JPH0657327A - Manufacture of h-shape steel having high toughness and strength - Google Patents

Manufacture of h-shape steel having high toughness and strength

Info

Publication number
JPH0657327A
JPH0657327A JP21299292A JP21299292A JPH0657327A JP H0657327 A JPH0657327 A JP H0657327A JP 21299292 A JP21299292 A JP 21299292A JP 21299292 A JP21299292 A JP 21299292A JP H0657327 A JPH0657327 A JP H0657327A
Authority
JP
Japan
Prior art keywords
cooling
flange
rolling
web
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21299292A
Other languages
Japanese (ja)
Other versions
JP3241444B2 (en
Inventor
Yoji Fujimoto
洋二 藤本
Mikio Kono
幹夫 河野
Nobuyuki Kondo
信行 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP21299292A priority Critical patent/JP3241444B2/en
Publication of JPH0657327A publication Critical patent/JPH0657327A/en
Application granted granted Critical
Publication of JP3241444B2 publication Critical patent/JP3241444B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/088H- or I-sections

Abstract

PURPOSE:To provide a manufacturing method obtaining high toughness and strength and uniform characteristic even in the case of a large H-shape steel having thick flange part. CONSTITUTION:A cooling device capable of cooling both surfaces 2A, 2B at the inner and the outer parts of the flange 2 and both surfaces 3A, 3B at the upper and the lower parts of a web 3 is arranged at the front and the rear parts of a rough mill and a finish mill in a rolling line for H-shape steel 1. The rolling after cooling to just above Ms temp is repeated two times and cooling-reheating is executed one or more times before finish-rolling. After executing the finish-rolling at 750 deg.C or higher temp., the same cooling-reheating is repeated and the H-shape steel having high toughness and strength is manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、靱性・強度に富んだH
形鋼の製造方法に関し、特に、板厚が40mmを越えるH
形鋼の製造方法に関する。
BACKGROUND OF THE INVENTION The present invention is made of H which is rich in toughness and strength.
Regarding the method of manufacturing shaped steel, especially when the plate thickness exceeds 40 mm H
The present invention relates to a method for manufacturing a shaped steel.

【0002】[0002]

【従来の技術】従来、H形鋼のような複雑な断面形状を
有する高強度の形鋼の製造方法としては、例えば特開昭
62−253721号公報や特開平2−22414号公
報に示されたものがある。前者は、フランジ厚/ウエブ
厚の比が大きく且つウエブの厚みが小さい薄肉H形鋼を
圧延により製造する際に、ウエブに歪み(ウエブ波)が
発生するのを防止しつつ強度を高めることを目指したも
ので、厚さの厚いフランジ部の圧延仕上温度を鋼の変態
点以上、薄いウエブのそれを変態点以下とし、かつ圧延
後にフランジのみを所定の冷却速度で強制冷却すること
で、均質で靱性,強度の高いH形鋼を製造するものであ
る。
2. Description of the Related Art Conventionally, as a method for producing a high-strength shaped steel having a complicated cross-sectional shape such as an H-shaped steel, it is disclosed in, for example, JP-A-62-253721 and JP-A-2-22414. There is something. The former is to increase the strength while preventing distortion (web wave) from occurring in the web when manufacturing thin H-section steel having a large flange thickness / web thickness ratio and a small web thickness by rolling. The aim is to make the rolling finish temperature of the thick flange part above the transformation point of the steel and below that of the thin web below the transformation point, and forcibly cool only the flange after rolling at a prescribed cooling rate to achieve uniform To produce H-section steel with high toughness and strength.

【0003】後者は、例えばウエブとフランジとの厚さ
が異なるH形鋼において、薄肉部位の板厚が15mmよ
り小さい場合は薄肉部位は低温圧延後空冷、厚肉部位は
最終仕上げ圧延後強制冷却することで、また、薄肉部位
の板厚が15mm以上の場合は、薄肉部位,厚肉部位そ
れぞれ異なった条件で最終仕上げ圧延後強制冷却するこ
とで高強度の製品を製造するものである。
The latter is, for example, in an H-section steel in which the thickness of the web and the flange are different, when the thickness of the thin-walled portion is smaller than 15 mm, the thin-walled portion is air-cooled after low-temperature rolling, and the thick-walled portion is forcibly cooled after final finishing rolling. By doing so, when the plate thickness of the thin portion is 15 mm or more, high-strength products are manufactured by forced cooling after final finish rolling under different conditions for the thin portion and the thick portion.

【0004】[0004]

