】
また、比較例2によるH形鋼のフランジ部は、フランジ部の上から1/4、3/4において強度が低くなったが、粗圧延時のフランジの全面冷却により、仕上げ圧延後の加速冷却における冷却開始温度がフィレット部を除いて強度の確保に必要な温度を下回った結果と考えられる。
【0026】
【表1】

Figure 0003680652
【0027】
【発明の効果】
以上説明したように、この発明によれば、強度と靭性に優れたH形鋼を加速冷却により製造する場合、冷却によるフランジの変形を生じないので、精整工程における矯正作業が不要となり、低コストで高能率な生産が可能となる。
【図面の簡単な説明】
【図1】H形鋼の各部の名称を示す図
【図2】仕上げ圧延後の冷却過程におけるH形鋼の形状を示すもので、(1)は加速冷却後、(2)は冷却床上で冷却後の変形状態を示す図
【図3】仕上げ圧延の状況を示すもので、(1)は圧延前のフランジの開き角度α(2)は圧延後の形状、(3)は圧延中の状況を示す図
【図4】H形鋼を製造する設備の配置を示す図
【図5】H形鋼におけるフランジの変形を示す図
【符号の説明】
1…フランジ
2…ウエブ
3…フィレット
4…フランジ開き角度
5a,5b…竪ロール
6a,6b…水平ロール
7…加熱炉
8…ブレークダウン圧延機
9…第一の粗圧延機群
10a,10b…サイドガイド(冷却装置)
11…第二の粗圧延機群
12…仕上げ圧延機
13…冷却装置
14…冷却床[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing H-section steel that is cooled after hot rolling, and more particularly to a method for manufacturing H-section steel efficiently after cooling without a straightening operation using a straightening machine or a press.
[0002]
[Prior art]
In recent years, there has been an increasing demand for earthquake resistance for building members, and H-shaped steels having excellent strength and toughness are required for pillars and beams, and controlled rolling and controlled cooling are applied as manufacturing methods thereof.
[0003]
Controlled rolling and controlled cooling are common methods for high-strength and high-toughness steel. Controlled rolling is a rough rolling of a slab or CCBB (continuous casting beam blank) material heated to 1000 ° C or higher to a moderate thickness. After that, the final finish rolling is performed in the temperature range of the non-recrystallization temperature or in the vicinity of the temperature of the steel sheet, and the controlled cooling is cooled from the Ar3 temperature to about 500 ° C. by accelerated cooling after rolling, and the strength is increased. It is to secure.
[0004]
As a method of performing controlled cooling with respect to the H-shaped steel flange by an accelerated cooling device behind the finish rolling mill, a method of simultaneously cooling from the inner and outer surfaces of the flange (Japanese Patent Publication No. 5-73806, hereinafter referred to as Prior Art 1), in multiple stages There is a method of disposing a spray nozzle and cooling the flange outer surface of the H-shaped steel through a slit provided in the guide from the rear of the guide (Japanese Patent Laid-Open No. 5-317948, hereinafter Prior Art 2).
[0005]
In the case of the prior art 1, as shown in FIG. 1, the H-shaped steel itself has flange 1, flange width (H), flange thickness (t2), web 2, web height (B), and web thickness (t1) dimensions. Therefore, in order to efficiently produce a wide variety of H-shaped steels, it is necessary to use a complicated structure that can easily change the width, position, height, etc. of the cooling device on the inner surface of the flange, or the position of the cooling device. Since a mechanism that can be adjusted freely is required and a cooling device is provided on the inner surface, there is a risk of collision with the H-section steel, and there is a problem in terms of stable operation.
[0006]
In the case of Prior Art 2, the spray nozzles are arranged in multiple stages to cool the outer surface of the flange. Since the flange is cooled only from the outer surface side, in the case of strong cooling such as accelerated cooling, the outer surface of the flange is recessed during cooling. Warping (FIG. 2 (1)) occurs. After cooling, as the overall temperature drops on the cooling floor, a bent flange outer surface (Fig. 2 (2)) occurs, and when the H-shaped steel reaches room temperature, the bent outer flange surface becomes convex. After that, correction work using a straightening machine or press occurred. In particular, the bending in which the residual bending is convex on the outer surface of the flange is difficult to correct and is expensive.
[0007]
[Problems to be solved by the invention]
As described above, in the method of performing controlled cooling by the accelerated cooling device behind the finish rolling mill, the method of cooling from the inner and outer surfaces is complicated, and the method of cooling from the outer surface requires a correction process after cooling. . The present invention provides a method for producing an H-section steel with less thermal strain only by cooling from the outer surface without using a complicated apparatus.
[0008]
[Means for Solving the Problems]
The present inventors examined in detail the influence of the temperature distribution of each part of the H-section steel on the shape of the H-section steel after the cooling process, and grasped that the temperature distribution of the outer surface of the flange before finish rolling was important. That is, when the temperature distribution on the outer surface of the flange is substantially uniform or only the fillet portion 3 (the portion of the base of the flange 1 and the web 2 in FIG. 1) is made low temperature, and then the opening angle of the flange is made zero by finish rolling, It was found that even after the cooling process, the opening angle of the flange is zero and does not change and can be kept vertical.
