JPS5944791B2 - semiconductor element - Google Patents

semiconductor element

Info

Publication number
JPS5944791B2
JPS5944791B2 JP54035873A JP3587379A JPS5944791B2 JP S5944791 B2 JPS5944791 B2 JP S5944791B2 JP 54035873 A JP54035873 A JP 54035873A JP 3587379 A JP3587379 A JP 3587379A JP S5944791 B2 JPS5944791 B2 JP S5944791B2
Authority
JP
Japan
Prior art keywords
layer
present
substrate
composition
xcx
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54035873A
Other languages
Japanese (ja)
Other versions
JPS55127083A (en
Inventor
伸一郎 石原
幸四郎 森
恒雄 田中
清一 永田
正一 深井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP54035873A priority Critical patent/JPS5944791B2/en
Priority to US06/132,406 priority patent/US4329699A/en
Publication of JPS55127083A publication Critical patent/JPS55127083A/en
Publication of JPS5944791B2 publication Critical patent/JPS5944791B2/en
Priority to JP60198020A priority patent/JPS61233751A/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Light Receiving Elements (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Bipolar Transistors (AREA)
  • Photovoltaic Devices (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

【発明の詳細な説明】 本発明は非晶質炭化シリコン(以下a一 Sil−xCxという。[Detailed description of the invention] The present invention relates to amorphous silicon carbide (hereinafter referred to as a- It is called Sil-xCx.

ここに0<X<1)の組成xの異つた接合即ち異種接合
を有する半導体素子に関する。従来高い光導性を有し且
つ高い暗抵抗をもつため、長時間の電荷保持能を有し更
に高電界を印加し得る物質としてBe、CdS等が知ら
れている。
The present invention relates to a semiconductor device having a different junction, that is, a heterojunction, with a composition x where 0<X<1. Conventionally, Be, CdS, and the like have been known as substances that have high optical conductivity and high dark resistance, have long-term charge retention ability, and can further apply a high electric field.

しかしこれらの物質は有毒で公害物質に属し、これに代
わる無公害材料を用いた半導体素子が強く望まれている
。近年無公害性の材料では、非晶質シリコン(a−Si
)が強い光導電性を有するものとして注目されているが
、この材料の室温暗比抵抗は高々、10”3Ωcm程度
であり、電流・電圧特性の降伏電界が低く、高電圧・高
電界を印加することができず、且つ暗電流が大きく、電
荷の長時間保持能も小さいという欠点があつた。
However, these substances are toxic and belong to polluting substances, and there is a strong desire for semiconductor elements using non-polluting materials to replace them. In recent years, amorphous silicon (a-Si
) is attracting attention as having strong photoconductivity, but the room temperature dark specific resistance of this material is at most about 10"3 Ωcm, and the breakdown electric field of current/voltage characteristics is low, making it difficult to apply high voltages and high electric fields. However, it has the drawbacks of large dark current and poor long-term charge retention ability.

近年a−Si7−xCxの製法や存在はphil。In recent years, the manufacturing method and existence of a-Si7-xCx have been revealed by phil.

Mag、pl、Vol、35、(1978)等に開示さ
れており、炭素濃度xを増加させれば、ある濃度までは
エネルギーギャップ(Eg)が増加し、同時に室温比抵
抗も増加することが開示されているが、この材料が光導
電性をもつ事を検討した報告は見当らない。本発明はこ
のa−Sil−xCxの特性を詳細に検討した結果、炭
素を含有するこの材料が高い室温比抵抗を有し、優れた
光導電性をもち、且つこの材料に注入された電荷を輸送
し得る機能をもつ事を発見したことにもとづくものであ
る。
Mag, pl, Vol. 35, (1978), etc., discloses that if the carbon concentration x is increased, the energy gap (Eg) increases up to a certain concentration, and at the same time, the room temperature resistivity also increases. However, no reports have been found that examine the photoconductivity of this material. As a result of a detailed study of the characteristics of this a-Sil-xCx, the present invention found that this carbon-containing material has a high room temperature resistivity, excellent photoconductivity, and that the charge injected into this material is This is based on the discovery that it has the ability to be transported.