【発明が解決しようとする課題】近年、建築物の高層化
等に伴いH形鋼も大型化する傾向が顕著で、それととも
に肉厚も増加し、例えばフランジ厚が40mmを越える極
厚H形鋼の需要が増している。しかしながら、上記従来
例はいずれもフランジ厚が40mm以下のものを対象とし
ており、高強度の製品を得るために圧延終了後の鋼材に
強制冷却を施す技術も、その冷却部位は左右のフランジ
の外側面とウエブの下面とに限定されている。このよう
に強制冷却をH形鋼の片面にのみ施す理由は次の通りで
ある。すなわち、H形鋼の特性からフランジ厚がウエブ
厚より大でその板厚比が1.5 以上のものが多くなり、冷
却速度に差が生じて本来ウエブの方がフランジより冷え
易いことに加えて、断面H形であるから圧延し搬送する
際にウエブ上面が「樋」になり水乗りし易い。したがっ
て、フランジ内面やウエブ上面を強制水冷すると、冷却
水がウエブに乗り、ウエブ温度がさらに下がる結果を招
く。
In recent years, there has been a marked tendency for H-section steels to increase in size due to the heightening of buildings, and the wall thickness also increases, for example, flange thicknesses exceeding 40 mm are extremely thick H-sections. The demand for steel is increasing. However, in all of the above conventional examples, the flange thickness is 40 mm or less, and even in the technology of forcibly cooling the steel material after rolling to obtain a high-strength product, the cooling site is outside the left and right flanges. Limited to the sides and the underside of the web. The reason why the forced cooling is applied to only one surface of the H-section steel is as follows. That is, in addition to the fact that the flange thickness is larger than the web thickness and the plate thickness ratio is 1.5 or more due to the characteristics of the H-section steel, the cooling rate is different and the web is naturally easier to cool than the flange. Since it has an H-shaped cross section, the top surface of the web becomes a "gutter" during rolling and transportation, which makes it easy to ride on water. Therefore, if the inner surface of the flange or the upper surface of the web is forcibly cooled with water, the cooling water rides on the web, resulting in a further decrease in the web temperature.

【0005】このような理由から、従来は片面冷却を行
わざるを得ず、そのためH形鋼のフランジ内外面での温
度差が大きくなり、それによる熱応力発生でフランジ反
りや直角度不良等の形状不良が生じる傾向があるが、既
に述べたようなフランジ厚が40mmを越えるような極厚
H形鋼になると、フランジ内外面での材質特性の変化が
一層顕著になり、全断面について均一性を保証すること
ができないという問題点があった。
For this reason, conventionally, one-sided cooling has to be performed, which causes a large temperature difference between the inner and outer surfaces of the flange of the H-section steel, which causes thermal stress, which causes flange warpage and squareness defects. Although there is a tendency for shape defects to occur, the change in material properties on the inner and outer surfaces of the flange becomes even more pronounced with the extremely thick H-section steel whose flange thickness exceeds 40 mm, as already mentioned, and uniformity over the entire cross section There was a problem that could not be guaranteed.

【0006】ちなみに、建築方面で柱又は梁として使用
されるH形鋼の場合、フランジ部に溶接が施されるため
厚み方向に応力が加わることが一般的であるが、加えて
近年の大型化に伴いフランジ厚が増加し、耐震性等の見
地から厚み方向の衝撃特性(靱性)や強度の均一化が不
可欠になってきている。そこで本発明は、上記従来の問
題点に着目してなされたものであり、圧延前の冷却及び
圧延後の冷却と復熱を繰り返し、かつその冷却をH形鋼
のフランジに対しては内外両面、ウエブに対しては上下
両面に施すことにより、フランジ部板厚が大きいもので
も均一な特性を備えた靱性・強度に富んだH形鋼を提供
することを目的とする。
Incidentally, in the case of H-section steel used as a column or a beam in the construction direction, it is common that stress is applied in the thickness direction because the flange is welded, but in addition, the size has increased in recent years. As the flange thickness increases, it is becoming essential to make the impact characteristics (toughness) and strength uniform in the thickness direction from the viewpoint of earthquake resistance. Therefore, the present invention has been made by paying attention to the above-mentioned conventional problems, in which cooling before rolling, cooling after rolling and recuperation are repeated, and the cooling is performed on both the inner and outer surfaces of the flange of the H-section steel. It is an object of the present invention to provide an H-section steel which is rich in toughness and strength with uniform characteristics even if the flange plate thickness is large by applying it to both upper and lower sides of the web.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成する本
発明は、H形鋼を包囲してフランジ内外面及びウエブ上
下面の冷却が可能な冷却装置を粗ミルと仕上ミルの前後
面にそれぞれ設置し、被圧延材を前記冷却装置によりM
s点直上まで冷却して直ちに粗圧延する工程を2回以上
繰り返し、その後被圧延材を仕上げミルへ搬送する途中
で前記冷却装置によりMs点直上まで冷却して復熱する
パターンの冷却復熱工程を1回以上実施し、被圧延材の
表層温度を750℃以上とした後に仕上圧延を施し、そ
の仕上圧延後に更に前記パターンの冷却復熱工程を1回
以上繰り返すことを特徴とするものである。
According to the present invention for achieving the above object, a cooling device which surrounds an H-shaped steel and can cool the inner and outer surfaces of a flange and the upper and lower surfaces of a web is provided on the front and rear surfaces of a rough mill and a finishing mill. Each of them is installed, and the material to be rolled is M
A step of cooling and recuperating a pattern in which the step of cooling to just above the s point and immediately performing rough rolling is repeated twice or more, and then the material to be rolled is cooled to just above the Ms point and reheated by the cooling device while being conveyed to the finishing mill. Is performed once or more, the surface layer temperature of the material to be rolled is set to 750 ° C. or more, finish rolling is performed, and after the finish rolling, the cooling and reheating step of the pattern is repeated one or more times. .