[0009]
The gist of the present invention is as follows.
[0010]
1. In the manufacturing method of H-section steel in which cooling water is injected to the outer surface of the flange after finish rolling and accelerated cooling is performed, the temperature distribution of the outer surface of the flange is uniform before the finish rolling step, or only the fillet portion is lower than the peripheral portion. The manufacturing method of the H-section steel excellent in the strength and toughness in which the opening angle of the flange is zero .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 4 is a schematic view showing an embodiment of the production of the present invention. After the slab is heated by the heating furnace 7, it is rolled into a H-shaped steel material by a breakdown mill 8, and each part size is adjusted by reverse rolling in the first rough rolling mill group 9 and the second rough rolling mill group 11. Roll forming. Thereafter, finish rolling is performed. In the present invention, the fillet portion is cooled from the outside before the finish rolling, so that the temperature distribution on the outer surface of the flange is uniform or the fillet portion is set to a low temperature in the temperature distribution. The uniformity in the present invention may be substantially uniform so that the object of the present invention can be achieved. For example, the temperature of the fillet portion is within a range of + 30 ° C. to −50 ° C. compared to the temperature of the flange portion. If it is in. Here, the temperature of the fillet portion is the outer surface recuperation temperature at 1 / 2B from the upper end or lower end of the flange, and the flange temperature is the outer surface recuperation temperature at a position of 1 / 4B from the upper end or lower end of the flange.
[0012]
The fillet portion is thermally cooled because it has a large capacity and is difficult to be cooled, becomes high in the flange outer surface temperature distribution before finish rolling, and causes deformation due to thermal strain after the cooling step. Cooling may be carried out after the rough rolling process and before finish rolling, and the timing and method are not particularly defined. In this embodiment, the side guides 10a and 10b provided before and after the rough rolling mill are taken into consideration in consideration of the equipment cost. In addition, a cooling mechanism that selectively cools the fillet portion on the outer surface of the flange with a spray nozzle capable of changing the nozzle height and spray width was incorporated to cool the fillet portion from the outer surface of the flange.
[0013]
After cooling, after adjusting the gap between the rolls 5a and 5b and the horizontal rolls 6a and 6b of the finish rolling mill 12 and finishing the opening angle of the flange after rolling to zero, the cooling device 13 accelerates and cools the outer surface of the flange. Then, after cutting to a predetermined length with a hot cutter, the plate was left on the cooling bed 14 to room temperature.
[0014]
【Example】
The effects of the present invention will be described with reference to examples. An H-section steel having a web height H of 572 mm, a flange width B of 510 mm, a web thickness of 60 mm, a flange thickness of 80 mm, and a length of 13 m at the end of finish rolling was manufactured using the equipment arrangement row shown in FIG. Examples will be described.
[0015]
In this embodiment, a slab having a thickness of 250 mm is heated to 1250 ° C. by the heating furnace 7, and then rolled into a H-shaped steel material by the breakdown mill 8, and the first rough rolling mill group 9 and the second rough rolling are rolled. The dimensions of each part are rolled and formed by reverse rolling in the machine group 11. Reverse rolling was controlled rolling. After the rough rolling, reverse rolling is performed by the universal rolling mill 11, the fillet portion is cooled, finish rolling is performed, and then the flange is accelerated and cooled.
[0016]
The fillet portion is cooled by a cooling device provided on the side guides 10a and 10b each having a length of 10 m before and after the second rough rolling mill 11, and the fillet portion on the flange outer surface portion has a water density of 1500 l / minm2 over a width of 70 mm. , Cooled. As a result, only the fillet portion became a low temperature of about 850 ° C. at the flange outer surface portion which was about 900 ° C., which was about 150 ° C. lower than the case where the fillet portion was not cooled.
[0017]
Immediately before the finish rolling mill 12, the heat is recovered and the temperature rises by about 20 to 30 ° C. The temperature of the outer surface of the flange was the outer surface recuperation temperature at a position 1 / 4B from the upper end or the lower end of the flange, and the temperature of the fillet portion was 1 / 2B.
[0018]
