JPS5943288Y2 - Constant air flow control device for pneumatic conveyance equipment - Google Patents

Constant air flow control device for pneumatic conveyance equipment

Info

Publication number
JPS5943288Y2
JPS5943288Y2 JP8070877U JP8070877U JPS5943288Y2 JP S5943288 Y2 JPS5943288 Y2 JP S5943288Y2 JP 8070877 U JP8070877 U JP 8070877U JP 8070877 U JP8070877 U JP 8070877U JP S5943288 Y2 JPS5943288 Y2 JP S5943288Y2
Authority
JP
Japan
Prior art keywords
air
air volume
garbage
pipe
post
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8070877U
Other languages
Japanese (ja)
Other versions
JPS547570U (en
Inventor
元吉郎 白根
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP8070877U priority Critical patent/JPS5943288Y2/en
Publication of JPS547570U publication Critical patent/JPS547570U/ja
Application granted granted Critical
Publication of JPS5943288Y2 publication Critical patent/JPS5943288Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Refuse Collection And Transfer (AREA)
  • Air Transport Of Granular Materials (AREA)

Description

【考案の詳細な説明】 本考案はゴミの空気輸送装置における空気量を制御する
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for controlling the amount of air in a pneumatic waste transport device.

近時、都市ゴミの合理的な収集輸送方式として真空パイ
プラインによる収集輸送が着目され実施化されている。
Recently, collection and transportation using vacuum pipelines has been attracting attention and being put into practice as a rational method for collecting and transporting municipal waste.

これは、第1図に示すように所要の間隔をおいて設置し
たゴミポスト1a〜1mを支管2に連通接続して1つの
収集系3を形成し、幾つかの収集系3の各支管2をカッ
トパルプ4を介して輸送本管5に接続し、この輸送本管
5を収集ステーション6の空気源10に接続して基本的
な収集ラインを構成したものである。
As shown in FIG. 1, one collection system 3 is formed by connecting garbage posts 1a to 1m installed at required intervals to a branch pipe 2, and each branch pipe 2 of several collection systems 3 is connected to the branch pipe 2. The cut pulp 4 is connected to a transport main 5 which is connected to an air source 10 of a collection station 6 to form a basic collection line.

そして、1つの収集系3の各ゴミポスト1a〜1m内に
貯留されているゴミを収集する場合、1ず、収集ステー
ション6内の大気取入弁9及び該当する収集系のカット
バルブ4を開放した後、空気源10を駆動し、次いで、
1つのゴ□ポスト1aの空気取入弁(図示せず)を開放
した後前記大気取入弁9を閉成すると、該空気取入弁か
ら空気が流入し、この流入空気により当該ゴミポスト1
a内に貯留されていたゴミは支管2、本管5を通って収
集ステーション6の分離機7に移送される。
When collecting garbage stored in each garbage post 1a to 1m of one collection system 3, first, the atmospheric intake valve 9 in the collection station 6 and the cut valve 4 of the corresponding collection system are opened. After that, the air source 10 is driven, and then,
When the air intake valve (not shown) of one garbage post 1a is opened and the atmosphere intake valve 9 is closed, air flows in from the air intake valve, and this inflow air causes the garbage post 1 to be closed.
The garbage stored in a is transferred to a separator 7 of a collection station 6 through a branch pipe 2 and a main pipe 5.

そして、ゴミポスト1aのゴミ収集が完了すると、次の
ゴミポスト1bの空気取入弁(図示せず)を開放し、前
のゴミポスト1aの空気取入弁を閉成すると、上述と同
様にして当該ゴミポスト1b内に貯留されていたゴミが
分離機7に移送される。
When the garbage collection of the garbage post 1a is completed, the air intake valve (not shown) of the next garbage post 1b is opened, and the air intake valve of the previous garbage post 1a is closed. The garbage stored in 1b is transferred to separator 7.

このような操作を順次行うことにより、各ゴミポスト1
0〜1m内に貯留されたゴミを逐次分離機7に収集する
By performing these operations sequentially, each garbage post 1
Garbage accumulated within 0 to 1 m is successively collected in a separator 7.

さて、輸送空気の圧力をPとすると、この圧力Pはステ
ーション6から該当ゴ□ポスト1での距離t、風速V、
ゴミの重量W、その他要因に等の函数となり、各ゴミポ
スト1a〜1m4での距離をt1〜tmとすると、これ
らの各ゴミポスト1a〜1m内のゴミ輸送に必要な輸送
圧力は第2図の特性曲線■1〜Imで示すように表わさ
れる。
Now, assuming that the pressure of the transport air is P, this pressure P is the distance t from station 6 to the corresponding Go □ post 1, the wind speed V,
It is a function of the weight W of garbage and other factors, and if the distance between each garbage post 1a to 1m4 is t1 to tm, the transportation pressure required to transport garbage within each garbage post 1a to 1m is the characteristic shown in Figure 2. It is expressed as shown by curves 1 to Im.