【0008】[0008]

【作用】本発明者らは、本出願人による先の出願(特開
平3−271320及び特開平4−17622号公報参
照)で示したように、ウエブ薄肉H形鋼を熱間圧延によ
り製造するに当たり、フランジ外側からの水冷と復熱を
2回以上繰り返し、その2回目以降の冷却停止温度(冷
却下限温度)がMs点以上であれば復熱温度のいかんに
かかわらず製品の硬度を含めた良好な機械的性質が確保
できるとの知見を得た。その後、この知見に基づいて、
本発明者らはフランジ部厚さが40mmを越える極厚H形
鋼における靱性と強度の保証の可能性につき研究を重ね
た結果、フランジ部及びウエブ部に対して両面からの強
制冷却と復熱を粗圧延及び仕上圧延の前後で繰り返すこ
とにより高靱性で高強度の製品が得られることを見出し
て、本発明を完成するに至った。
The inventors of the present invention manufacture a web thin-walled H-section steel by hot rolling, as shown in the previous application by the present applicant (see Japanese Patent Laid-Open Nos. 3-271320 and 4-17622). In this case, water cooling from the outside of the flange and recuperation are repeated twice or more, and if the cooling stop temperature (cooling lower limit temperature) after the second is Ms point or more, the hardness of the product is included regardless of the recuperation temperature. We have obtained the knowledge that good mechanical properties can be secured. Then, based on this finding,
As a result of repeated studies on the possibility of guaranteeing the toughness and strength of the extremely thick H-section steel with the flange thickness exceeding 40 mm, the present inventors have forcibly cooled and reheated the flange and the web from both sides. The present invention was completed by finding that a product having high toughness and high strength can be obtained by repeating before and after rough rolling and finish rolling.

【0009】本発明におけるH形鋼の強制冷却箇所は、
図1に示すようにH形鋼1の左右のフランジ2について
は、それぞれ外面2Aと内面2Bとの両面であり、ウエ
ブ3については、その上面3Aと下面3Bとの両面であ
る。フランジの内外面とウエブの上下面とは同時に冷却
してもよく、あるいはタイミングをずらして別々に冷却
してもよい。この冷却を実現するために、本発明にあっ
ては、粗ユニバーサルミルの前後面及び粗ユニバーサル
ミルから仕上ユニバーサルミルに到る搬送経路及び仕上
ユニバーサルミルの前後面に、それぞれH形鋼のフラン
ジ内外面とウエブ上下面とを包囲するように冷却水ノズ
ルを備えた両面冷却装置を配置する。
The forced cooling points of the H-section steel in the present invention are
As shown in FIG. 1, the left and right flanges 2 of the H-section steel 1 have both outer surfaces 2A and inner surfaces 2B, and the web 3 has both upper surfaces 3A and lower surfaces 3B. The inner and outer surfaces of the flange and the upper and lower surfaces of the web may be cooled at the same time, or may be cooled separately at different timings. In order to realize this cooling, according to the present invention, the front and rear surfaces of the rough universal mill, the conveying path from the rough universal mill to the finishing universal mill, and the front and rear surfaces of the finishing universal mill are respectively provided in the flanges of H-section steel. A double-sided cooling device having a cooling water nozzle is arranged so as to surround the outer surface and the upper and lower surfaces of the web.

【0010】これらのノズルを用いた本発明の冷却と圧
延は次のパターンで行われる。先ず粗ユニバーサルミル
圧延では、フランジとウエブのそれぞれ両面の表層部を
Ms点(マルテンサイト変態開始点)の直上の温度まで
前記両面冷却装置を用いて強制冷却して直ちに圧延を行
う工程を2回以上繰り返す。1回のみの冷却では表層部
の著しい硬化が生じて組織が不均一になるから、上記冷
却−圧延を2回以上繰り返すことが必要である。この複
数回の強制冷却のうちの1回は、Ms点の直下の温度ま
で冷却してから復熱してもよい。たとえ初めの冷却が強
すぎて冷却面にマルテンサイト等の低温変態組織が生成
し、その結果表面硬度が上がり過ぎて靱性が劣化すると
いうようなことが生じても、2回目以降の冷却停止温度
がMs点を越える温度であれば、復熱温度いかんにかか
わらず硬度を含めた製品の材質特性が保証できるからで
ある。
The cooling and rolling of the present invention using these nozzles is performed in the following pattern. First, in the rough universal mill rolling, two steps of forcibly cooling the surface layer portions on both sides of the flange and the web to a temperature just above the Ms point (martensitic transformation start point) using the double-sided cooling device and immediately performing rolling are performed twice. Repeat above. Cooling only once results in significant hardening of the surface layer and makes the structure non-uniform, so it is necessary to repeat the cooling-rolling twice or more. In one of the plurality of forced coolings, the temperature may be immediately below the Ms point and then the heat may be recovered. Even if the initial cooling is too strong and a low-temperature transformation structure such as martensite is generated on the cooling surface, and as a result the surface hardness increases too much and the toughness deteriorates, the cooling stop temperature after the second cooling If the temperature exceeds the Ms point, the material properties of the product including hardness can be guaranteed regardless of the recuperation temperature.