In the finish rolling, at the end of the rough rolling, the flange opening angle α was 0.46 degrees and the outer shape was rolled so that the opening angle α was zero, and the flange was vertical. Thereafter, H-shaped steel was carried into the cooling device 13, and at the same time as the rear end entered the device, cooling water was injected at a water density of 1500 l / minm2 and cooled for 120 seconds while oscillating. After cooling recuperation, the above-described flange outer surface temperature was 500 ° C. and uniform in the longitudinal direction.
[0019]
After cooling, measuring and cutting with a hot cutter, it was transported to the cooling bed and allowed to cool naturally. Even when the temperature reached room temperature, the opening angle α of the flange was zero, and correction was not necessary.
[0020]
Next, as Comparative Examples 1 to 3, the H-section steel was manufactured by changing the temperature distribution on the outer surface of the flange depending on whether or not the outer surface of the flange was cooled and the timing of the cooling. Each comparative example was manufactured using the equipment arrangement row shown in FIG. 4 as in the example of the present invention.
[0021]
Comparative Example 1 is a rough rolling stage in which finish rolling is performed without cooling the outer surface of the flange. After rough rolling, the temperature distribution on the outer surface of the flange before finish rolling is 1000 ° C. for the fillet portion and 900 ° C. for the flange. The fillet part has a medium to high shape with a high temperature.
[0022]
In Comparative Example 2, the full width of the flange is cooled by a cooling device incorporated in the side guide of the second rough rolling mill at the stage of rough rolling. After cooling, the temperature distribution on the outer surface of the flange becomes high in the fillet portion. Although it was a medium-high shape, the fillet portion was 850 ° C and the flange was 800 ° C.
[0023]
In Comparative Example 3, the flange outer surface was not cooled before finish rolling, and only the fillet portion was cooled immediately before accelerated cooling after finish rolling. Cooling was performed under the same conditions as the fillet cooling conditions during rough rolling in the above-described embodiment of the present invention. As described above, in any of the comparative examples, in the finish rolling, the opening angle of the flange is set to zero, and the flange is erected.
Thereafter, accelerated cooling was performed to improve the strength. After measuring and cutting with a hot cutter, the sample was conveyed to a cooling bed and allowed to cool naturally.
[0024]
When the temperature reached room temperature, the outer dimension Hc of the foot portion of the flange and the center portion Ht of the flange shown in FIG. 5 were measured. Table 1 shows the measurement results of the examples of the present invention. In any of the comparative examples, it was necessary to correct the opening angle of the flange by repeated bending of the straightening machine. In the case of the comparative example 1, it was difficult to make the opening angle of the flange zero due to the large inward collapse of the flange. In Comparative Examples 2 and 3, although the collapse to the inside of the flange was smaller than in Comparative Example 1, correction work was necessary.
[0025]
Moreover, although the strength of the flange portion of the H-section steel according to Comparative Example 2 was reduced to 1/4 and 3/4 from the top of the flange portion, accelerated cooling after finish rolling was achieved by cooling the entire surface of the flange during rough rolling. This is considered to be a result of the cooling start temperature at the temperature lower than the temperature required for securing the strength except for the fillet portion.
[0026]
[Table 1]
Figure 0003680652
[0027]
【The invention's effect】
As described above, according to the present invention, when an H-shaped steel having excellent strength and toughness is manufactured by accelerated cooling, the deformation of the flange due to cooling does not occur. High-efficiency production is possible at low cost.
[Brief description of the drawings]
FIG. 1 is a diagram showing the name of each part of H-section steel. FIG. 2 shows the shape of H-section steel in the cooling process after finish rolling. (1) is after accelerated cooling and (2) is on the cooling bed. Figure 3 shows the state of deformation after cooling. Fig. 3 shows the state of finish rolling. (1) is the flange opening angle α before rolling (2) is the shape after rolling, and (3) is the state during rolling. Fig. 4 is a diagram showing the layout of equipment for manufacturing H-section steel. Fig. 5 is a diagram showing flange deformation in H-section steel.
DESCRIPTION OF SYMBOLS 1 ... Flange 2 ... Web 3 ... Fillet 4 ... Flange opening angle 5a, 5b ... Saddle roll 6a, 6b ... Horizontal roll 7 ... Heating furnace 8 ... Breakdown rolling mill 9 ... First rough rolling mill group 10a, 10b ... Side Guide (cooling device)
DESCRIPTION OF SYMBOLS 11 ... 2nd rough rolling mill group 12 ... Finish rolling mill 13 ... Cooling device 14 ... Cooling bed