また、空気源10の圧力CP)−風量(Q特性は曲線■
で示すように表わされる。
Also, the pressure CP of the air source 10) - air volume (Q characteristic is the curve ■
It is expressed as shown in .

尚、各ゴミポスHa〜1mのゴミの重量Wは一定とする
It is assumed that the weight W of the garbage in each garbage droplet Ha~1 m is constant.

そして、ステーション6から最も遠距離にあるゴミポス
ト1mのゴミを輸送する必要な風量Qm、風速Vmすな
わち、曲線Imと■との交点Xmを求め、この点Xrn
を計画動作点とし、この動作点Xmに対応する風量Q
m 、風速Vmを夫々収集装置の計画風量、風速と決定
している。
Then, find the air volume Qm and wind speed Vm necessary to transport the garbage of 1 m from the garbage post located farthest from station 6, that is, the intersection Xm of the curve Im and ■.
is the planned operating point, and the air volume Q corresponding to this operating point
m and wind speed Vm are determined as the planned air volume and wind speed of the collection device, respectively.

しかしながら、上記従来の装置に釦いては、ステーショ
ン6から最遠距離tmのゴミポスl1mから風速Vmで
ゴミ輸送できるように動作点(計画点)Xmを決定する
と、ステーション6に最も近い距離t1(t 1 <
trn )のゴミポスHaのゴミ輸送を行う場合、曲線
工、と■との交点X1が動作点となり、この動作点X□
に卦ける風量Q1、風速■1は前記風量Qm、風速Vm
よりも著しく大きくなる。
However, in the conventional device described above, if the operating point (planning point) 1 <
trn) When transporting garbage at the garbage post Ha, the intersection X1 of the curved line and ■ becomes the operating point, and this operating point
The air volume Q1 and wind speed ■1 are the air volume Qm and wind speed Vm.
significantly larger than.

すなわち、ステーション6に近いゴミポスト程流入する
空気の風速■、風量Qが大きくなる。
That is, the closer the garbage post is to the station 6, the greater the wind speed (2) and the air volume (Q) of the inflowing air.

一方、ゴ□ポストは輸送装置の能力すなわち、−回の輸
送量に応じて構成されて釦す、従って、サイレンサ(図
示せず)、空気取入弁等も必要最小限の大きさに設定さ
れている。
On the other hand, the go post is configured and buttoned according to the capacity of the transport device, that is, the amount of transport. Therefore, the silencer (not shown), air intake valve, etc. are also set to the minimum necessary size. ing.

従って、所定の風量Qm、風速Vmの輸送空気がゴミポ
スト1a〜1m内に流入する場合にはこれらのゴミポス
ト1a〜1mは空気流入時に何ら騒音を発生することは
ない。
Therefore, when transport air of a predetermined air volume Qm and wind speed Vm flows into the garbage posts 1a to 1m, these garbage posts 1a to 1m do not generate any noise when the air flows in.

しかしながら、上記従来の装置においては、前述したよ
うに空気源に近いゴミポスト程風量Q、風速■が必要以
上に大きくなり、従って、これに応じて該当するゴミポ
ストから騒音が発生され、騒音公害の源となり、そのた
めポストのサイレンサも大きくなりコスト高になるとい
う欠点があった。
However, in the above-mentioned conventional device, as mentioned above, the closer the garbage post is to the air source, the greater the air volume Q and wind speed ■ are than necessary. Therefore, there was a drawback that the silencer of the post was also large and the cost was high.

本考案は上述の欠点を除去する目的でなされたもので、
ゴミポスト内に流入する空気量をステジョンからの距離
に無関係に常に一定とすることにより、ゴミポストから
の騒音の発生を防止するようにした空気輸送装置におけ
る定風量制御装置を提供するものである。
This invention was made with the purpose of eliminating the above-mentioned drawbacks.
To provide a constant air volume control device in a pneumatic transportation device which prevents noise from a garbage post by always keeping the amount of air flowing into the garbage post constant regardless of the distance from the station.

以下本考案を添附図面の一実施例に基いて詳述する。Hereinafter, the present invention will be described in detail based on an embodiment of the present invention with reference to the accompanying drawings.