【0011】上記の粗圧延時の累積圧下率は20〜30
%として圧下がフランジ又はウエブの中央まで達するよ
うにするが、十分満足すべき製品強度を得るには30%
とすることが好ましい。上記粗ユニバーサルミル圧延
後、仕上ユニバーサルミルに被圧延材を搬送するまでの
間に、搬送経路において前記両面冷却装置により被圧延
材のフランジの内外両面およびウエブの上下両面をそれ
ぞれMs点の直上の温度まで強制冷却し、続いて復熱す
る冷却−復熱の処理を1回以上施す。このときの水冷
は、フランジの内外両面とウエブの上下両面とを各々単
独で冷却してもよく、又は同時に冷却してもよい。その
水冷後は750℃以上に復熱する。復熱の手段は、被圧
延材の内部からの伝熱でもよく、又は外部からの加熱手
段を利用してもよい。
The cumulative rolling reduction during the above rough rolling is 20 to 30.
% So that the reduction reaches the center of the flange or the web, but 30% to obtain a sufficiently satisfactory product strength.
It is preferable that After the rough universal mill rolling and before the material to be rolled is transported to the finishing universal mill, both the inner and outer surfaces of the flange of the material to be rolled and the upper and lower surfaces of the web are directly above the Ms point by the double-sided cooling device in the transport path. Forcibly cooling to the temperature, followed by recuperation is performed at least once. The water cooling at this time may be performed by cooling both the inner and outer surfaces of the flange and the upper and lower surfaces of the web independently or simultaneously. After the water cooling, it reheats to 750 ° C or higher. The recuperative means may be heat transfer from the inside of the material to be rolled, or a heating means from the outside may be used.

【0012】上記復熱温度を750℃以上とすること
で、仕上ユニバーサルミル圧延温度を、強度向上効果が
大きい750±30℃程度に制御することができる。仕
上ユニバーサルミルによる仕上圧延の圧下率は、通常行
われる10%以下でい。仕上圧延後、更に被圧延材のフ
ランジ内外両面及びウエブ上下両面をMs点の直上の温
度まで前記両面冷却装置を用いて強制冷却し、続いて復
熱する冷却−復熱の処理を1回以上繰り返す。この最後
の冷却−復熱処理では、そのうち少なくとも1回の復熱
温度を、低温変態生成分の軟化及びフェライト析出をさ
せるために、600℃以上にする必要がある。
By setting the recuperation temperature to 750 ° C. or higher, the finish universal mill rolling temperature can be controlled to about 750 ± 30 ° C., which has a large strength improving effect. The reduction rate of finish rolling by the finish universal mill is 10% or less which is usually performed. After finish rolling, the inner and outer surfaces of the flange of the material to be rolled and the upper and lower surfaces of the web are forcibly cooled to a temperature just above the Ms point by using the double-sided cooling device, and then reheated. repeat. In this final cooling-reheat treatment, the reheat temperature of at least one of them must be 600 ° C. or higher in order to soften the low-temperature transformation product and precipitate the ferrite.

【0013】かくして、本発明のH形鋼の製造方法にあ
っては、被圧延材のフランジの内外両面及びウエブの上
下両面を水冷するから、フランジ及びウエブの両面の温
度が均等化される。このため、従来の片面冷却のように
フランジ内外面やウエブ上下面での温度差が大きく、そ
れによる熱応力発生でフランジ反りや直角度不良等の形
状不良が生じるという現象は防止できる。フランジ厚が
40mmを越えるような極厚H形鋼の場合は、両面冷却の
効果は一層顕著であり、フランジの厚み方向,ウエブの
厚み方向で材質特性が安定し、結局全断面について均一
性を保証することができ、靱性・強度に富んだH形鋼を
提供することが可能である。
Thus, in the H-section manufacturing method of the present invention, the inner and outer surfaces of the flange of the material to be rolled and the upper and lower surfaces of the web are water-cooled, so that the temperatures of both the flange and the web are equalized. Therefore, it is possible to prevent the phenomenon that the temperature difference between the inner and outer surfaces of the flange and the upper and lower surfaces of the web as in the case of the conventional single-sided cooling is large, and the resulting thermal stress causes a shape defect such as a flange warp or a squareness defect. In the case of an extremely thick H-section steel with a flange thickness exceeding 40 mm, the effect of double-sided cooling is more remarkable, and the material properties are stable in the thickness direction of the flange and the thickness direction of the web, and as a result, uniformity over the entire cross section is achieved. It is possible to guarantee and it is possible to provide H-section steel rich in toughness and strength.

【0014】[0014]

【実施例】以下、本発明の実施例を説明する。図2は、
本発明のH形鋼の製造方法を適用した圧延ラインの配置
を示す平面図で、左から順に、粗ユニバーサルミルの前
面RU1 、第1段粗ユニバーサルミル本体U1 、エッジ
ングミルE1 、第2段粗ユニバーサルミル(これは省略
してもよい)U2 、粗ユニバーサルミルの後面RU2
冷却ゾーン1、冷却ゾーン3、仕上ユニバーサルミルU
F 、冷却ゾーン4が配置されている。各冷却ゾーン1,
3,4はそれぞれ更に小さな複数のバンクに区画され、
冷却ゾーン1が3バンク、冷却ゾーン3と冷却ゾーン4
がそれぞれ4バンクに設定されるとともに、搬送経路を
挟んで両側に設置されている。それらの各バンクごとに
及び前記粗ユニバーサルミルの前面RU1 と粗ユニバー
サルミルの後面RU2 とに、次に述べる水冷装置が配設
されている。
EXAMPLES Examples of the present invention will be described below. Figure 2
FIG. 3 is a plan view showing the arrangement of rolling lines to which the method for producing H-section steel of the present invention is applied, and in order from the left, the front surface RU 1 of the coarse universal mill, the first-stage coarse universal mill body U 1 , the edging mill E 1 , the first Two-stage coarse universal mill (this may be omitted) U 2 , the rear surface RU 2 of the coarse universal mill,
Cooling zone 1, cooling zone 3, finishing universal mill U
F , cooling zone 4 is located. Each cooling zone 1,
3 and 4 are divided into smaller banks,
Cooling zone 1 is 3 banks, cooling zone 3 and cooling zone 4
Are set in 4 banks, respectively, and are installed on both sides of the transport path. For each of these banks, and on the front surface RU 1 of the rough universal mill and the rear surface RU 2 of the rough universal mill, the water cooling device described below is arranged.

