JPS61233751A - Electrophotographic sensitive layer - Google Patents

Electrophotographic sensitive layer

Info

Publication number
JPS61233751A
JPS61233751A JP60198020A JP19802085A JPS61233751A JP S61233751 A JPS61233751 A JP S61233751A JP 60198020 A JP60198020 A JP 60198020A JP 19802085 A JP19802085 A JP 19802085A JP S61233751 A JPS61233751 A JP S61233751A
Authority
JP
Japan
Prior art keywords
layer
amorphous
dielectric strength
silicon
amorphous semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60198020A
Other languages
Japanese (ja)
Other versions
JPH0334061B2 (en
Inventor
Shinichiro Ishihara
伸一郎 石原
Koshiro Mori
森 幸四郎
Tsuneo Tanaka
恒雄 田中
Seiichi Nagata
清一 永田
Shoichi Fukai
正一 深井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP54035873A external-priority patent/JPS5944791B2/en
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60198020A priority Critical patent/JPS61233751A/en
Publication of JPS61233751A publication Critical patent/JPS61233751A/en
Publication of JPH0334061B2 publication Critical patent/JPH0334061B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08221Silicon-based comprising one or two silicon based layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/10Bases for charge-receiving or other layers
    • G03G5/102Bases for charge-receiving or other layers consisting of or comprising metals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/10Bases for charge-receiving or other layers
    • G03G5/104Bases for charge-receiving or other layers comprising inorganic material other than metals, e.g. salts, oxides, carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain an electrophotographic sensitive layer for which a non- polluting material having high photoconductivity to light of a visible region, high dielectric strength and small dark current is used by forming a hetero junction of the 1st amorphous silicon layer and the 2nd amorphous semiconductor layer contg. carbon or silicon as an essential component element. CONSTITUTION:An a-Si layer 2 and an a-Si1-xCx layer 3 are provided on a conductive substrate 1. Pt, Au, In2O, SnO2, etc. can be used for the transparent conductive film 4. The hetero junction to provide the photosensitive function to the wide visible wavelength region to the 1st layer 2 and to provide the functions for high electric field resistance, high dielectric strength and implanted charge transfer to the 2nd layer 3 is formed, by which the photoconductive semiconductor element having the high sensitivity and high dielectric strength is constituted. The compsns. of both are different each other and have the hetero junction at the boundary thereof.

Description

【発明の詳細な説明】 、本発明は第1の層として非晶質シリコン層を、第2の
層として炭素又はシリコンを主成分元素とする非晶質半
導体(以下、a  S 11  x Cx * O<X
≦1と記す。)を用い、第1と第2の層とのヘテロ接合
を含む電子写真用感光層に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses an amorphous silicon layer as a first layer and an amorphous semiconductor (hereinafter referred to as a S 11 x Cx *) whose main component is carbon or silicon as a second layer. O<X
It is written as ≦1. ) and relates to an electrophotographic photosensitive layer including a heterojunction between a first layer and a second layer.

従来高い光導電性を有し且つ高い暗抵抗をもつため、長
時間の電荷保持能を有し更に高電界を印加し得る物質と
してS e 、CdS等が知られている。
Conventionally, S e , CdS, and the like have been known as substances that have high photoconductivity and high dark resistance, have long-term charge retention ability, and can further apply a high electric field.

しかし、これらの物質は有毒で公害物質に属し、これに
代わる無公害材料を用いた電子写真用感光層が強く望ま
れている。
However, these substances are toxic and belong to polluting substances, and there is a strong desire for an electrophotographic photosensitive layer using a non-polluting material instead.

近年無公害性の材料とし゛て、非晶質シリコン(a−8
tと記す。)が強い光導電性を有するものとして注目さ
れているが、この材料の室温暗比抵抗は高々1013Ω
・α程度であり、電流、電圧特性の降伏電界が低く、高
電圧・高電界を印加することができず、且つ暗電流が大
きく、電荷の長時間保持能も小さいとゆう欠点があった
。。
In recent years, amorphous silicon (A-8
It is written as t. ) is attracting attention as having strong photoconductivity, but the room temperature dark specific resistance of this material is at most 1013Ω.
・The current and voltage characteristics are about α, the breakdown electric field is low, high voltages and high electric fields cannot be applied, the dark current is large, and the long-term charge retention ability is low. .

近年a−Si1 、C!の製法や存在はPh11゜Ma
g、、Pl、Vol、35(197B)等に開示されて
おり、炭素濃度Iを増加させれば、ある濃度まではエネ
ルギーギャップ(Eq)が増加し、同時に室温暗比抵抗
も増加することが開示されているが、この材料が光導電
性をもつ事を検討した報告は見当たらない。
In recent years a-Si1, C! The manufacturing method and existence of is Ph11゜Ma
It is disclosed in G., Pl, Vol. 35 (197B), etc. that if the carbon concentration I is increased, the energy gap (Eq) increases up to a certain concentration, and at the same time, the room temperature dark resistivity also increases. Although this material has been disclosed, no report has been found that considers that this material has photoconductivity.

本発明はこのa  S il  、 Cxの特性を詳細
に検討した結果、炭素を含有するこの材料が高い室温暗
比抵抗を有し、優れた光導電性をもち、且つこの材料に
注入された電荷を輸送し得る機能をもつ事を発見したこ
とにもとすくものである。更に第1の非晶質シリコン層
と第2の炭素又はシリコンを主成分元素とする非晶質半
導体層a  S i 1xC工、0くI≦1とのヘテロ
接合を形成することにより、第1の層の広い感光波長域
特性と第2の層の高い耐電圧性を兼ねそなえた良好な電
子写真用感光層を得たものである。
As a result of a detailed study of the characteristics of aSil, Cx, the present invention found that this carbon-containing material has a high room temperature dark specific resistance, excellent photoconductivity, and We are also thrilled to have discovered that it has the ability to transport. Further, by forming a heterojunction between the first amorphous silicon layer and the second amorphous semiconductor layer mainly composed of carbon or silicon, the first A good photosensitive layer for electrophotography is obtained, which has both the wide photosensitive wavelength range characteristics of the first layer and the high voltage resistance of the second layer.

本発明の目的は可視域の光に対し高い光導電性を有し、
高耐電圧性で暗電流が小さく且つ無公害性の材料を用い
た電子写真用感光層を提供することにある。
The object of the present invention is to have high photoconductivity for light in the visible range,
It is an object of the present invention to provide a photosensitive layer for electrophotography using a material that has high voltage resistance, low dark current, and is non-polluting.

本発明の他の目的は機械的強度に富み、対刷性に優れた
電子写真感光層を提供することにある。
Another object of the present invention is to provide an electrophotographic photosensitive layer that is rich in mechanical strength and has excellent counterprinting properties.

本発明の更に他の目的は感光波長領域を選定でき、製作
の容易な電子写真感光層を提供することにある。
Still another object of the present invention is to provide an electrophotographic photosensitive layer that can select a sensitive wavelength range and is easy to manufacture.

上記した本発明の目的は第1の非晶質シリコン層と第2
の炭素又はシリコンを主成分元素とする非晶質半導体層
(a−3i 1−zC!、o<x≦1)とのヘテロ接合
を形成することにより達成されるものである。
The object of the present invention described above is to form a first amorphous silicon layer and a second amorphous silicon layer.
This is achieved by forming a heterojunction with an amorphous semiconductor layer (a-3i 1-zC!, o<x≦1) whose main component element is carbon or silicon.

以下図面を参照しながら本発明の詳細な説明する0 第1図は本発明にもとづく電子写真用感光層の光導電機
能確認用半導体素子の基本構成の一例を示す図である。
The present invention will be described in detail below with reference to the drawings. FIG. 1 is a diagram showing an example of the basic structure of a semiconductor element for confirming the photoconductive function of an electrophotographic photosensitive layer according to the present invention.

1は導電性基板、2はa−3i層はa−8i1−IC,
層であシ、両者は組成が異なシ、両者の界面で異種接合
を有す。4は透明電導膜でPt 、Au、In2O,S
nO2等が用いられ得る。5゜6は素子を外部電気回路
へ接続するための電極である。7は電源、8は負荷抵抗
であシ、素子の光導電性を用いる場合には図の電源7に
接続する。
1 is a conductive substrate, 2 is a-3i layer is a-8i1-IC,
The two layers have different compositions, and there is a heterojunction at the interface between the two. 4 is a transparent conductive film made of Pt, Au, In2O, S
nO2 etc. may be used. 5.6 is an electrode for connecting the element to an external electric circuit. 7 is a power source, and 8 is a load resistor, which is connected to the power source 7 in the figure when the photoconductive element is used.

11は入射光である。11 is incident light.

層2・3は可視域の照射光に感応して容易に光励起電荷
担体を生成する第1の層2と、Xの大きい組成に選定さ
れ、第1の層2で、生成された電荷担体が注入され、こ
れを輸送するエネルギーギャップ(Ecr)の相対的に
大きい高暗抵抗性・透光性の第2の層3とで構成される
。可視の広い波長域に対する光感応機能を第1の層2に
もたせ、耐高電界・高電圧性及び注入電荷輸送の機能を
第2の層3にもたせた異種接合を形成したことにょシ、
高感度・高耐電圧性を有する光導電性半導体素子を構成
するようにしたものである。なお第1図の層2・3はい
ずれが第1の層あるいは第2の層であってもかまわない
The layers 2 and 3 are selected to have a composition with a large X, and a first layer 2 that is sensitive to irradiation light in the visible range and easily generates photoexcited charge carriers. The second layer 3 has a relatively large energy gap (Ecr) and has high dark resistance and light transmission properties. By forming a heterojunction in which the first layer 2 has a photosensitive function over a wide visible wavelength range, and the second layer 3 has functions of high electric field resistance, high voltage resistance, and injection charge transport,
A photoconductive semiconductor element having high sensitivity and high voltage resistance is constructed. Note that either layer 2 or 3 in FIG. 1 may be the first layer or the second layer.

本発明の半導体素子は前述したように、外部印加電圧に
対し高い耐電圧性を有し、かつ高い光感度を有する光導
電素子として設計する場合には、第1の層(a−8t)
に対し第2の層(a  Si1゜Cx(0くxく1)〕
の組成を大きく変化させ、かつ高抵抗のものを用いるよ
うに設計すれば良い。
As described above, when the semiconductor device of the present invention is designed as a photoconductive device having high voltage resistance against externally applied voltage and high photosensitivity, the first layer (a-8t)
2nd layer (a Si1°Cx (0 x x 1))
It is sufficient to design the material by greatly changing the composition of the material and using a material with high resistance.

本発明の半導体素子は例えば以下のようにして製造する
ことができる。基板としては表面が平滑で光導電体層を
堆積する温度例えば1600〜400’Cに耐え得るも
のであれば良く、結晶性・非結晶性を問わない。例えば
St単結晶等の半導体、ステンレス・アルミニューム等
の金属二石英ガラスやセラミックスあるいは上記温度に
耐え得るプラスチックフィルム等の絶縁体の表面に金属
や金属酸化物等の導電性被膜をもうけたものが用いられ
得る。これらの基板表面を清浄にしたのち、グロー放電
装置内に設置し、基板温度を適宜加熱する。室温で構造
が安定な気体状を呈するシリコン化合物、例えばS I
 H4と室温で構造が安定な気体状を呈する炭素の化合
物例えばC2H4を所望の濃度比に混合した第1の組成
比を有する混合ガス及び第2の組成比を有する混合ガス
をそれぞれ不活性ガス例えばアルゴンに稀釈し、これら
の稀釈混合ガスを上記グロー放電装置内に順次導き、1
o−2〜10Torr台の圧力のもとてグロー放電によ
シ順次所望の時間分解することにより、基板上にはそれ
ぞれ所望の組成・膜厚を有するa−5t層とa  S 
l 1  x C工の層からなる異種接合が形成される
The semiconductor element of the present invention can be manufactured, for example, as follows. The substrate may be of any type as long as it has a smooth surface and can withstand the temperature at which the photoconductor layer is deposited, for example from 1600 to 400'C, and it does not matter whether it is crystalline or amorphous. For example, semiconductors such as St single crystals, metal disilica glass such as stainless steel and aluminum, ceramics, or insulators such as plastic films that can withstand the above temperatures are coated with a conductive film such as metal or metal oxide on the surface. can be used. After cleaning the surfaces of these substrates, they are placed in a glow discharge device and the substrate temperature is appropriately heated. Silicon compounds that exhibit a gaseous structure with a stable structure at room temperature, such as S I
A mixed gas having a first composition ratio and a mixed gas having a second composition ratio in which H4 and a carbon compound exhibiting a gaseous state with a stable structure at room temperature, such as C2H4, are mixed at a desired concentration ratio, respectively, with an inert gas such as an inert gas. diluted with argon, and sequentially guided these diluted mixed gases into the glow discharge device, 1
By sequentially decomposing glow discharge at a desired time under a pressure in the order of o-2 to 10 Torr, an a-5t layer and an aS layer each having a desired composition and film thickness are formed on the substrate.
A heterojunction consisting of a layer of l 1 x C is formed.

特に不純物を添加したa  S ilx C8層を堆す
る必要のある場合には、適宜■族又はV族元素の気体状
化合物例えばB2H6あるいはPH3を前記稀釈混合ガ
スに添加して用いれば良い。
In particular, when it is necessary to deposit an a S ilx C8 layer doped with impurities, a gaseous compound of a Group I or Group V element, such as B2H6 or PH3, may be appropriately added to the diluted mixed gas.

以下実施例にもとづいて本発明を更に詳しく説明する。The present invention will be explained in more detail below based on Examples.

〔素子製造例〕[Element manufacturing example]

基板1にはSL単結晶(p型10Ω・crIL)、ステ
ンレス、石英ガラス上に工n203:5n02(工To
)透明導電膜をもうけたものを用いた。13.5MHz
高周波グロー放電装置内で基板温度を260℃に保ち、
先ず第1の層2を約1μm形成するため2ovOl−チ
のS i層4を含むArガスを導入し、o、1Torr
の圧力でグロー放電分解した。ここで第1の層2である
a−3t層が形成された。なお層2は水素の含有された
a−8tとなる。ついでC2H4とS I H4を各々
18vo11%濃度混合したArガスを導入し、同じ(
0,I Torrでグロー放電分解を行ない第2の層3
を約1μm堆積させた。
Substrate 1 includes SL single crystal (p-type 10Ω/crIL), stainless steel, and quartz glass.
) A material with a transparent conductive film was used. 13.5MHz
The substrate temperature is maintained at 260°C in a high frequency glow discharge device.
First, in order to form the first layer 2 with a thickness of approximately 1 μm, Ar gas containing a Si layer 4 of 2 ovOl-T was introduced, and the temperature was increased to 1 Torr.
It was decomposed by glow discharge at a pressure of . Here, an a-3t layer, which is the first layer 2, was formed. Note that layer 2 is a-8t containing hydrogen. Next, Ar gas containing a mixture of C2H4 and S I H4 at a concentration of 18vo and 11% was introduced, and the same (
The second layer 3 is formed by glow discharge decomposition at 0,1 Torr.
was deposited to a thickness of about 1 μm.

その後Si単結晶、ステンレス基板上に堆積したa −
S i層とa  Stl  、C8層の異種接合を有す
る膜上にITO4を約1600人形成した。なおX線マ
イクロアナリシス法による測定の結果第2の層の組成X
は約35%であった。
After that, Si single crystal was deposited on a stainless steel substrate.
Approximately 1,600 layers of ITO4 were formed on a film having a heterojunction of an S i layer, a Stl , and a C8 layer. As a result of measurement using the X-ray microanalysis method, the composition of the second layer
was about 35%.

この素子の光電特性の測定はへ光源タングステンランプ
を用い照度230Lxで行った。
The photoelectric characteristics of this device were measured using a tungsten lamp as a light source at an illuminance of 230 Lx.

〔実施例1〕 第2図はp型Si基板上にa−8i層とa−9i1−I
Cx(o<x<、1)層の異種接合をもうけ、更にIT
○透明導電膜をもうけた素子の特性を示す。図に於て曲
線16はSi基板を負にバイアスした場合の暗電流を、
曲線16は同光電流を示す。又曲線17は基板を正にバ
イアスした場合の暗電流を示し、曲線19が光電流を示
す。
[Example 1] Figure 2 shows an a-8i layer and an a-9i1-I layer on a p-type Si substrate.
Create a heterojunction of the Cx (o<x<, 1) layer, and further IT
○Characteristics of elements with transparent conductive films are shown. In the figure, curve 16 represents the dark current when the Si substrate is negatively biased.
Curve 16 shows the photocurrent. Curve 17 shows the dark current when the substrate is positively biased, and curve 19 shows the photocurrent.

光導電素子特性としては、上記照度に於て約1×103
倍の光電流・暗電流比が得られ°、更に暗電流密度がl
X1O−10A、乙−を越える印加電圧は約10vであ
シ、この時の平均電界として約3 X 10 V/cI
rLを得る。比較のため示せばa −3tのみの層を用
いて暗電流密度I X 10  ”A/i以下を得る事
は現状では不可能である。
The photoconductive element characteristics are approximately 1×103 at the above illuminance.
A double photocurrent/dark current ratio is obtained, and the dark current density is
The applied voltage exceeding X1O-10A and O- is approximately 10V, and the average electric field at this time is approximately 3 X 10 V/cI.
Get rL. For comparison, it is currently impossible to obtain a dark current density of I x 10''A/i or less using a layer of only a-3t.

〔実施例2〕 ITO表面電極をもうけたステンレス基板上の素子も、
暗電流・充電流特性ともに、第2図とほとんど同様の特
性を示した。
[Example 2] A device on a stainless steel substrate with an ITO surface electrode was also prepared.
Both the dark current and charging current characteristics showed almost the same characteristics as in FIG. 2.

〔実施例3〕 約1000人のAu−8b合金膜を表面電極としてもう
けたSi基板上の素子特性を第3図に示す。
[Example 3] FIG. 3 shows the characteristics of a device on a Si substrate having approximately 1000 Au-8b alloy films as surface electrodes.

曲線20.21は基板を負にバイアスした場合の暗電流
光電流を各々示す。又曲線22.23は基板を正にバイ
アスした場合の暗電流・光電流を示す。充電流密度は第
3図に比べ低下しているが、これは比較的“厚い”半透
明電導膜を用いたためである。しかし暗電流は特に変化
していない。更にAu−3b電極を用いたため、本電極
とa−9t1−エCx(0<!<1 )層との界面の障
壁が減少したためか、光起電力は発生せず正負側バイア
ス方向とも極めて良く似かよった特性を示す。
Curves 20 and 21 respectively show the dark current photocurrent when the substrate is negatively biased. Curves 22 and 23 show dark current and photocurrent when the substrate is positively biased. The charging current density is lower than in FIG. 3, but this is due to the use of a relatively "thick" semi-transparent conductive film. However, the dark current did not change particularly. Furthermore, since the Au-3b electrode was used, no photovoltaic force was generated and the result was very good in both the positive and negative bias directions, probably because the barrier at the interface between this electrode and the a-9t1-ECx (0<!<1) layer was reduced. Show similar characteristics.

従って良好な異種接合面が形成されていると推測される
Therefore, it is presumed that a good dissimilar bonding surface is formed.

〔実施例4〕 実施例3と約10ooへのAuSb合金膜を表面電極と
してもうけたステンレス基板上の素子も、第3図とほと
んど同様の特性を示す。
[Example 4] A device on a stainless steel substrate having an AuSb alloy film of about 10 oo as a surface electrode as in Example 3 also exhibits almost the same characteristics as shown in FIG. 3.

〔実施例6〕 前記実施例の素子の製作に用いたa−5i1−エC!(
o<z<:1 )層及び従来素子であるSs、CdS等
を光導電膜とする素子をステンレス製ピンセットの先端
で引っ掻き、機械的強度を比較した。
[Example 6] a-5i1-EC! used in manufacturing the device of the above example. (
o<z<:1) layer and a conventional device having a photoconductive film of Ss, CdS, etc. were scratched with the tips of stainless steel tweezers, and their mechanical strengths were compared.

従来のSe、CdSを用いた素子は容易に傷ついたが、
本発明による素子では相当の力で押圧したが、何ら機械
的損傷は認められなかった。
Conventional elements using Se and CdS were easily damaged, but
Although the element according to the invention was pressed with considerable force, no mechanical damage was observed.

第4図に前記した実施例の素子の光導電特性の分光感度
分布を示す。曲線24.25は各々表面電極としてAu
−5b、ITOをもうけた素子の特性である。曲線26
はa −S i単層膜(約0.7μm)の分光感度分布
を相対値として示す。曲線24゜25は約490 nm
に最高感度を有し、これより長波長側では、曲線26と
ほぼ相似の傾向を示して感度が低下する。前述したよう
に本実施例の素子の第2の層の組成はX=0.35であ
シ、この組成ではエネルギーギャップが約2.3とVを
もつため、第2の層のみではこのような長波長側に感度
はない。長波長側の総合感度として、a−8Lの感度分
布と同様の傾向を示すことから、この素子は第1の層の
a−5t層で光励起された荷電担体が第2の層に注入さ
れ輸送されている事は明らかである。他方490 nm
より短波長側で素子の感度が低下しているのは、光入射
側に組成x=o、3E5の第2の層があり、この層で入
射光が吸収されているためと考えられる。この短波長で
の感度低下は、第2の層の組成Iを増しエネルギーギャ
ップを大きくすれば避けられる。他方第1の層の方向か
ら光入射を行なう構成にすれば、第2の層による減衰を
受ける事なく、入射光を第1の層に導く事が可能となる
FIG. 4 shows the spectral sensitivity distribution of the photoconductive characteristics of the device of the example described above. Curves 24 and 25 each contain Au as the surface electrode.
-5b, characteristics of an element made of ITO. curve 26
shows the spectral sensitivity distribution of an a-Si monolayer film (approximately 0.7 μm) as a relative value. Curve 24°25 is approximately 490 nm
It has the highest sensitivity at wavelengths longer than this, and exhibits a tendency almost similar to curve 26, with the sensitivity decreasing. As mentioned above, the composition of the second layer of the device of this example is X=0.35, and with this composition, the energy gap is about 2.3, which is V, so if only the second layer is used, There is no sensitivity on the long wavelength side. Since the overall sensitivity on the long wavelength side shows a similar tendency to the sensitivity distribution of the a-8L, this device shows that charge carriers photoexcited in the first layer, the a-5t layer, are injected into the second layer and transported. It is clear that this has been done. the other 490 nm
The reason why the sensitivity of the element decreases on the shorter wavelength side is considered to be because there is a second layer with a composition x=o and 3E5 on the light incident side, and the incident light is absorbed by this layer. This decrease in sensitivity at short wavelengths can be avoided by increasing the composition I of the second layer and increasing the energy gap. On the other hand, if the configuration is such that light is incident from the direction of the first layer, it becomes possible to guide the incident light to the first layer without being attenuated by the second layer.

上述の素子を実際の高電圧の表面電荷を付与し選択的な
光照射により光導電性を利用して選択的に表面電荷を放
電し、印刷等に利用する電子写真用感光層として利用す
るには、例えば第1図に於て表面電極4を取り除いた構
成となし、素子の耐電圧性を増すような設計をなせば良
い。
The above-mentioned device can be used as an electrophotographic photosensitive layer for printing, etc. by applying an actual high-voltage surface charge and selectively discharging the surface charge by utilizing photoconductivity by selectively irradiating the device with light. For example, the device may be designed by removing the surface electrode 4 from the structure shown in FIG. 1 and increasing the voltage resistance of the device.

以上本発明の詳細な説明したように、本発明では組成X
を連続的に制御できるa  5i1−エCx とa−3
tの異種接合を用いた電子写真用感光層を提供するもの
であり、第1の層に光励起担体生成機能を、相対的に組
成Iの大きい第2の層に透光性と耐電界性の機能ならび
に光励起担体の輸送機能を分担することにより、それぞ
れの層のもつ特長を発揮させ得たものである。このため
本発明の感光層は、 (1)可視光域の光に高い感度を有し、耐高電界高電圧
性で、暗電流の小さい感光層を提供できる。
As described above in detail of the present invention, in the present invention, the composition
can be controlled continuously a5i1-eCx and a-3
The present invention provides an electrophotographic photosensitive layer using a heterojunction of t, in which the first layer has a photoexcited carrier generation function, and the second layer having a relatively large composition I has a light transmittance and electric field resistance. By sharing the functions and the transport function of photoexcited carriers, we were able to bring out the features of each layer. Therefore, the photosensitive layer of the present invention can provide a photosensitive layer that (1) has high sensitivity to light in the visible light range, is resistant to high electric fields and high voltages, and has a small dark current.

(2)機械的強度に富む感光層を提供でき、耐摩耗性の
要求される電子写真技術分野の用途に極めて有用である
(2) It can provide a photosensitive layer with high mechanical strength, and is extremely useful for applications in the field of electrophotography, which requires abrasion resistance.

(3)異種接合形成の温度が低く、かつ形成後の熱処理
を要さず、さらに非晶質であるため基板材料及び基板形
状の選択範囲が広く、製作が簡単であり用途目的に応じ
て自由の形状の感光層を提供できる。
(3) The temperature for forming dissimilar junctions is low, no heat treatment is required after formation, and since it is amorphous, there is a wide range of selection of substrate materials and substrate shapes, and manufacturing is easy and flexible depending on the purpose of use. A photosensitive layer having the shape of can be provided.

(4)  基本構成材料が無毒・無公害である。(4) The basic constituent materials are non-toxic and non-polluting.

等の効果を有し、産業的価値が極めて大なるものである
It has the following effects and has extremely great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の感光層の光導電機能確認用
半導体素子の基本構成を示す概要図、第2図、第3図は
本発明の感光層の光電機能確認用半導体素子の一実施例
における印加電圧と暗電流・光電流の関係を示す図、第
4図は本発明の半導体素子の一実施例における光電流と
入射光波長の関係を示す図である。 1・・・・・・導電性基板、2・・・・・・a −S 
i層、3・・・・・・a  S il−エCx層、4・
・・・・・透明導電膜、5.6・・・・・・電極、7・
・・・・・電源、8・・・・・・負荷′訴抗、9・・・
・・・スイッチ。 第1図 第2図 −くイアズ電、L(v) 第3図 ノ1゛イ?ス覧圧(l/)
FIG. 1 is a schematic diagram showing the basic structure of a semiconductor device for confirming the photoconductive function of a photosensitive layer according to an embodiment of the present invention, and FIGS. FIG. 4 is a diagram showing the relationship between applied voltage and dark current/photocurrent in one embodiment, and FIG. 4 is a diagram showing the relationship between photocurrent and incident light wavelength in one embodiment of the semiconductor element of the present invention. 1... Conductive substrate, 2... a-S
i layer, 3...a S il-e Cx layer, 4.
...Transparent conductive film, 5.6... Electrode, 7.
...Power source, 8...Load' appeal, 9...
···switch. Figure 1 Figure 2 - Kuiazu Den, L (v) Figure 3 No. 1? Viewing pressure (l/)

Claims (4)

【特許請求の範囲】[Claims] (1)支持体上に形成される第1および第2の層の多層
構造を有し、前記第1の層として非晶質シリコン層を、
前記第2の層として炭素又はシリコンを主成分元素とす
る非晶質半導体層(a−Si_1_−_xC_x、0<
x≦1)とし、第1と第2の層とのヘテロ接合を含む電
子写真用感光層。
(1) having a multilayer structure of a first and second layer formed on a support, an amorphous silicon layer as the first layer;
The second layer is an amorphous semiconductor layer whose main component is carbon or silicon (a-Si_1_-_xC_x, 0<
x≦1), and includes a heterojunction between a first layer and a second layer.
(2)非晶質半導体層が水素を含む化合物ガスを用いた
グロー放電にて形成された特許請求の範囲第1項記載の
電子写真用感光層。
(2) The electrophotographic photosensitive layer according to claim 1, wherein the amorphous semiconductor layer is formed by glow discharge using a compound gas containing hydrogen.
(3)非晶質半導体層が室温時の暗比抵抗値が10^1
^3Ω・cm以上である特許請求の範囲第1項又は第2
項記載の電子写真用感光層。
(3) The dark specific resistance value of the amorphous semiconductor layer at room temperature is 10^1
Claim 1 or 2 which is ^3Ω・cm or more
Electrophotographic photosensitive layer described in Section 1.
(4)非晶質半導体層が非晶質シリコン層の光学的禁止
帯幅よりも大きい特許請求の範囲第1項又は第2項又は
第3項記載の電子写真用感光層。
(4) The photosensitive layer for electrophotography according to claim 1, 2, or 3, wherein the amorphous semiconductor layer has a larger optical band gap than the amorphous silicon layer.
JP60198020A 1979-03-26 1985-09-06 Electrophotographic sensitive layer Granted JPS61233751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60198020A JPS61233751A (en) 1979-03-26 1985-09-06 Electrophotographic sensitive layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP54035873A JPS5944791B2 (en) 1979-03-26 1979-03-26 semiconductor element
JP60198020A JPS61233751A (en) 1979-03-26 1985-09-06 Electrophotographic sensitive layer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP54035873A Division JPS5944791B2 (en) 1979-03-26 1979-03-26 semiconductor element

Publications (2)

Publication Number Publication Date
JPS61233751A true JPS61233751A (en) 1986-10-18
JPH0334061B2 JPH0334061B2 (en) 1991-05-21

Family

ID=26374878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60198020A Granted JPS61233751A (en) 1979-03-26 1985-09-06 Electrophotographic sensitive layer

Country Status (1)

Country Link
JP (1) JPS61233751A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57115551A (en) * 1981-01-09 1982-07-19 Canon Inc Photoconductive material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57115551A (en) * 1981-01-09 1982-07-19 Canon Inc Photoconductive material

Also Published As

Publication number Publication date
JPH0334061B2 (en) 1991-05-21

Similar Documents

Publication Publication Date Title
US4329699A (en) Semiconductor device and method of manufacturing the same
Staebler et al. Reversible conductivity changes in discharge‐produced amorphous Si
KR860001163B1 (en) Thin solar cell
JPS5944791B2 (en) semiconductor element
JPS61233751A (en) Electrophotographic sensitive layer
JPS5873169A (en) Pin photovoltaic device and method of producing same
JPS6175568A (en) Manufacture of semiconductor element
WO1985002691A1 (en) Photosensitive member for electrophotography
JPH0424878B2 (en)
JPS6085578A (en) Manufacture of thin film photoelectric conversion element
Salvatori et al. Metal-semiconductor-metal photodiodes based on CVD diamond films
JPH0364973A (en) Photovoltaic element
JPH0426106B2 (en)
Pakhomov et al. Rectification and NIR photoresponse in p-Si/phthalocyanine/metal heterostructures
JPS61201481A (en) Photoconductor
Gupta et al. Light-matter interaction of the polar-polar interface LaVO3-KTaO3 (111)
Kim et al. Influence of pin amorphous silicon stack deposition sequence on solar cell performance and degradation
JPS5983916A (en) Amorphous multielement semiconductor
JPS61224368A (en) Semiconductor device
JPS6135569A (en) Photovoltaic device
Madan Thin film amorphous silicon solar cells
WO1990007195A1 (en) Adhered type photoelectric conversion element
JPH03263878A (en) Photovoltaic device
JPH01192178A (en) Photodetector
Bedi et al. EFFECT OF COMPOSITION AND SUBSTRATE TEMPERATURE ON ELECTRICAL PROPERTIES OF InSb FILMS