第3図に釦いて、収集ステーション6のパックフィルタ
8と空気源10とを接続する主空気管用には風量制御装
置15が配設されている。
Referring to FIG. 3, an air volume control device 15 is provided for the main air pipe connecting the pack filter 8 of the collection station 6 and the air source 10.

この風量制御装置15は風量検出器16、風量制御弁1
7を具備してトリ、風量検出器15は主空気管11に接
続されこの空気管11内の輸送空気量を検出し対応する
信号を出力して風量制御弁17に加える。
This air volume control device 15 includes an air volume detector 16 and an air volume control valve 1.
7, an air volume detector 15 is connected to the main air pipe 11, detects the amount of conveyed air in the air pipe 11, outputs a corresponding signal, and applies it to the air volume control valve 17.

この風量検出器16は例えばオリフィスプレート等で構
成されており、このような風量検出器は周知である。
This air volume detector 16 is composed of, for example, an orifice plate, and such an air volume detector is well known.

風量制御弁17は空気管13を介して主空気管11とザ
イレンサ12間に接続されている。
The air volume control valve 17 is connected between the main air pipe 11 and the xylencer 12 via the air pipe 13.

尚、安全装置としての大気吸入弁14が設けられている
場合には、風量制御弁17は図示のようにこの大気吸入
弁14をバイパスするように接続する。
In addition, when the atmospheric air suction valve 14 as a safety device is provided, the air volume control valve 17 is connected so as to bypass this atmospheric suction valve 14 as shown in the figure.

この風量制御弁1Tは風量検出器16からの信号に応じ
て開閉制御される。
This air volume control valve 1T is controlled to open and close according to a signal from the air volume detector 16.

この風量制御弁17は例えばダイヤフラム式のものでこ
のような制御弁は周知である。
This air volume control valve 17 is, for example, a diaphragm type control valve, and such a control valve is well known.

大気吸入弁14と風量制御弁17との配列順序はどちら
でもよい。
The atmospheric air intake valve 14 and the air volume control valve 17 may be arranged in either order.

風量検出器16は空気源の特性から輸送管5内の風量が
基準風量Qsに対して△Qだけ変化したときには、この
変化分△Qに応じて風量制御剤7を開閉制御し、輸送管
5内の風量が常に基準風量Qsとなるように制御する。
When the air volume in the transport pipe 5 changes by ΔQ from the standard air volume Qs due to the characteristics of the air source, the air volume detector 16 controls the opening and closing of the air volume control agent 7 in accordance with this change ΔQ, and the transport pipe 5 Control is performed so that the air volume within is always equal to the reference air volume Qs.

すなわち、例えば、輸送管5内の風量が△Qだけ増加し
たときには、この増加分△Qに応じて風量制御弁17を
開放し、増加分△Qだけ大気中からサイレンサ12を介
してバイパスさせて主空気管11内に流入させる。
That is, for example, when the air volume in the transport pipe 5 increases by ΔQ, the air volume control valve 17 is opened in accordance with this increase ΔQ, and air is bypassed from the atmosphere via the silencer 12 by the increased amount ΔQ. It flows into the main air pipe 11.

従って、輸送管5内の風量は基準の風量Qsとなる。Therefore, the air volume in the transport pipe 5 becomes the standard air volume Qs.

このようにして、輸送管5内の風量を常に一定にするこ
とができる。
In this way, the air volume inside the transport pipe 5 can be kept constant.

そして、前述したと同様に第4図に示すようにステーシ
ョン6から最遠距離tm位置にあるゴミポスト1mの特
性曲線Imと空気源10の特性曲線1mのゴミ輸送に必
要な輸送空気の風速Vm、風量Qm及び輸送圧力Pmを
設定する。
Then, as described above, as shown in FIG. 4, the wind speed Vm of the transportation air necessary for transporting garbage with the characteristic curve Im of the garbage post 1 m located at the farthest distance tm from the station 6 and the characteristic curve 1 m of the air source 10, Set air volume Qm and transportation pressure Pm.

勿論、輸送するゴミの重量Wは一定とする。Of course, the weight W of the garbage to be transported is assumed to be constant.

また、風量検出器16の値をこの計画点Xmの風量に設
定し、この風量Qmを基準風量とする。
Further, the value of the airflow detector 16 is set to the airflow at this planning point Xm, and this airflow Qm is set as the reference airflow.

さて、例えばステーション6から最近距離t1の位置に
あるゴミポスHaのゴミを輸送する場合には、動作点は
特性曲線■1と■との交点X1に移動し、輸送管5内の
輸送圧力はPlに下がり、風速、風量は共に増加し夫々
■1、Qlとなる。
Now, for example, when transporting garbage from garbage droplet Ha located at the closest distance t1 from station 6, the operating point moves to the intersection X1 of characteristic curves ■1 and ■, and the transportation pressure in transport pipe 5 is Pl. The wind speed and air volume both increase to ■1 and Ql, respectively.

風量検出器16は主空気管11内の風量が増大すると直
ちにこれを検出し、増加分△Q1(=Q1゜0m)に応
じた信号を出力して風量制御弁17を開放し、ゴミポス
トからの流入風量すなわち風量検出部16の風量が一定
になるように制御する。
The air volume detector 16 immediately detects when the air volume in the main air pipe 11 increases, outputs a signal corresponding to the increase ΔQ1 (=Q1°0m), opens the air volume control valve 17, and removes the air from the garbage post. Control is performed so that the inflow air volume, that is, the air volume of the air volume detection unit 16 is constant.

従って、増加分△Qに応じた風量が風量制御弁nを介し
て大気中から主輸送管11内に流入する。
Therefore, the air volume corresponding to the increase ΔQ flows from the atmosphere into the main transport pipe 11 via the air volume control valve n.

従って、ゴミポストからの風量流入動作点は特性曲線1
1に沿って点x’l−tで移動し、輸送管5内の風量は
Qmとなシ、輸送圧力はこの風量Qmに必要な圧力P′
□となり、空気源10の動作点はXlとなる。
Therefore, the air flow inflow operating point from the garbage post is characteristic curve 1.
1 at point x'lt, the air volume in the transport pipe 5 is Qm, and the transport pressure is the pressure P' required for this air volume Qm.
□, and the operating point of the air source 10 is Xl.

従って、ゴミポスト1aに流入する輸送空気の風速、風
量は基準の風速Vm、基準の風量Qmとなり、当該ゴミ
ポスト1aは流入空気による。
Therefore, the wind speed and air volume of the transportation air flowing into the garbage post 1a are the standard wind speed Vm and the standard air volume Qm, and the garbage post 1a is driven by the incoming air.

騒音を発することはない。また、空気源10は輸送管5
内の風量を一定にしながら輸送圧力に合わせて駆動され
、従って、無負荷時にはそれ相当に動力も少くなり経済
運転となる。
It doesn't make any noise. In addition, the air source 10 is a transport pipe 5
It is driven in accordance with the transportation pressure while keeping the air volume inside constant, and therefore, when there is no load, the power is considerably reduced, resulting in economical operation.

勿論、同一のゴミポストのゴミ収集運転中において、負
荷が変動した場合でも上述と同様にして風量制御される
Of course, even if the load changes during garbage collection operation of the same garbage post, the air volume is controlled in the same manner as described above.

尚、本実施例においてはゴ□ポストについて記述したが
、ダストシュートについても同様に定風量制御すること
ができることに言う昔でもない。
Incidentally, in this embodiment, the go post has been described, but it is also possible to control the constant air volume of the dust chute in the same way.

以上説明したように本考案によれば、ゴミ収集ステーシ
ョンから各ゴミポストtでの距離或は輸送中の輸送圧力
の変動とは無関係に輸送管内の風速を常に一定にするこ
とができ、各ゴミポスト部からの騒音の発生を防止する
ことができると共に空気源も負荷率に応じた運転となる
ので空気源の動力が小さくなり経済運転を行うことがで
きる等の利点がある。
As explained above, according to the present invention, the wind speed in the transportation pipe can be kept constant regardless of the distance from the garbage collection station to each garbage post t or fluctuations in the transportation pressure during transportation. Since the air source is operated according to the load factor, the motive power of the air source is reduced, and economical operation can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は空気輸送方式のゴミ収集輸送装置の概略図、第
2図は従来の輸送装置の動作説明図、第3図は本考案に
係る空気輸送装置における定風量制御装置の一実施例を
示す図、第4図は本考案装置の動作説明図である。 1a〜1m・・・・・・ゴミポスト、2・・・・・・支
管、4・・・・・・カットバルブ、5・・・・・・本管
、6・・・・・・収集ステーション、7・・・・・・分
離機、8・・・・・・パックフィルタ、9・・・・・・
空気取入弁、10・・・・・・空気源、11・・・・・
・主空気管、12・・・・・・サイレンサ、13・・・
・・・空気管、14・・・・・・大気吸入弁、16・・
・・・・風量検出器、17・・・・・・風量制御弁。
Fig. 1 is a schematic diagram of a pneumatic transport type garbage collection and transport device, Fig. 2 is an explanatory diagram of the operation of a conventional transport device, and Fig. 3 is an example of a constant air volume control device in a pneumatic transport device according to the present invention. The figure shown in FIG. 4 is an explanatory diagram of the operation of the device of the present invention. 1a~1m...garbage post, 2...branch pipe, 4...cut valve, 5...main pipe, 6...collection station, 7...Separator, 8...Pack filter, 9...
Air intake valve, 10... Air source, 11...
・Main air pipe, 12... Silencer, 13...
...Air pipe, 14...Atmosphere intake valve, 16...
...Air volume detector, 17...Air volume control valve.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 空気輸送方式によりゴミを収集ステーション1で輸送す
るゴミ収集輸送装置にお・いて、収集ステーションの分
離機と空気源間の主空気管路に該主空気管路の風量を検
出し対応する信号を出力する風量検出器と、−側が前記
主空気管路に他側がサイレンサに接続され前記信号に応
じて開度が制御されて前記空気源に流れる風量にかかわ
らずゴミ輸送用空気取入口からの風量を略−走化する風
量制御弁とを具えたことを特徴とする空気輸送装置にお
ける定風量制御装置。
In a garbage collection and transportation device that transports garbage to a collection station 1 using a pneumatic transportation method, the main air pipe between the separator of the collection station and the air source detects the air volume of the main air pipe and sends a corresponding signal. An output airflow detector is connected to the main air pipe on the negative side and to the silencer on the other side, and the opening degree is controlled according to the signal to detect the airflow from the garbage transport air intake regardless of the airflow flowing to the air source. 1. A constant air volume control device for a pneumatic transport device, characterized in that it comprises an air volume control valve for chemotaxis.
JP8070877U 1977-06-20 1977-06-20 Constant air flow control device for pneumatic conveyance equipment Expired JPS5943288Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8070877U JPS5943288Y2 (en) 1977-06-20 1977-06-20 Constant air flow control device for pneumatic conveyance equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8070877U JPS5943288Y2 (en) 1977-06-20 1977-06-20 Constant air flow control device for pneumatic conveyance equipment

Publications (2)

Publication Number Publication Date
JPS547570U JPS547570U (en) 1979-01-18
JPS5943288Y2 true JPS5943288Y2 (en) 1984-12-21

Family

ID=28999862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8070877U Expired JPS5943288Y2 (en) 1977-06-20 1977-06-20 Constant air flow control device for pneumatic conveyance equipment

Country Status (1)

Country Link
JP (1) JPS5943288Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57170301A (en) * 1981-04-15 1982-10-20 Ebara Mfg Method and device for pneumatically transporting dust

Also Published As

Publication number Publication date
JPS547570U (en) 1979-01-18

Similar Documents

Publication Publication Date Title
EP2585389B1 (en) Vacuum waste collection system and method of operating such a system
CN111547427A (en) Closed-loop garbage collection system and control method thereof
JPS5943288Y2 (en) Constant air flow control device for pneumatic conveyance equipment
CN212449123U (en) Garbage disposal system
CN209739910U (en) pneumatic circulation garbage collection device
EP0596750A1 (en) Garbage suction/transfer unit
CN112193691A (en) Indoor throwing type garbage full-vacuum pipeline collection system
CN206778726U (en) A kind of coal ash separation system
KR20110073165A (en) Air-pressure generating system and air-pressure generating system control method in a domestic waste auto-transferring treatment equipment
CN207823191U (en) A kind of pulverizer water-cooling system
JP2923858B2 (en) Garbage pneumatic transport system
CN213975606U (en) Closed-loop garbage collection system
JPS646084B2 (en)
CN111824779A (en) Medical waste full-vacuum pipeline collection system
CN105422221A (en) Double-cavity type automobile tail gas treatment device and control system thereof
CN214648280U (en) Train platform garbage collection system
JPS6283924A (en) Pneumatic dust transportation and dust throw-in device for pressurized transportation
JPH08282803A (en) Pneumatic object transportion facility
JP2643558B2 (en) Blockage position determination method for garbage vacuum transport system
JPS6410404B2 (en)
CN112644535A (en) Train platform garbage collection system
JPH04119373U (en) Vacuum exhaust equipment
JPS6050684B2 (en) Optimal control method for vacuum transport
CN212449122U (en) Garbage classification and collection pipeline system
JPH05162810A (en) Pneumatic transport method and facility for refuse