更に組成xの相対的に小さい第1の層と、相対的に大き
い第2の層の異種接合を形成することにより、第1の層
の広い感光波長域特性と第2の層の高い耐電圧性を兼え
そなえた良好な光導電性半導体素子を得たものである。
本発明の目的は可視域の光に対し高い光導電性を有し、
高耐電圧性で暗電流が小さく且つ無公害性の材料を用い
た半導体素子を提供することにある。
Furthermore, by forming a heterojunction of a relatively small first layer with a relatively large composition x and a relatively large second layer, the first layer has a wide photosensitive wavelength range and the second layer has a high withstand voltage. A photoconductive semiconductor element with good properties and properties was obtained.
The object of the present invention is to have high photoconductivity for light in the visible range,
An object of the present invention is to provide a semiconductor element using a material that has high voltage resistance, low dark current, and is non-polluting.

本発明の他の目的は優れた光導電機能及び光起電力機能
を有する半導体素子を提供することにある。
Another object of the present invention is to provide a semiconductor device having excellent photoconductive and photovoltaic functions.


″本発明の更に他の目的は、機械的強度に富み、例えば
電子写真用感光層への応用などに適する半導体素子を提
供することにある。本発明の更に他の目的は感光波長領
域を選定でき、製作の容易な半導体素子を提供すること
にある。

``A further object of the present invention is to provide a semiconductor element that has high mechanical strength and is suitable for application to, for example, a photosensitive layer for electrophotography.A further object of the present invention is to provide a semiconductor element that has high mechanical strength and is suitable for application to, for example, a photosensitive layer for electrophotography. The object of the present invention is to provide a semiconductor device that can be manufactured easily.

上述した本発明の目的は組成の異つた非晶質炭化シリコ
ンの異種接合を有する半導体素子を提供することにより
達成されるものである。
The above-mentioned object of the present invention is achieved by providing a semiconductor device having a heterojunction of amorphous silicon carbide having different compositions.

以下図面を参照しながら本発明を詳細に説明する。The present invention will be described in detail below with reference to the drawings.

第1図は本発明にもとづく半導体素子の基本構成の一例
を示す図である。
FIG. 1 is a diagram showing an example of the basic configuration of a semiconductor device based on the present invention.

1は導電性基板、2,3はa−Sll−XcC層であり
、両者は組成xが異なり、両者の界面で異種接合を有す
1 is a conductive substrate, 2 and 3 are a-Sll-XcC layers, both have different compositions x, and have a heterojunction at the interface between the two.

4は透明電導膜でPt,Au,In2O,snO2等が
用いられ得る。
4 is a transparent conductive film which may be made of Pt, Au, In2O, snO2, etc.

5,6は素子を外部電気回路へ接続するための電極であ
る。
5 and 6 are electrodes for connecting the element to an external electric circuit.

7は電源、8は負荷抵抗であり、素子の光導電性を用い
る場合にはスイツチ9を図の電源7側に接続する。
7 is a power source, 8 is a load resistor, and when using the photoconductive element, a switch 9 is connected to the power source 7 side in the figure.

素子の光起電エ力を利用する場合にはスイツチ9を負荷
抵抗10側に接続して用いる。11は入射光である。
When utilizing the photovoltaic energy of the element, the switch 9 is connected to the load resistor 10 side. 11 is incident light.

a−Sil−XcX層2・3は相対的にxの小さい組成
を選定し、可視域の照射光に感応して容易に光励起電荷
担体を生成する第1の層2と、相.対的にxの大きい組
成に選定され、第1の層2で、生成された電荷担体が注
入され、これを輸送するエネルギーギヤツプ(Eg)の
相対的に大きい高暗抵抗性・透光性の第2の層3とで構
成される。可視の広い波長域に対する光感応機能を第1
の層2VCもたせ、耐高電界・高電圧性及び注入電荷輸
送の機能を第2の層3VCもたせた異種接合を形成した
ことにより、高感度・高耐電圧性を有する光導電性及び
光起電力性半導体素子を構成するようにしたものである
。なお第1図の層2・3はいずれが第1の層あるいは第
2の層であつてもかまわない。第2図に本発明の光導電
性機能を有する半導体素子の他の基本的な構成例を示す
The a-Sil-XcX layers 2 and 3 are selected to have a relatively small composition of x, and include a first layer 2 that is sensitive to irradiation light in the visible range and easily generates photoexcited charge carriers, and a phase. The first layer 2 is selected to have a composition with a relatively large value of x, and has a relatively large energy gap (Eg) for injecting the generated charge carriers and transporting them. and a second layer 3 of color. The first is the photosensitive function for a wide visible wavelength range.
By forming a heterojunction with a second layer 2VC and a second layer 3VC having high electric field and high voltage resistance and injection charge transport functions, photoconductivity and photovoltaic power with high sensitivity and high voltage resistance are achieved. The device is configured to constitute a magnetic semiconductor element. Note that either layer 2 or 3 in FIG. 1 may be the first layer or the second layer. FIG. 2 shows another basic configuration example of a semiconductor element having a photoconductive function according to the present invention.

第2図に於て)第1図と同じ参照番号は第1図と同様の
素子を示す。
In FIG. 2, the same reference numbers as in FIG. 1 indicate similar elements.

第1図と異なるところは透光性基板12上に透明導電膜
13をもうけ、この上に素子を形成した点にある。この
ように構成すれば、基板12側から入射する光14にも
感応する半導体素子を製作できる。本発明の半導体素子
は前述したように、 (1)外部印加電圧に対し高い耐電圧性を有し、かつ高
い光感度を有する光導電素子として設計する場合には、
第1の層に対し第2の層の組成を大きく変化させ、かつ
高抵抗のものを用いるように設計すれば良く、(2)外
部入射光に対し光起電力素子として使用する目的で発明
の素子を設計する場合には、第2の層に不純物をドープ
し低抵抗となし、且つ外部入射光に対する吸収を減少さ
せ第1の層で光励励起された荷電担体の輸送をより容易
にするために、第1の層に対し第2の層の厚さを小さく
すれば良い。
The difference from FIG. 1 is that a transparent conductive film 13 is provided on a transparent substrate 12, and elements are formed on this. With this configuration, it is possible to manufacture a semiconductor element that is also sensitive to the light 14 incident from the substrate 12 side. As described above, the semiconductor device of the present invention has the following characteristics: (1) When designed as a photoconductive device that has high voltage resistance against externally applied voltage and high photosensitivity,
The composition of the second layer may be greatly changed from that of the first layer, and the second layer may be designed to have a high resistance. When designing a device, the second layer is doped with impurities to make it low in resistance, reduce absorption of externally incident light, and facilitate transport of charge carriers photoexcited in the first layer. Therefore, the thickness of the second layer may be made smaller than that of the first layer.

本発明の半導体素子は例えば以下のようにして製造する
ことができる。
The semiconductor element of the present invention can be manufactured, for example, as follows.

基板としては表面が平滑で光導電体層を堆積する温度例
えば150が〜400℃に耐え得るものであれば良く、
結晶性・非結晶性を問わない。例えばSi単結晶等の半
導体、ステンレス・アルミニユーム等の金属:石英ガラ
スやセラミシクスあるいは上記温度に耐え得るプラスチ
ツクフイルム等の絶縁体の表面に金属や金属酸化物等の
導電性被膜をもうけたものが用いられ得る。これらの基
板表面を清浄にしたのち、グロー放電装置内に設置し、
基板温度を適宜加熱する。室温で構造が安定な気体状を
呈するシリコン化合物、例えばSiH4と室温で構造が
安定な気体状を呈する炭素の化合物例えばC2H4を所
望の濃度比に混合した第1の組成比を有する混合ガス及
び第2の組成比を有する混合ガスをそれぞれ不活性ガス
例えばアルゴンに稀釈し、これらの稀釈混合ガスを上記
グロー放電装置内に順次導き、10−2〜101T0r
r台の圧力のもとでグロー放電により順次所望の時間分
解することにより、基板上にはそれぞれ所望の組成・膜
厚を有する。a−Sil−XcXの層からなる異種接合
が形成される。さらに前記した第1の層形後第2の層の
形成、又はその逆過程による各層の形成にあたり、原料
ガス中のシリコン化合物と炭素化合物の濃度比を徐々に
変化させることにより、傾斜異種接合を形成することが
できるのは当然である。
The substrate may be one that has a smooth surface and can withstand the temperature at which the photoconductor layer is deposited, for example from 150 to 400°C.
It doesn't matter whether it is crystalline or amorphous. For example, semiconductors such as Si single crystals, metals such as stainless steel and aluminum: quartz glass, ceramics, or insulators such as plastic films that can withstand the above temperatures, with conductive coatings such as metals or metal oxides on the surface are used. It can be done. After cleaning the surfaces of these boards, place them in a glow discharge device.
The substrate temperature is increased appropriately. A mixed gas having a first composition ratio in which a silicon compound exhibiting a gaseous state with a stable structure at room temperature, such as SiH4, and a carbon compound exhibiting a gaseous state having a stable structure at room temperature, such as C2H4, at a desired concentration ratio; Each of the mixed gases having a composition ratio of 2 is diluted with an inert gas such as argon, and these diluted mixed gases are sequentially introduced into the glow discharge device and heated to 10-2 to 101T0r.
By sequentially decomposing the films for a desired time using glow discharge under a pressure of about R, each film has a desired composition and film thickness on the substrate. A heterojunction consisting of a layer of a-Sil-XcX is formed. Furthermore, when forming the second layer after the first layer, or forming each layer by the reverse process, by gradually changing the concentration ratio of silicon compounds and carbon compounds in the raw material gas, inclined heterogeneous bonding can be achieved. Of course, it can be formed.

特に不純物を添加したa−Sil−XcX層を堆する必
要のある場合には、適宜族又はV族元素の気体状化合物
例えばB2H6あるいはPH3を前記稀釈混合ガスに添
加して用いれば良い。
In particular, when it is necessary to deposit an a-Sil-XcX layer to which impurities have been added, an appropriate gaseous compound of group or V group elements, such as B2H6 or PH3, may be added to the diluted mixed gas.

次いで堆積された異種接合を有するa−Sil−XcX
膜上に適宜透明導電性物質の層を従米技術によりもうけ
、本発明の半導体素子を形成する。
a-Sil-XcX with heterojunction then deposited
A layer of a transparent conductive material is appropriately formed on the film using a conventional technique to form a semiconductor element of the present invention.

本発明の素子を製造するに際しては、上述の製造法に限
定されるものではない。以下実施例にもとづいて本発明
を更に詳しく説明する。
When manufacturing the element of the present invention, the manufacturing method is not limited to the above-mentioned manufacturing method. The present invention will be explained in more detail below based on Examples.

〔素子製造実施例〕[Element manufacturing example]

基板にはSi単結晶(p型10Ω・Cm)、ステンレス
、石英ガラス上にIn2O3:SnO2(TO)透明導
電膜をもうけたものを用いた。
The substrate used was Si single crystal (p-type 10 Ω·Cm), stainless steel, or quartz glass with an In2O3:SnO2 (TO) transparent conductive film formed thereon.

13.5MH2高周波グロー放電装置内で基板温度を2
50℃に保ち、゜先ず第1の層を約1μm形成するため
20v01.%のSiH4を含むArガスを導入し、0
.1T0rrの圧力でグロー放電分解した。
In a 13.5MH2 high frequency glow discharge device, the substrate temperature was
The temperature was maintained at 50°C, and the temperature was 20v01. Introducing Ar gas containing 0% SiH4,
.. Glow discharge decomposition was performed at a pressure of 1T0rr.

ついでC2H4とSiH4を各々18v010%濃度混
合したAr。ガスを導入し、同じく0.1T0rrでグ
ロー放電分解を行ない第2の層を約1μm堆積させた。
Next, Ar was mixed with C2H4 and SiH4 at a concentration of 18v010%. A gas was introduced and glow discharge decomposition was performed at the same 0.1 T0rr to deposit a second layer with a thickness of about 1 μm.

その後Si単結晶、ステンレス基板上に堆積したa−S
ll−XcX異種接合を有する膜上にITOを約150
0X.S1単結晶、ステンレス・ITO被膜をもつ石英
ガラス基板上の異種接合を有する膜上にAuSb合金を
約1000A各々堆積することにより透明電極をもうけ
光導電・光起電力機能を有する半導体素子を形成した。
なおX線マイクロアナリシス法による測定の結果第2の
層の組成Xは約35%であつた。これら素子の光電特性
の測定はA光源タングステンランプを用い照度230L
xで行つた。
After that, Si single crystal, a-S deposited on stainless steel substrate
Approximately 150% of ITO was deposited on the film with ll-XcX heterojunction.
0X. A transparent electrode was formed by depositing an AuSb alloy of approximately 1000 A on each film having a heterojunction on a quartz glass substrate with a S1 single crystal, stainless steel/ITO coating, and a semiconductor element having photoconductive and photovoltaic functions was formed. .
As a result of measurement using the X-ray microanalysis method, the composition X of the second layer was approximately 35%. The photoelectric characteristics of these devices were measured using a tungsten lamp with an A light source at an illuminance of 230L.
I went with x.

〔実施例 1〕第3図はp型Si基板上にa−Sil−
XcXの異種接合をもうけ、更にITO透明導電膜をも
うけた素子の特性を示す。
[Example 1] Figure 3 shows a-Sil-
The characteristics of an element having a heterojunction of XcX and an ITO transparent conductive film are shown.

図に於て曲線15はSi基板を負にバイアスした場合の
暗電流を、曲線16は同光電流を示す。又曲線17は基
板を正にバイアスした場合の暗電流を示し、曲線18,
19が光電流を示す。ここで曲線19で示す光電流の方
向は印加電圧の方向に流れるが、曲線18で示す光電流
は印加電圧の方向と逆であり、この事より光起電力が現
れている事は明瞭である。
In the figure, a curve 15 shows the dark current when the Si substrate is negatively biased, and a curve 16 shows the photocurrent. Curve 17 shows the dark current when the substrate is positively biased, and curve 18,
19 indicates photocurrent. Here, the direction of the photocurrent shown by curve 19 flows in the direction of the applied voltage, but the photocurrent shown by curve 18 is opposite to the direction of the applied voltage, and from this it is clear that a photovoltaic force appears. .

本素子の光起電力としては230Lx照度に於て開放端
電圧約350mV短絡電流密度約7×10−0A/Cn
iが得られた。他方光導電素子特性としては、上記照度
に於て約1×103倍の光電流・暗電流比が得られ、更
に暗電流密度が1×10−10A/Cr!iを越える印
加電圧は約10であり、この時の平均電界として約3×
104V/Cmを得る。比較のため示せばa−Siのみ
の層を用いて暗電流密度1×1010A/Cd以下を得
る事は現状では不可能である。〔実施例 2〕TO表面
電極をもうけたステンレス基板上の素子も、暗電流・光
電流特性及びTO表面電極を負にバイアスした場合の光
起電力特性ともに、第3図とほとんど同様の特性を示し
た。
The photovoltaic force of this device is approximately 350 mV at an open circuit voltage and approximately 7 x 10-0 A/Cn at an illuminance of 230 Lx.
i was obtained. On the other hand, as for the characteristics of the photoconductive element, at the above illuminance, a photocurrent/dark current ratio of about 1 x 103 times is obtained, and furthermore, the dark current density is 1 x 10-10 A/Cr! The applied voltage exceeding i is about 10, and the average electric field at this time is about 3×
Obtain 104V/Cm. For comparison, it is currently impossible to obtain a dark current density of 1.times.10.sup.10 A/Cd or less using a layer made only of a-Si. [Example 2] A device on a stainless steel substrate with a TO surface electrode also had almost the same characteristics as shown in Fig. 3, both in terms of dark current/photocurrent characteristics and photovoltaic force characteristics when the TO surface electrode was negatively biased. Indicated.

〔実施例 3〕 約1000Af)Au−Sb合金膜を表面電極としても
うけたSi基板上の素子特性を第4図に示す。
[Example 3] Figure 4 shows the characteristics of a device on a Si substrate having an approximately 1000 Af) Au-Sb alloy film as a surface electrode.

曲線20,21は基板を負にバイアスした場合の暗電流
光電流を各々示す。又曲線22,23は基板を正にバイ
アスした場合の暗電流・光電流を示す。光電流密度は第
3図に比べ低下しているが、これは比較的1厚い゛半透
明電導膜を用いたためである。しかし暗電流は特に変化
していない。更にAu−Sb電極を用いたため、本電極
とa−Sil−XcXとの界面の障壁が減少したためか
、光起電力は発生せず正負両バイアス方向とも極めて良
く似かよつた特性を示す。従つて良好な異種接合面が形
成されていると堆測される。
Curves 20 and 21 show the dark current photocurrent when the substrate is negatively biased, respectively. Further, curves 22 and 23 show dark current and photocurrent when the substrate is positively biased. The photocurrent density is lower than in FIG. 3, but this is due to the use of a relatively thick semi-transparent conductive film. However, the dark current did not change particularly. Furthermore, since the Au-Sb electrode was used, no photovoltaic force was generated and very similar characteristics were exhibited in both the positive and negative bias directions, probably because the barrier at the interface between the electrode and a-Sil-XcX was reduced. Therefore, it can be concluded that a good dissimilar bonding surface is formed.

〔実施例 4〕 実施例3と約1000A0)AuSb合金膜を表面電極
としてもうけたステンレス基板上の素子も、第4図とほ
とんど同様の特性を示す。
[Example 4] An element on a stainless steel substrate having an AuSb alloy film of about 1000 A0 as a surface electrode as in Example 3 also exhibits almost the same characteristics as in FIG. 4.

〔実施例 5〕 前記実施例の素子の製作に用いたa−Si,−XCx及
び従米素子であるSe,CdS等を光導電膜とする素子
をステンレス製ピンセツトの先端で引つ掻き、機械的強
度を比較した。
[Example 5] The a-Si, -XCx and conventional elements used in the fabrication of the elements of the previous examples, whose photoconductive films are Se, CdS, etc., were scratched with the tip of stainless steel tweezers, and then mechanically removed. The strength was compared.

従米のSe,CdSを用いた素子は容易に傷ついたが、
本発明による素子では相当の力で押圧したが、何ら機械
的損傷は認められなかつた。
Jumei's elements using Se and CdS were easily damaged, but
Although the element according to the present invention was pressed with considerable force, no mechanical damage was observed.

第5図に前記した実施例の素子の光導電特性の分光感度
分布を示す。曲線24,25は各々表面電極としてAu
●Sb,ITOをもうけた素子の特性である。曲線26
はa−Si単層膜(約0.7μm)の分光感度分布を相
対値として示す。曲線24,25は約490nmに最高
感度を有し、これより長波長側では、曲線26とほぼ相
似の傾向を示して感度が低下する。前述したように本実
施例の素子の第2の層の組成はx=0.35であり、こ
の組成ではエネルギーギヤツプが約2.3とVをもつた
め、第2の層のみではこのような長波長側に感度はない
。長波長側の総合感度として、a−Siの感度分布と同
様の傾向を示すことから、この素子は第1の層のa−S
i層で光励起された荷電担体が第2の層に注入され輸送
されている事は明らかである。他方490nmより短波
長側で素子の感度が低下しているのは、光入射側に組成
x=0.35の第2の層があり、この層で入射光が吸収
されているためと考えられる。この短波長での感度低下
は、第2の層の組成xを増しエネルギーギヤツプを大き
くすれば避けられる。他方第1の層の方向から光入射を
行なう構成にすれば、第2の層による減衰を受ける事な
く、入射光を第1の層に導く事が可能となる。本発明の
素子を光起電力素子として用いる場合、耐高電界性は要
求されないため、第1の層に比し薄く、且つ低抵抗にド
ープした透光性の第2の層を用いれば良い。
FIG. 5 shows the spectral sensitivity distribution of the photoconductive characteristics of the device of the example described above. Curves 24 and 25 each use Au as the surface electrode.
●Characteristics of elements containing Sb and ITO. curve 26
shows the spectral sensitivity distribution of an a-Si single layer film (approximately 0.7 μm) as a relative value. Curves 24 and 25 have the highest sensitivity at about 490 nm, and on the longer wavelength side, the sensitivity decreases, showing a tendency almost similar to curve 26. As mentioned above, the composition of the second layer of the device of this example is x=0.35, and since this composition has an energy gap of about 2.3 and V, the second layer alone cannot achieve this effect. There is no sensitivity on the long wavelength side. Since the overall sensitivity on the long wavelength side shows a similar tendency to the sensitivity distribution of a-Si, this element
It is clear that charge carriers photoexcited in the i-layer are injected and transported into the second layer. On the other hand, the reason why the sensitivity of the element decreases at wavelengths shorter than 490 nm is thought to be because there is a second layer with a composition x = 0.35 on the light incident side, and this layer absorbs the incident light. . This decrease in sensitivity at short wavelengths can be avoided by increasing the composition x of the second layer and increasing the energy gap. On the other hand, if the configuration is such that light is incident from the direction of the first layer, it becomes possible to guide the incident light to the first layer without being attenuated by the second layer. When the device of the present invention is used as a photovoltaic device, high electric field resistance is not required, so it is sufficient to use a light-transmitting second layer that is thinner than the first layer and doped with low resistance.

こうする事により現在のa−Siのp−11nホモ接合
光起電力素子の欠点であるp型層での光吸収の欠点を解
決できる。更に本発明の素子を高電圧の表面電荷を付与
し選択的な光照射により光導電性を利用して選択的に表
面電荷を放電し、印刷等に利用する電子写真技術分野へ
利用するには、例えば第1・2図に於て表面電極4を取
り除いた構成となし、素子の耐電圧性を増すような設計
をなせば良い。
By doing so, it is possible to solve the drawback of light absorption in the p-type layer, which is a drawback of the current a-Si p-11n homojunction photovoltaic element. Furthermore, the device of the present invention can be applied to the field of electrophotography technology, where a high-voltage surface charge is applied and the surface charge is selectively discharged by utilizing photoconductivity by selective irradiation with light for use in printing, etc. For example, the surface electrode 4 may be removed from the structure shown in FIGS. 1 and 2, and the design may be designed to increase the voltage resistance of the element.

以上本発明を詳細に説明したように、本発明では組成x
を連続的に制御できるa−Si,xCxの異種接合を用
いた半導体素子を提供するものであり、相対的に組成x
の小さい第1の層に光励起担体生成機能を、相対的に組
成xの大きい第2の層に透光性と耐電界性の機能ならび
に光励起担体の輸送機能を分担することにより、それぞ
れの層のもつ特長を発揮させ得たものである。
As described above in detail, in the present invention, the composition x
The present invention provides a semiconductor device using a heterojunction of a-Si and xCx that can continuously control the relative composition x.
By assigning the photoexcited carrier generation function to the first layer with a relatively large composition x and the functions of light transmittance and electric field resistance as well as the transport function of the photoexcited carriers to the second layer with a relatively large composition x, each layer can be This allows us to make full use of its unique features.

このため本発明の素子は、(1)可視光域の光に高い感
度を有し、耐高電界高電圧性で、暗電流の小さい光導電
素子を提供できる。
Therefore, the device of the present invention can provide a photoconductive device (1) that has high sensitivity to light in the visible light range, is resistant to high electric fields and high voltages, and has a small dark current.

(2)機械的強度に富む光導電素子を提供でき、ことに
耐摩耗性の要求される電子写真技術分野の用途に極めて
有用である。
(2) A photoconductive element with high mechanical strength can be provided, and is extremely useful especially for applications in the field of electrophotography where wear resistance is required.

(3) p−1−nホモ接合a−Si光起電力素子の欠
点であつたp層での入射光の減衰を避けられる可能性を
有する。
(3) It is possible to avoid attenuation of incident light in the p layer, which was a drawback of p-1-n homojunction a-Si photovoltaic elements.

(4)異種接合形成の温度が低く、かつ形成後の熱処理
を要さず、さらに非晶質であるため基板材料及び基板形
状の選択範囲が広く、製作が簡単であり用途目的に応じ
て自由の形状の素子を提供できる。
(4) The temperature for forming dissimilar junctions is low, no heat treatment is required after formation, and since it is amorphous, there is a wide selection range of substrate materials and substrate shapes, and manufacturing is easy and flexible depending on the purpose of use. It is possible to provide an element having the shape of .

(5)基本構成材料が無毒・無公害である。(5) The basic constituent materials are non-toxic and non-polluting.

等の効果を有し、産業的価値が極めて大なるものである
It has the following effects and has extremely great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図,第2図は本発明の半導体素子の基本構成を示す
概要図、第3図,第4図は本発明の半導体素子の一実施
例における印加電圧と暗電流・光電流の関係を示す図、
第5図は本発明の半導体素子の一実施例における光電流
と入射光波長の関係を示す図である。 1・・・・・・導電性基板、2,3・・・・・・a−S
i,−XCx層、4・・・・・・透明導電膜、5,6・
・・・・・電極、7・・・・・・電源、8・・・・・・
負荷抵抗、9・・・・・・スイツチ。
FIGS. 1 and 2 are schematic diagrams showing the basic configuration of the semiconductor device of the present invention, and FIGS. 3 and 4 show the relationship between applied voltage and dark current/photocurrent in an embodiment of the semiconductor device of the present invention. diagram showing,
FIG. 5 is a diagram showing the relationship between photocurrent and incident light wavelength in one embodiment of the semiconductor device of the present invention. 1... Conductive substrate, 2, 3... a-S
i, -XCx layer, 4...transparent conductive film, 5,6...
...Electrode, 7...Power supply, 8...
Load resistance, 9... switch.

Claims (1)

【特許請求の範囲】[Claims] 1 導電性を有する基板と、この基板上に形成した第1
の非晶質炭化シリコン層と、第1の層上に形成した第2
の非晶質炭化シリコン層とを備え、第1及び第2の非晶
質炭化シリコンがSi_1_−_xC_x(0<x<1
)で表わされ、かつ両層の前記X値が異り、前記非晶質
炭化シリコン層の少なくとも一方がp型またはn型の不
純物を含有することを特徴とする半導体素子。
1 A conductive substrate and a first conductive substrate formed on this substrate.
an amorphous silicon carbide layer formed on the first layer and a second layer formed on the first layer.
an amorphous silicon carbide layer, the first and second amorphous silicon carbide are Si_1_−_xC_x (0<x<1
), the two layers have different X values, and at least one of the amorphous silicon carbide layers contains a p-type or n-type impurity.
JP54035873A 1979-03-26 1979-03-26 semiconductor element Expired JPS5944791B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP54035873A JPS5944791B2 (en) 1979-03-26 1979-03-26 semiconductor element
US06/132,406 US4329699A (en) 1979-03-26 1980-03-21 Semiconductor device and method of manufacturing the same
JP60198020A JPS61233751A (en) 1979-03-26 1985-09-06 Electrophotographic sensitive layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54035873A JPS5944791B2 (en) 1979-03-26 1979-03-26 semiconductor element

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP60198020A Division JPS61233751A (en) 1979-03-26 1985-09-06 Electrophotographic sensitive layer
JP60198021A Division JPS6175568A (en) 1985-09-06 1985-09-06 Manufacture of semiconductor element

Publications (2)

Publication Number Publication Date
JPS55127083A JPS55127083A (en) 1980-10-01
JPS5944791B2 true JPS5944791B2 (en) 1984-11-01

Family

ID=12454105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54035873A Expired JPS5944791B2 (en) 1979-03-26 1979-03-26 semiconductor element

Country Status (1)

Country Link
JP (1) JPS5944791B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57160176A (en) * 1981-09-26 1982-10-02 Semiconductor Energy Lab Co Ltd Photoelectric converter
JPS5853869A (en) * 1981-09-26 1983-03-30 Semiconductor Energy Lab Co Ltd Preparation of photo-electric conversion apparatus
JPS5888753A (en) * 1981-11-24 1983-05-26 Oki Electric Ind Co Ltd Electrophotographic photoreceptor
JPS5895876A (en) * 1981-12-01 1983-06-07 Canon Inc Photoconductive member
JPS5895873A (en) * 1981-12-02 1983-06-07 Konishiroku Photo Ind Co Ltd Amorphous silicon solar battery
JPS58118143A (en) * 1982-01-06 1983-07-14 Semiconductor Energy Lab Co Ltd Semiconductor device
FR2523371A1 (en) * 1982-03-10 1983-09-16 Contellec Michel Le Simplified cell for video retina - using photoconducting element in hydrogenated amorphous silicon carbide
US4453173A (en) * 1982-04-27 1984-06-05 Rca Corporation Photocell utilizing a wide-bandgap semiconductor material
JPS59119875A (en) * 1982-12-27 1984-07-11 Hoya Corp Solar cell
JPS59119874A (en) * 1982-12-27 1984-07-11 Hoya Corp Solar cell
JPS61236159A (en) * 1985-04-12 1986-10-21 Ricoh Co Ltd Amorphous silicon photo sensor
JPS6263480A (en) * 1986-09-13 1987-03-20 Semiconductor Energy Lab Co Ltd Photoelectric conversion device
JPS6477971A (en) * 1987-09-18 1989-03-23 Sanyo Electric Co Manufacture of photovoltaic device
US5262263A (en) * 1989-01-31 1993-11-16 Kyocera Corporation Layer electrophotographic sensitive member comprising morphous silicon

Also Published As

Publication number Publication date
JPS55127083A (en) 1980-10-01

Similar Documents

Publication Publication Date Title
US4329699A (en) Semiconductor device and method of manufacturing the same
US4728370A (en) Amorphous photovoltaic elements
Shewchun et al. The operation of the semiconductor‐insulator‐semiconductor solar cell: Experiment
JPS5944791B2 (en) semiconductor element
JPH05335614A (en) Photoelectric conversion element
Kovalyuk et al. Intrinsic conductive oxide–p-InSe solar cells
Makori et al. Characterization of SnSe-CdO: Sn PN junction for solar cell applications
Tohge et al. Formation of chalcogenide glass p‐n junctions
CA1187588A (en) Amorphous silicon pin semiconductor device having a hybrid construction
Shimizu et al. Photoreceptor of a‐Si: H with diodelike structure for electrophotography
JPS6175568A (en) Manufacture of semiconductor element
JPH0334061B2 (en)
Salvatori et al. Metal-semiconductor-metal photodiodes based on CVD diamond films
JPH0426106B2 (en)
JP2000150935A (en) Photovoltaic element
JP3449208B2 (en) Amorphous carbon nitride composition and method for producing the same
JPS61201481A (en) Photoconductor
JPS63233574A (en) Optoelectronic transducer
JP2784820B2 (en) Photovoltaic element
JP2675323B2 (en) Method for manufacturing semiconductor device
JPH03263878A (en) Photovoltaic device
Madan Thin film amorphous silicon solar cells
Sugawa et al. An experimental observation of photo-induced carrier multiplication in hydrogenated amorphous silicon
JPS6135569A (en) Photovoltaic device
JP2002033499A (en) Photovoltaic device