Claims (1)

仕上げ圧延後、フランジ外面に冷却水を噴射し、加速冷却を行なうH形鋼の製造方法において、仕上圧延工程前にフランジ外面温度分布を、均一又はフィレット部のみを該周辺部よりも低温となるように冷却することを特徴とするフランジの開き角度が零である強度と靱性に優れたH形鋼の製造方法。In the manufacturing method of H-section steel in which cooling water is injected to the outer surface of the flange after finish rolling and accelerated cooling is performed, the temperature distribution of the outer surface of the flange is uniform before the finish rolling step, or only the fillet portion is lower than the peripheral portion. The manufacturing method of the H-section steel excellent in the strength and toughness in which the opening angle of the flange is zero .
JP22388699A 1999-08-06 1999-08-06 Manufacturing method of H-section steel Expired - Fee Related JP3680652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22388699A JP3680652B2 (en) 1999-08-06 1999-08-06 Manufacturing method of H-section steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22388699A JP3680652B2 (en) 1999-08-06 1999-08-06 Manufacturing method of H-section steel

Publications (2)

Publication Number Publication Date
JP2001047102A JP2001047102A (en) 2001-02-20
JP3680652B2 true JP3680652B2 (en) 2005-08-10

Family

ID=16805260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22388699A Expired - Fee Related JP3680652B2 (en) 1999-08-06 1999-08-06 Manufacturing method of H-section steel

Country Status (1)

Country Link
JP (1) JP3680652B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101257183B1 (en) * 2011-03-29 2013-04-22 현대제철 주식회사 Strip apparatus and method capable of performing accelerated reciprocating cooling action

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9414944B2 (en) 2010-11-11 2016-08-16 W. L. Gore & Associates, Inc. Deployment sleeve shortening mechanism
US9468547B2 (en) 2010-11-11 2016-10-18 W. L. Gore & Associates, Inc. Deployment of endoluminal devices
JP7381873B2 (en) 2020-01-16 2023-11-16 日本製鉄株式会社 Manufacturing method of H-beam steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101257183B1 (en) * 2011-03-29 2013-04-22 현대제철 주식회사 Strip apparatus and method capable of performing accelerated reciprocating cooling action

Also Published As

Publication number Publication date
JP2001047102A (en) 2001-02-20

Similar Documents

Publication Publication Date Title
JPS6393402A (en) Production of thin-web h-shape steel
JP4091910B2 (en) Rail manufacturing method and manufacturing equipment
JP5200638B2 (en) T-shaped steel cooling device
JP3680652B2 (en) Manufacturing method of H-section steel
KR20120063507A (en) Cooling apparatus and cooling method for hot rolling
KR101064173B1 (en) Cooling device of T-shaped steel hot rolling line, T-steel manufacturing equipment, and manufacturing method
JPS5947009A (en) Manufacture of h-beam with thin web thickness
JP2541213B2 (en) Shaped steel manufacturing equipment
EP0904861A1 (en) Method of producing thin hot rolled steel sheet, and apparatus to carry out the method
JP3463614B2 (en) Manufacturing method of H-section steel
JPS5857244B2 (en) Manufacturing method of H-beam steel
JP2009119512A (en) Method and apparatus for cooling flange of t-shape
JP3671577B2 (en) Manufacturing method of T-section steel
JPH11267755A (en) Manufacture of thick steel plate and straightening device used in it
JP3345776B2 (en) Method and apparatus for cooling U-shaped sheet pile
JP4052916B2 (en) Universal rolling mill
JP2001129607A (en) Method of and device for manufacturing-shaped steel
RU2268790C1 (en) Sheet rolling method and apparatus for performing the same
JP2005296978A (en) Method and equipment for manufacturing thick steel plate
JP2008126259A (en) Manufacturing method and cooling system of t-shape steel
JP2755905B2 (en) Method and apparatus for online cooling of H-section steel
JP2000061501A (en) Manufacture of u-shaped steel sheet pile
JP3669233B2 (en) Manufacturing method of ultra-thick H-section steel with excellent strength and toughness
JPH0657327A (en) Manufacture of h-shape steel having high toughness and strength
JP2003205301A (en) Unequal angle steel having unequal thickness, method and device for manufacturing it

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees