JPS5944770B2 - Cleaning method for plasma CVD reactor - Google Patents

Cleaning method for plasma CVD reactor

Info

Publication number
JPS5944770B2
JPS5944770B2 JP55102969A JP10296980A JPS5944770B2 JP S5944770 B2 JPS5944770 B2 JP S5944770B2 JP 55102969 A JP55102969 A JP 55102969A JP 10296980 A JP10296980 A JP 10296980A JP S5944770 B2 JPS5944770 B2 JP S5944770B2
Authority
JP
Japan
Prior art keywords
reactor
gas
plasma cvd
cleaning
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55102969A
Other languages
Japanese (ja)
Other versions
JPS5727024A (en
Inventor
俊吾 坪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP55102969A priority Critical patent/JPS5944770B2/en
Publication of JPS5727024A publication Critical patent/JPS5727024A/en
Publication of JPS5944770B2 publication Critical patent/JPS5944770B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Led Devices (AREA)
  • Drying Of Semiconductors (AREA)

Description

【発明の詳細な説明】 この発明はプラズマCVD法による炭化硅素薄膜の製造
における反応器の洗浄方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for cleaning a reactor in the production of silicon carbide thin films by plasma CVD.

この発明の目的はプラズマCVD法による炭化硅素薄膜
の製造において、反応器内壁にデポジットした生成物を
除去することによつて、再現性の良い、しかも膜質のす
ぐれた炭化硅素薄膜を得ることにある。
The purpose of this invention is to obtain a silicon carbide thin film with good reproducibility and excellent film quality by removing products deposited on the inner wall of a reactor during the production of silicon carbide thin films by plasma CVD method. .

プラズマCVD法によつて薄膜を作成する場合、ひとつ
の反応器を洗浄工程を入れないで繰返し使用していると
、反応器の内壁にデポジットする生成物は次第に厚さを
増してゆき、ついには剥離するようになる。
When creating a thin film using the plasma CVD method, if one reactor is used repeatedly without a cleaning process, the product deposited on the inner wall of the reactor will gradually increase in thickness, and eventually It starts to peel off.

この現象は得られる膜に多くのピンホールを発生させる
という、膜質への重大な悪影響をおよぼす。また、上記
の生成物は反応器のインピーダンスを変化させ、プラズ
マを得るための放電条件にずれが生じてくる。反応器の
インピーダンスのずれは得られる薄膜の再現性に好まし
くない影響を与える。この様に反応器内壁にデポジット
とする生成物を除去して、反応器を物理的にも電気的に
もrefreshしておくことは、プラズマCVD法に
よる薄膜の製造において非常に重要である。
This phenomenon causes many pinholes in the obtained film, which has a serious adverse effect on the film quality. Further, the above-mentioned products change the impedance of the reactor, causing a deviation in the discharge conditions for obtaining plasma. A deviation in the impedance of the reactor has an unfavorable effect on the reproducibility of the obtained thin film. In this way, it is very important to remove the products deposited on the inner wall of the reactor and refresh the reactor both physically and electrically in the production of thin films by plasma CVD.

プラズマCVD法による炭化硅素薄膜の製造に使用する
反応器の洗浄方法においては、O2ガスとCF4ガスの
混合ガスによる低温プラズマ化学反応が最も有効であり
、また作業能率の面でもすぐれていることを実験でたし
かめた。反応器に導入されたCF4とO2の混合ガスは
高周波グロー放電によつて(1)、む)式のように解離
する。CF4→C ・ + 4F・ ・・・・・・・・
・ (1)O2→20・ ・・・・・・・・・ (2)
活性になつたF・と0・は((至)、(4)、(5)式
のように内壁にデポジットした炭化硅素と反応する。S
iC+4F・→SiF4+ C ・・・・・・ (3)
C+20・→C02・・・・・・・・・・・・ (4)
SiC+40・→SiO2+C02・・・ (5)次に
反応器の洗浄方法を詳細に説明する。図に示す反応器1
を油回転ポンプのような排気設備2で十分に排気する。
Regarding the method for cleaning the reactor used to manufacture silicon carbide thin films by plasma CVD method, we have found that low-temperature plasma chemical reaction using a mixed gas of O2 gas and CF4 gas is the most effective and is also superior in terms of work efficiency. Confirmed by experiment. The mixed gas of CF4 and O2 introduced into the reactor is dissociated by high frequency glow discharge as shown in equations (1) and (m). CF4→C・+4F・・・・・・・・・・
・ (1) O2 → 20・ ・・・・・・・・・・ (2)
The activated F and 0 react with the silicon carbide deposited on the inner wall as shown in equations (4) and (5).S
iC+4F・→SiF4+C... (3)
C+20・→C02・・・・・・・・・・・・ (4)
SiC+40.→SiO2+C02... (5) Next, a method for cleaning the reactor will be explained in detail. Reactor 1 shown in the figure
is sufficiently evacuated using exhaust equipment 2 such as an oil rotary pump.

反応器1に洗浄ガス供給装置4からO2ガスおよびCF
4ガスを導入し、真空約60Pa、高周波電力20OW
でプラズマを発生させて反応器を洗浄する。プラズマを
発生させる設備は13.56MH2高周波電源5、マッ
チングボックス6、電極Tからなつている。電極□は図
では反応器1の外側に設けてあるが内側でもよい。次に
具体例を示し、本発明をさらに詳細に説明する。
O2 gas and CF are supplied to the reactor 1 from the cleaning gas supply device 4.
Introducing 4 gases, vacuum approximately 60 Pa, high frequency power 20 OW
generate plasma and clean the reactor. The equipment for generating plasma consists of a 13.56MH2 high frequency power source 5, a matching box 6, and an electrode T. Although the electrode □ is provided on the outside of the reactor 1 in the figure, it may be provided on the inside. Next, the present invention will be explained in more detail by showing specific examples.

洗浄を行なうために導入するガスの分圧の設定は流量計
によつて行なう。ゲージ圧力1Kgf/cm2の系で測
定した流量をSCCM(StandardCubicC
entimeterperMinute■1atmにお
ける流量Cd/min、)に換算した数値を第1表に示
す。総流量100SCCMのガスを反応器に導入して排
気速度5001/Minの油回転ポンプで排気すると1
75paの真空度が維持される。
The partial pressure of the gas introduced for cleaning is set using a flow meter. The flow rate measured in a system with a gauge pressure of 1 Kgf/cm2 is called SCCM (Standard CubicC).
Table 1 shows the numerical values converted into entimeterperminute (flow rate Cd/min, ) at 1 atm. When gas with a total flow rate of 100 SCCM is introduced into the reactor and exhausted by an oil rotary pump with a pumping speed of 5001/min, 1
A vacuum level of 75 pa is maintained.

この様なガス条件で高周波電力200Wで数時間グロー
放電によるプラズマを発生させると、反応器をほぼ完全
に洗浄することができる。また、反応器を300゛Cに
加熱することによつて洗浄に要する時間を短縮すること
が可能である。この様な洗浄操作に卦いて、02ガスと
CF4ガスの混合比は洗浄後の反応器内壁の清浄さに著
しく影響をおよぼす。
The reactor can be almost completely cleaned by generating plasma by glow discharge for several hours with a high frequency power of 200 W under such gas conditions. Furthermore, by heating the reactor to 300°C, it is possible to shorten the time required for cleaning. In such a cleaning operation, the mixing ratio of 02 gas and CF4 gas significantly affects the cleanliness of the inner wall of the reactor after cleaning.

すなわち02ガスの含有量を15v01%以下にした混
合ガスで洗浄した後の反応器内壁には黒色の微粒子が残
渣として残る。これは反応式(4)から02分圧の不足
による未分解の炭素であると思われる。一方、02ガス
の含有量を25v01%以上にした混合ガスで洗浄した
後の反応器内壁には白色の微粒子が残渣として残る。こ
れは反応式(5めら過剰の02によつて生成したSiO
2であると思われる。さらに、接ガス部材質の一つであ
るダイフロン(ダイキン工業の商品名、三フツ化塩化エ
チレン重合体)を侵食するという欠点がある。反応器内
壁に炭素あるいはSiO2の微粒子が付着した反応器を
用いて炭化硅素薄膜を生成させると、反応器内壁にデポ
ジツトした炭化硅素薄膜が非常に剥離しやすい状態にな
り、デポジシヨン中に剥離した物質が基体に付着してピ
ンホールを形成し膜質を損なう。特に下方向デポジシヨ
ンにおいて膜質の損傷が著しい。酸素の含有量を15〜
25v01%にした混合ガスでプラズマを発生させて反
応器を洗浄した場合、反応器内壁には残渣はほとんど存
在せず、清浄な壁面が得られた。
That is, black fine particles remain as a residue on the inner wall of the reactor after cleaning with a mixed gas containing 02 gas of 15v01% or less. From reaction formula (4), this seems to be undecomposed carbon due to insufficient 02 partial pressure. On the other hand, white fine particles remain as a residue on the inner wall of the reactor after cleaning with a mixed gas containing 02 gas of 25v01% or more. This is the reaction formula (SiO produced by 5 mm excess of 02
It seems to be 2. Furthermore, it has the disadvantage that it corrodes Daiflon (trade name of Daikin Industries, Ltd., trifluorochloroethylene polymer), which is one of the materials in contact with the gas. When a silicon carbide thin film is produced using a reactor with fine particles of carbon or SiO2 attached to the inner wall of the reactor, the silicon carbide thin film deposited on the inner wall of the reactor will be in a state where it is very easy to peel off, and the material peeled off during deposition will be adheres to the substrate, forming pinholes and impairing film quality. Particularly in downward deposition, the damage to the film quality is significant. Oxygen content 15~
When the reactor was cleaned by generating plasma with a mixed gas of 25v01%, there was almost no residue on the inner wall of the reactor, and a clean wall surface was obtained.

この様にほぼ完全にRefreshした反応器を用いた
場合、繰返しによる放電条件のずれは非常に少なく、再
現性の良い、しかもピンホールの少ない膜質のずれた炭
化硅素を製造することができる。なお、CF4以外のフ
ツ化炭素類に訃いても混合ガス中含まれる炭素、フツ素
、酸素の原子数を計算することによつて、炭化硅素薄膜
を除去するための最適条件をある程度見積ることができ
ると思われる。
When a reactor that is almost completely refreshed in this way is used, there is very little deviation in the discharge conditions due to repeated discharges, and it is possible to produce silicon carbide with good reproducibility and a deviation in film quality with few pinholes. Furthermore, even if carbon fluorides other than CF4 are used, the optimal conditions for removing the silicon carbide thin film can be estimated to some extent by calculating the number of atoms of carbon, fluorine, and oxygen contained in the mixed gas. It seems possible.

また、反応器内壁にデポジツトした炭化硅素素を残渣を
残さずに除去するための最適条件は基体上にデポジツト
した炭化硅素薄膜のパターニングによる微細加工にも十
分適用できるものである。
Furthermore, the optimum conditions for removing silicon carbide deposited on the inner wall of the reactor without leaving any residue are also sufficiently applicable to microfabrication by patterning of silicon carbide thin films deposited on substrates.

【図面の簡単な説明】[Brief explanation of the drawing]

図は炭化硅素薄膜を製造するためのプラズマCVD装置
に卦いて反応器の洗浄操作のためガス系を組込んだ概略
図である。
The figure is a schematic diagram of a plasma CVD apparatus for producing a silicon carbide thin film, in which a gas system is installed for cleaning the reactor.

Claims (1)

【特許請求の範囲】[Claims] 1 炭火硅素薄膜を製造するためのプラズマCVD装置
の反応器の先浄工程において、O_2ガスとCF_4ガ
スとの混合ガスを反応ガスとし、O_2ガスの混合比率
の範囲15〜25vol%としたことを特徴とするプラ
ズマCVD用反応器の洗浄方法。
1. In the pre-cleaning process of the reactor of the plasma CVD apparatus for producing a charcoal-fired silicon thin film, a mixed gas of O_2 gas and CF_4 gas was used as the reaction gas, and the mixing ratio of O_2 gas was in the range of 15 to 25 vol%. Characteristic cleaning method for plasma CVD reactor.
JP55102969A 1980-07-25 1980-07-25 Cleaning method for plasma CVD reactor Expired JPS5944770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55102969A JPS5944770B2 (en) 1980-07-25 1980-07-25 Cleaning method for plasma CVD reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55102969A JPS5944770B2 (en) 1980-07-25 1980-07-25 Cleaning method for plasma CVD reactor

Publications (2)

Publication Number Publication Date
JPS5727024A JPS5727024A (en) 1982-02-13
JPS5944770B2 true JPS5944770B2 (en) 1984-11-01

Family

ID=14341590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55102969A Expired JPS5944770B2 (en) 1980-07-25 1980-07-25 Cleaning method for plasma CVD reactor

Country Status (1)

Country Link
JP (1) JPS5944770B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630850Y2 (en) * 1989-04-25 1994-08-17 日本真空技術株式会社 Plasma CVD equipment
CN109585268A (en) * 2018-11-02 2019-04-05 山东天岳先进材料科技有限公司 A kind of cleaning method of silicon carbide wafer

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124438A (en) * 1981-01-26 1982-08-03 Rikagaku Kenkyusho Ion beam etching for silicon carbide
JPS6059739A (en) * 1983-09-13 1985-04-06 Fujitsu Ltd Dry cleaning method
US4657616A (en) * 1985-05-17 1987-04-14 Benzing Technologies, Inc. In-situ CVD chamber cleaner
US4786352A (en) * 1986-09-12 1988-11-22 Benzing Technologies, Inc. Apparatus for in-situ chamber cleaning
JPH02214121A (en) * 1989-02-15 1990-08-27 Toshiba Ceramics Co Ltd Cleaning of sic jig and the like for semiconductor use
JPH053162A (en) * 1991-10-22 1993-01-08 Nec Corp Vapor epitaxial growth device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51110276A (en) * 1975-03-25 1976-09-29 Tokyo Shibaura Electric Co GASUETSU CHINGUSOCHI
JPS5353263A (en) * 1976-10-26 1978-05-15 Toshiba Corp Manufacture of semiconductor element
JPS5433668A (en) * 1977-08-22 1979-03-12 Hitachi Ltd Plasma deposition unit
JPS5477573A (en) * 1977-11-10 1979-06-21 Sony Corp Operating method of plasma treating apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51110276A (en) * 1975-03-25 1976-09-29 Tokyo Shibaura Electric Co GASUETSU CHINGUSOCHI
JPS5353263A (en) * 1976-10-26 1978-05-15 Toshiba Corp Manufacture of semiconductor element
JPS5433668A (en) * 1977-08-22 1979-03-12 Hitachi Ltd Plasma deposition unit
JPS5477573A (en) * 1977-11-10 1979-06-21 Sony Corp Operating method of plasma treating apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630850Y2 (en) * 1989-04-25 1994-08-17 日本真空技術株式会社 Plasma CVD equipment
CN109585268A (en) * 2018-11-02 2019-04-05 山东天岳先进材料科技有限公司 A kind of cleaning method of silicon carbide wafer
CN109585268B (en) * 2018-11-02 2021-01-08 山东天岳先进科技股份有限公司 Method for cleaning silicon carbide wafer

Also Published As

Publication number Publication date
JPS5727024A (en) 1982-02-13

Similar Documents

Publication Publication Date Title
JP4264479B2 (en) Cleaning method for CVD apparatus
JP2002280376A (en) Method and apparatus of cleaning cvd apparatus
JPH0653193A (en) Removal of carbon-based polymer residue by using ozone useful for cleaning of plasma reaction container
JPH09148322A (en) Method for forming silicon oxide film and plasma cvd film forming apparatus
JP2006041523A (en) Method of increasing fluorine utilization factor
JP2001049436A (en) Method for removing deposition film
JPS5944770B2 (en) Cleaning method for plasma CVD reactor
US5176791A (en) Method for forming carbonaceous films
JP3112880B2 (en) Cleaning method for CVD equipment
JPH08291299A (en) Cleaning or etching gas
JP2618817B2 (en) Non-plasma cleaning method in semiconductor manufacturing equipment
JP2720966B2 (en) Recycling method of parts with thin film attached
JP3649650B2 (en) Substrate etching method and semiconductor device manufacturing method
JP5178342B2 (en) Deposit removing method and deposited film forming method
JP2009065171A (en) Film forming method using cvd device
JPS63267430A (en) Cleaning method for inside of reaction chamber
GB2183204A (en) Nitrogen trifluoride as an in-situ cleaning agent
JPH0452612B2 (en)
JPH01136970A (en) Method for cleaning plasma cvd apparatus
JP2010192736A (en) Device and method for atomic layer growth
KR20090104258A (en) Cleaning method for chamber of thin film deposition apparatus
JPS6134931A (en) Manufacture of silicon film
WO2004095555A1 (en) Method for cleaning heat treatment apparatus
JPH10189535A (en) Manufacture of semiconductor device
CN114752918B (en) Chamber cleaning method