【0015】図3にその水冷装置10の概要図を示す。
なお、この図は圧延ラインを挟んで両側に配置されたも
のの片側のみを示している。11は被圧延材であるH形
鋼で、圧延ラインの図示しないテーブルローラ上に載置
されている。そのH形鋼11の側方に置かれたノズルガ
イド車12には、フランジ11Fの外面に対向するフラ
ンジ外面冷却ノズル13が複数個配設され、外面冷却ノ
ズル用ヘッダ14から分給される冷却水をフランジ11
Fの外面に噴射して水冷する。H形鋼11のサイズによ
り変わるフランジ幅に応じて、フランジ外面冷却ノズル
13をノズル取付サポート15の昇降用モータ16で昇
降させてノズル位置を調整する。このノズルガイド車1
2に、フランジ内外面ノズルガイド間隔調整用モータ1
8の出力ねじ軸18aが螺合する連絡ブロック19を搭
載したフランジ内面上部冷却ノズル用台車20Aが連結
されている。この台車20Aには、フランジ内面下部冷
却ノズル兼ウエブ下面冷却ノズル用台車20Bが台車連
結ねじ軸22を介して連結されている。両台車20A,
20Bはノズル昇降用ビーム23上に走行自在に搭載さ
れており、そのノズル昇降用ビーム23はビーム昇降モ
ータ24で駆動されるリフトレバー25により昇降自在
に支持されている。前記台車20Bには、フランジ内面
下部冷却ノズル26Aとその給水用ヘッダ27が搭載さ
れると共に、更にウエブ下面冷却ノズル28とその給水
用ヘッダ29が搭載されている。
FIG. 3 shows a schematic view of the water cooling device 10.
In addition, this figure shows only one side of those arranged on both sides of the rolling line. Reference numeral 11 denotes an H-shaped steel as a material to be rolled, which is placed on a table roller (not shown) in the rolling line. The nozzle guide wheel 12 placed on the side of the H-shaped steel 11 is provided with a plurality of flange outer surface cooling nozzles 13 facing the outer surface of the flange 11F, and cooling provided from the outer surface cooling nozzle header 14 is performed. Water flange 11
Spray on the outer surface of F to cool with water. According to the flange width which changes depending on the size of the H-shaped steel 11, the flange outer surface cooling nozzle 13 is moved up and down by the lifting motor 16 of the nozzle mounting support 15 to adjust the nozzle position. This nozzle guide car 1
2 、 Flange inner / outer surface nozzle guide spacing adjustment motor 1
A flanged inner surface upper cooling nozzle carriage 20A on which a connecting block 19 to which the output screw shaft 18a of No. 8 is screwed is mounted is connected. To the trolley 20A, a trolley 20B for lower flange inner surface cooling nozzle and web lower surface cooling nozzle is connected via a trolley connecting screw shaft 22. Both carriages 20A,
20B is movably mounted on a nozzle elevating beam 23, and the nozzle elevating beam 23 is movably supported by a lift lever 25 driven by a beam elevating motor 24. The carriage 20B is equipped with a lower flange inner surface cooling nozzle 26A and a water supply header 27 thereof, and a web lower surface cooling nozzle 28 and a water supply header 29 thereof.

【0016】また、フランジ内面上部冷却ノズル用台車
20Aには、更にサポート30を介して、フランジ内面
上部冷却ノズル26Bとその給水用ヘッダ31並びにそ
れらの昇降モータ32等が搭載されている。上記水冷装
置10のフランジ外面冷却ノズル13、フランジ内面下
部冷却ノズル26A、フランジ内面上部冷却ノズル26
B、ウエブ下面冷却ノズル28の各ノズルは、いずれも
昇降並びに圧延ラインに対して直角方向に水平移動可能
であるから、H形鋼11のサイズすなわちウエブ高さ、
フランジ幅、フランジ厚の変化に応じて適宜に位置を設
定し、冷却水の噴射領域を最適に保つ。また、各ノズル
のオン・オフを独立に制御して冷却水の噴射のタイミン
グを任意に調整する機能を有する。なお、図示の水冷装
置10に対してH形鋼11を挟んだ反対側に配置する水
冷装置は、同じくH形鋼11の他方のフランジ11Fの
内外両面を冷却するべくフランジ外面冷却ノズル13、
フランジ内面下部冷却ノズル26A、フランジ内面上部
冷却ノズル26Bを有するが、ウエブ冷却に関しては、
ウエブ下面冷却ノズル28の代わりに図示しないウエブ
上面冷却ノズルを備えたものとする。
Further, on the carriage 20A for the flange inner surface upper cooling nozzle, a flange inner surface upper cooling nozzle 26B, a water supply header 31 thereof, and a lifting motor 32 thereof are mounted via a support 30. The flange outer surface cooling nozzle 13, the flange inner surface lower cooling nozzle 26A, and the flange inner surface upper cooling nozzle 26 of the water cooling device 10 described above.
B, each nozzle of the web lower surface cooling nozzle 28 can move vertically and horizontally in a direction perpendicular to the rolling line. Therefore, the size of the H-section steel 11, that is, the web height,
The position is appropriately set according to changes in the flange width and the flange thickness, and the cooling water jetting region is kept optimum. Further, it has a function of independently controlling on / off of each nozzle and arbitrarily adjusting the timing of cooling water injection. In addition, the water cooling device arranged on the opposite side of the water cooling device 10 sandwiching the H-shaped steel 11 has a flange outer surface cooling nozzle 13 for cooling the inner and outer surfaces of the other flange 11F of the H-shaped steel 11 as well.
Although it has a flange inner surface lower cooling nozzle 26A and a flange inner surface upper cooling nozzle 26B, regarding the web cooling,
Instead of the web lower surface cooling nozzle 28, a web upper surface cooling nozzle (not shown) is provided.

【0017】ここで、図2のラインにおいて第2段粗ユ
ニバーサルミルU2 は省略し、上記水冷装置10を用い
て行った本発明の方法によるH形鋼の製造実験について
説明する。先ず、被熱間圧延材を粗ユニバーサルミルの
前面RU1 に設置した水冷装置10と粗ユニバーサルミ
ル本体U1 及びエッジングミルE1 と粗ユニバーサルミ
ルの後面RU2 に設置した水冷装置10とにより、リバ
ース粗圧延とその各圧延工程直前におけるフランジ11
Fの内外両面及びウエブ11Wの上下両面をMs点直上
の温度まで冷却する工程とを交互に3回繰り返して行っ
た。次いで、冷却ゾーン1の1−1バンクでは水冷を中
断することで復熱、1−2バンクで上記同様の強制冷
却、1−3バンクで水冷を中断することで復熱、続く冷
却ゾーン3の3−1バンクで同じく強制冷却、3−2バ
ンクでは水冷を中断して復熱、3−3バンクで同じく強
制冷却、3−4バンクで水冷を中断して復熱と、搬送経
路における冷却−復熱パターンを複数回実施した後、仕
上ユニバーサルミルUF による仕上圧延を行った。その
仕上圧延直前における被圧延材の表面温度は750℃以
上(表2参照)にした。仕上圧延後は被圧延材を更に冷
却ゾーン4に送って、4−1バンクで上記同様の強制冷
却、4−2バンクで水冷を中断することで復熱、4−3
バンクで同じく強制冷却し、4−4バンクでは水冷を中
断して復熱する工程を経て冷却−復熱を2回繰り返し
た。4−3バンクで水冷した直後の被圧延材の表面温度
(水冷停止温度)は、600℃以上である(表2参
照)。
Here, an explanation will be given of an H-section steel manufacturing experiment by the method of the present invention, which was carried out using the water cooling device 10 while omitting the second-stage coarse universal mill U 2 in the line of FIG. First, by the water cooling device 10 installed on the front surface RU 1 of the rough universal mill, the rough universal mill body U 1 and the edging mill E 1, and the water cooling device 10 installed on the rear surface RU 2 of the coarse universal mill, Reverse rough rolling and flange 11 immediately before each rolling process
The process of cooling both the inner and outer surfaces of F and the upper and lower surfaces of the web 11W to a temperature just above the Ms point was alternately repeated three times. Next, in the 1-1 bank of the cooling zone 1, the water cooling is interrupted to recover the heat. In the 1-2 bank, the same forced cooling as described above is performed. In the 1-3 bank, the water cooling is interrupted to recover the heat. Similarly, forced cooling is performed in 3-1 bank, water cooling is stopped and reheated in 3-2 bank, same forced cooling is performed in 3-3 bank, water cooling is stopped and reheated in 3-4 bank, and cooling is performed in the transfer route. After carrying out the recuperation pattern a plurality of times, finish rolling was carried out by the finish universal mill U F. The surface temperature of the material to be rolled immediately before the finish rolling was 750 ° C. or higher (see Table 2). After the finish rolling, the material to be rolled is further sent to the cooling zone 4, and the forced cooling similar to the above is performed in the 4-1 bank, and the water cooling is interrupted in the 4-2 bank to recover the heat, 4-3.
Similarly, forced cooling was performed in the bank, and in bank 4-4, cooling-reheating was repeated twice through a process of interrupting water cooling and recovering heat. The surface temperature (water cooling stop temperature) of the material to be rolled immediately after water cooling with the 4-3 bank is 600 ° C. or higher (see Table 2).

【0018】上記の実験に使用した被圧延材の成分組成
は表1に示す通りであった。
The composition of the rolled material used in the above experiment is shown in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】本発明品の処理温度の条件と上記製造実験
後に行った材料試験の結果を、水冷なしで製造した従来
品の場合と比較して表2に示す。材料試験の測定項目
は、降伏強さ(YP)、引張り強さ(TS)、伸び(E
l)、降伏比(YR)、並びに硬さ(Hv)とした。
Table 2 shows the condition of the treatment temperature of the product of the present invention and the result of the material test conducted after the above-mentioned manufacturing experiment, in comparison with the case of the conventional product manufactured without water cooling. The measurement items of the material test are yield strength (YP), tensile strength (TS), and elongation (E
1), the yield ratio (YR), and the hardness (Hv).

【0021】[0021]

【表2】 [Table 2]

【0022】また、図4に、上記製造実験で得た本発明
品に対して行ったシャルピー衝撃試験の結果を、水冷し
ない製造法で得られた従来品の結果と比較して示してい
る。その衝撃試験における試験片の採取位置,長手軸
(L)方向は図5に示す通りである。以上の試験結果か
ら、次のことが明らかになった。
Further, FIG. 4 shows the result of the Charpy impact test performed on the product of the present invention obtained in the above manufacturing experiment, in comparison with the result of the conventional product obtained by the manufacturing method without water cooling. The sampling position and the longitudinal axis (L) direction of the test piece in the impact test are as shown in FIG. From the above test results, the following things became clear.

【0023】従来品の硬度はフランジ11Fとウエブ1
1Wとで10Hvの差があり(厚さが薄いため速く冷却
されるウエブの方が硬い)不均一である。これに対し
て、両面水冷を行った本発明品は、厚さの大きいフラン
ジ11Fで従来品より10Hv程の上昇、ウエブ11W
では従来品との差異はなく、しかもフランジもウエブも
同一硬度を示して均一化されており、更に、YP,T
S,El等の機械的特性も各測定箇所において従来品よ
り改善され、YRの上昇は認められず、特にフランジ部
の靱性が著しく向上し、製品の全断面保証が可能なレベ
ルに達している。
The hardness of the conventional product is flange 11F and web 1
There is a difference of 10 Hv from 1 W (the web that is cooled faster because the thickness is thin is harder) and non-uniform. On the other hand, the product of the present invention, which has been water-cooled on both sides, has a flange 11F having a large thickness, which is about 10 Hv higher than that of the conventional product.
There is no difference from the conventional product, and the flange and the web have the same hardness and are uniformized.
Mechanical properties such as S and El have also been improved at each measurement point compared to conventional products, no increase in YR is observed, especially the toughness of the flange is significantly improved, and it has reached the level where the product's entire cross section can be guaranteed. .

【0024】[0024]

【発明の効果】以上説明したように、本発明によれば、
H形鋼のフランジ内外両面及びウエブ上下両面の水冷と
復熱を繰り返しながら圧延するものとした。本来、H形
鋼はフランジ部とウエブ部との板厚が異なり且つR部の
熱容量が大きいため、断面形状が異なる他の形鋼に比べ
て衝撃性(靱性)が低いが、本発明の製造法によればフ
ランジ厚が厚く大型のH形鋼についても制御圧延等の複
雑な圧延方法に頼らずに高強度化、高靱性化が可能にな
り、溶接性も改善できるから、コストダウン,リードタ
イム短縮化が実現し、実用上多大の効果が得られる。
As described above, according to the present invention,
The H-shaped steel was rolled while repeating water cooling and recuperation on both the inside and outside of the flange and both the top and bottom of the web. Originally, since the H-section steel has different plate thicknesses between the flange portion and the web portion and has a large heat capacity at the R portion, the impact resistance (toughness) is lower than other shape steels having different cross-sectional shapes, but the production of the present invention. According to the method, even for large H-section steel with a large flange thickness, strength and toughness can be increased without relying on complicated rolling methods such as controlled rolling, and weldability can be improved, leading to cost reduction and lead. The time can be shortened and a great effect can be obtained in practical use.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造工程におけるH形鋼の水冷実施箇
所の説明図である。
FIG. 1 is an explanatory view of places where water is cooled in an H-section steel in a manufacturing process of the present invention.

【図2】本発明の製造工程の一例を示す平面配置図であ
る。
FIG. 2 is a plan layout view showing an example of a manufacturing process of the present invention.

【図3】本発明の冷却装置の断面図である。FIG. 3 is a cross-sectional view of the cooling device of the present invention.

【図4】本発明品と従来品との衝撃試験結果を示すグラ
フである。
FIG. 4 is a graph showing the impact test results of the product of the present invention and the conventional product.

【図5】衝撃試験片の採取位置を示す斜視図である。FIG. 5 is a perspective view showing a sampling position of an impact test piece.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 H形鋼を包囲してフランジ内外面及びウ
エブ上下面の冷却が可能な冷却装置を粗ミルと仕上ミル
の前後面にそれぞれ設置し、被圧延材を前記冷却装置に
よりMs点直上まで冷却して直ちに粗圧延する工程を2
回以上繰り返し、その後被圧延材を仕上げミルへ搬送す
る途中で前記冷却装置によりMs点直上まで冷却して復
熱するパターンの冷却復熱工程を1回以上実施し、被圧
延材の表層温度を750℃以上とした後に仕上圧延を施
し、その仕上圧延後に更に前記パターンの冷却復熱工程
を1回以上繰り返すことを特徴とする靱性・強度に富ん
だH形鋼の製造方法。
1. A cooling device that surrounds an H-shaped steel and is capable of cooling the inner and outer surfaces of a flange and the upper and lower surfaces of a web is installed on the front and rear surfaces of a rough mill and a finishing mill, respectively, and a material to be rolled is cooled to the Ms point by the cooling device. 2 steps to cool directly above and rough rolling immediately
Repeat at least once, and then, while the rolled material is being conveyed to the finishing mill, the cooling reheating step of the pattern of cooling to just above the Ms point by the cooling device to reheat is carried out once or more, and the surface temperature of the rolled material is changed. A method for producing an H-section steel rich in toughness and strength, which comprises performing finish rolling after the temperature is 750 ° C. or higher, and further repeating the cooling reheating step of the pattern once or more after the finish rolling.
JP21299292A 1992-08-10 1992-08-10 Manufacturing method of H-section steel rich in toughness and strength Expired - Fee Related JP3241444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21299292A JP3241444B2 (en) 1992-08-10 1992-08-10 Manufacturing method of H-section steel rich in toughness and strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21299292A JP3241444B2 (en) 1992-08-10 1992-08-10 Manufacturing method of H-section steel rich in toughness and strength

Publications (2)

Publication Number Publication Date
JPH0657327A true JPH0657327A (en) 1994-03-01
JP3241444B2 JP3241444B2 (en) 2001-12-25

Family

ID=16631678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21299292A Expired - Fee Related JP3241444B2 (en) 1992-08-10 1992-08-10 Manufacturing method of H-section steel rich in toughness and strength

Country Status (1)

Country Link
JP (1) JP3241444B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0707903A3 (en) * 1994-10-19 1997-05-02 Mannesmann Ag Method and device for avoidance of insufficient parallelism of profiles
EP0925855A2 (en) * 1997-12-23 1999-06-30 Sms Schloemann-Siemag Aktiengesellschaft Device for the controlled cooling from the rolling temperature of hot-rolled profiles, in particular beams
EP3533893A4 (en) * 2016-12-21 2020-06-24 Nippon Steel Corporation H-steel and method for manufacturing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0707903A3 (en) * 1994-10-19 1997-05-02 Mannesmann Ag Method and device for avoidance of insufficient parallelism of profiles
EP0925855A2 (en) * 1997-12-23 1999-06-30 Sms Schloemann-Siemag Aktiengesellschaft Device for the controlled cooling from the rolling temperature of hot-rolled profiles, in particular beams
EP0925855A3 (en) * 1997-12-23 2000-08-02 SMS Demag AG Device for the controlled cooling from the rolling temperature of hot-rolled profiles, in particular beams
EP3533893A4 (en) * 2016-12-21 2020-06-24 Nippon Steel Corporation H-steel and method for manufacturing same

Also Published As

Publication number Publication date
JP3241444B2 (en) 2001-12-25

Similar Documents

Publication Publication Date Title
JP7285320B2 (en) Heat-cooled square/rectangular steel pipe with thickened corners and manufacturing method thereof
JP6037095B2 (en) Method and method for cooling hot-rolled coil and cooling device
JP2019515796A (en) Method of manufacturing cold rolled and welded steel sheet and sheet so manufactured
CN110449465B (en) Method for reducing cold-rolled edge fracture zone of high-hardenability cold-rolled high-strength steel
CN112689541B (en) Method for manufacturing railway rails with improved wear resistance and contact strength
CN113453816B (en) Square steel pipe, method for producing same, and building structure
JPH0657327A (en) Manufacture of h-shape steel having high toughness and strength
JP3460583B2 (en) Thick steel plate manufacturing apparatus and thick steel plate manufacturing method
KR100711357B1 (en) A steel having superior yield strength and tensile strength and a method for manufactruing the steel
KR100544464B1 (en) A method for improving productivity of manufacturing an accelerated cooling steel
CN103468903B (en) Method for improving low-temperature impact toughness of high-strength steel
CN114058820A (en) QST (QST) controlled cooling system for thick and heavy hot-rolled H-shaped steel after rolling
KR101569356B1 (en) Method for manufacturing steel sheet for making joc steel pipe and joc steel pipe
KR101245698B1 (en) METHOD FOR MANUFACTURING TENSILE STRENGTH 590MPa CLASS HOT ROLLED HIGH BURRING STEEL WITH EXCELLENT VARIATION OF MECHANICAL PROPERTY
JP3095896B2 (en) Method and apparatus for producing H-section steel rich in toughness and strength
JP3680652B2 (en) Manufacturing method of H-section steel
JPH05148543A (en) Accelerated cooling type production of thick steel plate
CN115323273B (en) Normalizing Q345E super-thick steel plate with core performance maintaining function and manufacturing method thereof
CN112080703B (en) 960 MPa-grade micro-residual stress high-strength steel plate and heat treatment method thereof
JP3669233B2 (en) Manufacturing method of ultra-thick H-section steel with excellent strength and toughness
JPH11286722A (en) Manufacture of steel plate
JP2865843B2 (en) Method for producing H-section steel having fillet portion excellent in strength and toughness
JPS61209702A (en) Line of hot rolling device of thin web h-beam
JPH04272135A (en) Method and device for rolling wire and barstock
JPH0127130B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees