JPS5942638A - Metallic thin film type magnetic recording medium - Google Patents

Metallic thin film type magnetic recording medium

Info

Publication number
JPS5942638A
JPS5942638A JP15218682A JP15218682A JPS5942638A JP S5942638 A JPS5942638 A JP S5942638A JP 15218682 A JP15218682 A JP 15218682A JP 15218682 A JP15218682 A JP 15218682A JP S5942638 A JPS5942638 A JP S5942638A
Authority
JP
Japan
Prior art keywords
film
recording medium
magnetic recording
magnetic
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15218682A
Other languages
Japanese (ja)
Other versions
JPH0136164B2 (en
Inventor
Takashi Suzuki
貴志 鈴木
Shigeki Kawase
茂樹 河瀬
Nobuo Nakamura
信雄 中村
Takashi Fujita
藤田 隆志
Masaru Odagiri
優 小田桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15218682A priority Critical patent/JPS5942638A/en
Publication of JPS5942638A publication Critical patent/JPS5942638A/en
Publication of JPH0136164B2 publication Critical patent/JPH0136164B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/85Coating a support with a magnetic layer by vapour deposition

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain a thin metallic film type magnetic recording medium having a coefft. of friction which is hardly affected by speed, superior traveling stability and favorable enveloping characteristics, by forming a part contributing to traveling on the surface of a magnetic layer with gathered fine protrusions of a specified average diameter produced by diagonal vapor deposition in an oxygen atmosphere. CONSTITUTION:A magnetic layer is formed on a nonmagnetic substrate made of a polyester film, a polyimide type film such as a polyester imide film or a polyimide film, an aromatic polyamide film or the like. A part contributing to traveling on the surface of the magnetic layer is formed with gathered fine protrusions of 20-300Angstrom average diameter produced by diagonal vapor deposition in an oxygen atmosphere. The resulting magnetic recording medium has a coefft. of friction which is hardly affected by speed, high traveling stability and favorable enveloping characteristics, and the head cleaning effect of the gathered fine protrusions can be expected.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、磁気テープ、磁気ディスク等の磁気記録媒体
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to magnetic recording media such as magnetic tapes and magnetic disks.

従来例の構成とその問題点 鉄、コバル1−.ニッケル、捷たはそれらを主成分とす
る合金、あるいは、それらの酸化物薄膜を真空蒸着、ス
パッタリング、イオンブレーティング等の真空中成膜法
で、ポリエステルフィルム。
Configuration of conventional example and its problems Iron, Kobal 1-. Polyester film is produced using vacuum deposition methods such as vacuum evaporation, sputtering, and ion blasting, using thin films of nickel, nickel, or alloys containing them as main components, or oxides thereof.

ポリイミドフィルム等の高分子フィルム基板上に形成し
た強磁性薄膜型磁気記録媒体は、従来の塗布型磁気記録
媒体に比べて記録密度を飛躍的に向上せしめることが可
能であるが、この高密度化のためには、磁気記録媒体の
表面を平滑化せしめてスペーシングロスを極力減少せし
める必要がある。
Ferromagnetic thin-film magnetic recording media formed on polymer film substrates such as polyimide films can dramatically improve recording density compared to conventional coated magnetic recording media. In order to achieve this, it is necessary to smooth the surface of the magnetic recording medium to reduce spacing loss as much as possible.

しかし、あまり表面を平坦化しすぎると、ヘッドタッチ
、走行面で支障をきたす。近年一般市場に普及してきた
回転ヘッド型ビデオテープレコーダーシステムにおいて
、磁気テープ記録密度を一段と向上せしめんとする場合
、強磁性薄膜型磁気記録媒体の適用が必要となるが、こ
のようなシステムに特に要求される磁気記録媒体の実用
性能としては、ヘッドタッチ、ヘッド而4摩耗性が良好
であって、ヘッド目づまりを生じ難く、かつ、回転ヘッ
ド用シリンダー、テープガイドボス1−、オーディオ用
固定ヘッド等との接触部における安定した走行性(低摩
擦、耐摩耗性良好)が得られることが掲げられる。強磁
性薄膜型磁気記録媒体の表面性は磁性層厚さが0.1〜
0.6μm程度と非常に小さいためほとんどすべて基板
であるプラスチックフィルムの表面形状に依存する。し
たがって従来フィルムの表面性に関−して、多くの提案
がなされてきた。その例は、特開昭63−116115
号公報、特開昭53−128683号公報、特開昭54
−94674号公報、特開昭56−10456号公報、
特開昭56−16937号公報等に記載されている。こ
れらの例においては、いずれも表面形状を比較的微細か
つ均一に粗面化せしめる、たとえば、しわ状突起を形成
せしめたり、波状。
However, if the surface is made too flat, it will cause problems in head touch and running surface. In order to further improve the magnetic tape recording density in rotating head video tape recorder systems that have become popular in the general market in recent years, it is necessary to apply ferromagnetic thin film magnetic recording media. Practical performance requirements for magnetic recording media include good head touch, good wear resistance, and resistance to head clogging, and cylinders for rotating heads, tape guide bosses, fixed heads for audio, etc. The aim is to achieve stable running performance (low friction, good wear resistance) at the contact area with the The surface properties of ferromagnetic thin-film magnetic recording media are such that the magnetic layer thickness is 0.1 to
Since it is very small, about 0.6 μm, it almost entirely depends on the surface shape of the plastic film that is the substrate. Therefore, many proposals have been made regarding the surface properties of films. An example is JP-A-63-116115
Publication No. 128683/1983, Japanese Patent Application Laid-open No. 1983-128683
-94674 publication, JP-A-56-10456 publication,
It is described in JP-A-56-16937 and the like. In all of these examples, the surface shape is relatively finely and uniformly roughened, for example, wrinkle-like protrusions are formed or waves are formed.

ミミズ状あるいは粒状突起を形成せしめることにより、
ヘッドタッチ、走行性を一挙に改善しようとするもので
ある。しかし、ビデオ用回転ヘッドはその接触幅が数百
ミクロン以下と狭く、しかも磁気テープとの相対速度が
数メートル7秒と速いのに対して、磁気テープ走行系の
摩擦は、低速(数センチメートル7秒)大面積接触であ
るためそれら相方に対して同等の走行性を持たせる(す
なわち、摩擦係数速度依存性が小さい。)ことが必要で
あるが、上記の各側のものは、概して、摩擦係数の速度
依存性が比較的大きく、そのために実走行において、鳴
きを生じやすく、エンベロープ特性が不安定となりやす
いといった問題点を有していた。
By forming earthworm-like or granular protrusions,
The aim is to improve head touch and running performance all at once. However, the video rotary head has a narrow contact width of several hundred microns or less, and the relative speed with the magnetic tape is as fast as several meters and seven seconds, whereas the friction of the magnetic tape running system is slow (several centimeters). 7 seconds) Since it is a large-area contact, it is necessary to provide the same running performance to both partners (that is, the friction coefficient speed dependence is small), but in general, the above-mentioned ones on each side are The speed dependence of the coefficient of friction is relatively large, which causes problems such as noise and unstable envelope characteristics during actual driving.

発明の目的 本発明は、摩擦係数の速度依存性が小さく、走行安定性
に優れ、エンベロープ特性良好な金属薄膜型磁気記録媒
体を提供することを目的とする。
OBJECTS OF THE INVENTION An object of the present invention is to provide a metal thin film type magnetic recording medium that has a small speed dependence of the coefficient of friction, excellent running stability, and good envelope characteristics.

発明の構成 本発明による金属薄膜型磁気記録媒体は、磁性層表面に
おける少なくとも走行寄与部分が、酸素雰囲気中の斜め
蒸着により発現された平均直径20〜・300人の微小
突起集合体で構成されていることを特徴とする。
Composition of the Invention In the metal thin film magnetic recording medium according to the present invention, at least the portion of the surface of the magnetic layer that contributes to running is composed of an aggregate of microprotrusions with an average diameter of 20 to 300, developed by oblique vapor deposition in an oxygen atmosphere. It is characterized by the presence of

実施例の説明 第1〜3図は、本発明の実施例である磁気記録媒体の厚
さ方向の断面図である。図において、1゜1′、1“は
非磁性基板、2.2’、2”は、上記非磁性基板上に形
成された表面に微細凹凸を有する非磁性下地層、3.3
’、3”は、上記非磁性下地層上に酸素雰囲気中の斜め
蒸着により形成された強磁性金属薄膜である。略図中、
Q1〜Q3は斜め蒸着の主入射角、矢印は入射方向、d
〜d3は強磁性金属薄膜表面に形成された微小突起の平
面方向の直径を示している。なお、この直径は走査型電
イ顕微鏡による観察で測定できる。第1図は平滑な非磁
性基板1」二の全面に微小突起集合体3が形成されてい
る場合、第2図は表面を微細に粗面化した非磁性基板1
′上の全面に微小突起集合体3′が形成されている場合
、第3図は平滑な非磁性基板1″の一部に非磁性下地層
グの盛り」−りが形成され、その部分のみに微小突起集
合体3′宴形成されている場合である。この図の例では
、実走行に寄与するのは3″の部分である。
DESCRIPTION OF EMBODIMENTS FIGS. 1 to 3 are cross-sectional views in the thickness direction of a magnetic recording medium that is an embodiment of the present invention. In the figure, 1゜1', 1'' is a non-magnetic substrate, 2.2', 2'' is a non-magnetic underlayer having fine irregularities on the surface formed on the non-magnetic substrate, 3.3
', 3'' is a ferromagnetic metal thin film formed on the non-magnetic underlayer by oblique vapor deposition in an oxygen atmosphere. In the diagram,
Q1 to Q3 are the main incident angles of oblique evaporation, the arrows are the incident directions, and d
~d3 indicates the diameter in the planar direction of the microprotrusions formed on the surface of the ferromagnetic metal thin film. Note that this diameter can be measured by observation using a scanning electron microscope. Figure 1 shows a case in which microprotrusion aggregates 3 are formed on the entire surface of a smooth non-magnetic substrate 1''2, and Figure 2 shows a non-magnetic substrate 1 with a finely roughened surface.
When microprotrusion aggregates 3' are formed on the entire surface of the substrate 1', FIG. This is the case when microprotrusion aggregates 3' are formed. In the example shown in this figure, it is the 3'' portion that contributes to actual running.

第4図は長尺非磁性基板上に連続斜め蒸着によって強磁
性金属薄膜を形成させる方法を示したもので、図中、4
は真空容器、5は非磁性基板、6はその港出部、7は巻
取部、8はへ方向に回転するドラム、9は蒸発容器、1
0は強磁性金属の溶融物から成る蒸発源、8は蒸発蒸気
の非磁性基板への入射角の下限を規制するマスクである
。θは入射角一般を、θminは最小入射角、すなわち
主人射角を表わす。
Figure 4 shows a method for forming a ferromagnetic metal thin film on a long non-magnetic substrate by continuous oblique deposition.
1 is a vacuum container, 5 is a non-magnetic substrate, 6 is a port exit portion thereof, 7 is a winding portion, 8 is a drum rotating in the direction, 9 is an evaporation container, 1
0 is an evaporation source made of a ferromagnetic metal melt, and 8 is a mask that regulates the lower limit of the incident angle of the evaporated vapor onto the non-magnetic substrate. θ represents the general angle of incidence, and θmin represents the minimum angle of incidence, that is, the principal angle of incidence.

真空蒸着によって強磁性金属薄膜が基板上に形成される
場合、蒸発源より飛出した強磁性金属蒸気が基板上に付
着し続いてその基板上を移動しつつ適尚な場所に固定さ
れていくことによって強磁性金属の結晶が形成される。
When a ferromagnetic metal thin film is formed on a substrate by vacuum evaporation, the ferromagnetic metal vapor ejects from the evaporation source and adheres to the substrate, then moves on the substrate and becomes fixed at an appropriate location. As a result, ferromagnetic metal crystals are formed.

真空中に酸素ガスが存在すると基板上に付着した強磁性
金属蒸気の一部は基板上を移動する過程で早期に酸素と
反応するためにその移動が大幅に制限される。したがっ
て、酸素雰囲気中の斜め蒸着においては基板表面の徽細
な凹凸の形が強調されたような表面を有する蒸着膜の形
成が期待される。本発明者らの検討の結果、基板表面の
凹凸の間隔が非常に小さい場合、すなわち、約300八
以下の場合、前述の期待通りの効果が現われ、この効果
により得られる表面形状が磁気記録媒体の走行性に犬き
く寄与することが明らかになった。第1〜3図は、この
効果を模式的に図示したものである。なお、基板表面の
凹凸の間隔が300Å以上になると信号再生出力のエン
ベロープにわずかな乱れを生じる。
When oxygen gas is present in a vacuum, a portion of the ferromagnetic metal vapor adhering to the substrate reacts with oxygen early in the process of moving over the substrate, so that its movement is significantly restricted. Therefore, in oblique vapor deposition in an oxygen atmosphere, it is expected that a vapor deposited film will be formed having a surface in which the fine unevenness of the substrate surface is emphasized. As a result of the studies conducted by the present inventors, the above-mentioned expected effect appears when the spacing between the unevenness on the substrate surface is very small, that is, about 3008 or less, and the surface shape obtained by this effect is It has been revealed that this significantly contributes to the running performance of the vehicle. 1 to 3 schematically illustrate this effect. It should be noted that if the interval between the unevenness on the substrate surface is 300 Å or more, a slight disturbance will occur in the envelope of the signal reproduction output.

本発明に用いる非磁性基板としては、ポリエチレンテレ
フタレートまたはその共重合体、混合体。
The nonmagnetic substrate used in the present invention is polyethylene terephthalate or a copolymer or mixture thereof.

ポリエチレンナフタレートまたはその共重合体。Polyethylene naphthalate or its copolymer.

混合体等から成るポリエステルフィルム、ポリエステル
イミド、ポリイミド等のポリイミド系フィルム、芳香族
ポリアミドフィルム等であってとぐに表面平滑性に秀れ
たものが適している。ポリエステルフィルムを例に掲げ
れば、爪合残査がら成る微小突起をほとんど含まないか
、あるいは、微小突起の高さが数百へ以下である平滑性
良好なもの、il述のしわ状、ミミズ状2粒状等の均一
な微細突起を表面に形成せしめたもので表面粗さが数百
Å以下のもの、等々である。それらの表面に後述の非磁
性下地層を形成させたものるわけであるが、別途下地層
を形成せずに、前述のしわ状、ミミズ状1粒状等の均一
な微細突起を表面に形成せしめる際に、それらの表面形
成素材中に直径100Å以下の超微粒子を多数添加せし
めることによって微細突起自体に後述の非磁性下地層の
性質を加味せしめたものを用いても良い。
Suitable materials include polyester films made of mixtures, polyimide films such as polyesterimide and polyimide, and aromatic polyamide films that have excellent surface smoothness. Taking polyester film as an example, it has good smoothness with almost no microprotrusions made of nail residue, or the height of microprotrusions is less than a few hundred, and it has the wrinkles and earthworms mentioned above. These include those on which uniform fine protrusions, such as two-grain shapes, are formed on the surface, and the surface roughness is several hundred angstroms or less. Although a non-magnetic underlayer, which will be described later, is formed on the surface of these materials, uniform fine protrusions such as wrinkle-like or earthworm-like grains as described above are formed on the surface without forming a separate underlayer. In this case, by adding a large number of ultrafine particles with a diameter of 100 Å or less to the surface forming material, the fine protrusions themselves may have the properties of a non-magnetic underlayer, which will be described later.

本発明の特徴は、酸素雰囲気中の斜め蒸着によシ発現さ
れた平均直径20〜300人の微小突起集合体で構成さ
れた表面にあるが、このような表面は蒸着される基板表
面が凹凸のより、ゆるやかな類似形状を有する時に得ら
れるものである。この種の形状は蒸着前の時点であらか
じめ調べようとしても通常の倍率敵方程度の走査型電顕
では確認が困難なほど微細な凹凸で、倍率10万以上の
高分解能電顕の観察ではじめて明らかになる程度のもの
である。しかも、このような形状の表面に通常の込射角
が90’に近い蒸着を行なっても本発明に有効であるよ
うな微小突起集合体は得られず、また、単なる高真空中
での斜め蒸着においては、酸素雰囲気中における斜め蒸
着で得られるごとき顕著な凹凸拡大効果は得られない。
The feature of the present invention is that the surface is composed of aggregates of microprotrusions with an average diameter of 20 to 300, which are formed by oblique evaporation in an oxygen atmosphere. This is obtained when the shapes have a loosely similar shape. Even if you try to examine this type of shape in advance before vapor deposition, it is difficult to confirm it with a scanning electron microscope with a normal magnification of 100,000 or more, and it is difficult to see it with a high-resolution electron microscope. It is only to the extent that it becomes clear. Moreover, even if the normal incidence angle is close to 90', a microprotrusion aggregate that is effective in the present invention cannot be obtained on a surface of such a shape, and simply diagonal deposition in a high vacuum In vapor deposition, it is not possible to obtain the remarkable unevenness enlarging effect that can be obtained by oblique vapor deposition in an oxygen atmosphere.

このことは、たとえば、後述の磁性面の動摩擦係数測定
結果からも明らかである。
This is clear, for example, from the results of measuring the coefficient of dynamic friction of the magnetic surface, which will be described later.

非磁性下地層としては、直径100Å以下さらに好まし
くは10〜90人の超微粒子を重量で5%以」二、さら
に好ましくは1o〜60%含有する樹脂の薄層(厚さ1
0QQÅ以下、さらに好ましくは10〜500人)が適
しており、たとえば超微粒子を分散せしめた樹脂溶液(
樹脂濃度1〜vooppm)を平滑、あるいは前記のし
わ状、ミミズ状、あるいは粒状突起を有する基板表面に
塗布することにより得ることができる。直径100Å以
下の超微粒子としては、たとえば、有機金属化合物の加
水分解、ハロゲン化金属の加水分解。
The non-magnetic underlayer is a thin layer of resin (with a thickness of 100 Å or less) containing 5% or more, more preferably 10 to 60% by weight of ultrafine particles with a diameter of 100 Å or less, more preferably 10 to 90 particles.
0QQÅ or less, more preferably 10 to 500 people), for example, a resin solution in which ultrafine particles are dispersed (
It can be obtained by applying a resin concentration of 1 to voop per million on the surface of a substrate that is smooth or has wrinkles, worm-like, or granular projections. Examples of ultrafine particles with a diameter of 100 Å or less include hydrolysis of organometallic compounds and hydrolysis of metal halides.

酸アルカリによる分解、塩溶液の還元、ガス中蒸発法、
有機化合物・高分子化合物等の凝集・結晶化等により得
られるものであって、アルミニウム。
Decomposition with acid-alkali, reduction of salt solution, evaporation method in gas,
Aluminum is obtained by aggregation, crystallization, etc. of organic compounds, polymer compounds, etc.

ケイ素、マグネシウム、チタン、亜鉛、鉄等の酸化物、
水酸化物、金、銀、銅、ニッケル、鉄等の金属微粒子、
あるいは、有機化合物・高分子化合物の微粒子等を用い
ることができる。なお、平均直径100人の微粒子を用
いた場合に得られる下地層表面の平面方向の嶽小突起平
均直径は粒子の2次凝集のため200〜300人程度と
なる。
Oxides of silicon, magnesium, titanium, zinc, iron, etc.
Fine metal particles such as hydroxide, gold, silver, copper, nickel, iron, etc.
Alternatively, fine particles of organic compounds/polymer compounds, etc. can be used. Incidentally, when fine particles with an average diameter of 100 particles are used, the average diameter of the small protrusions in the plane direction of the surface of the base layer obtained is about 200 to 300 particles due to secondary aggregation of the particles.

非磁性下地層は、第1〜2図に示したように基板表面全
域にわたって設けてもよいが、第3図に示したように部
分的に設けてもよい。後者の場合には下地層領域が少な
くとも2oμm以下の間隔で全表面の10%以上にわた
り存在することが望ましい。このような状態は、たとえ
ば下地層形成時の塗布液中に微量のシリコンオイルを添
加することにより得ることができる。いずれにしても、
磁性層の突出部分、すなわち、走行寄与部分に微小突起
集合体を存在せしめることが必要である。
The nonmagnetic underlayer may be provided over the entire surface of the substrate as shown in FIGS. 1 and 2, or may be provided partially as shown in FIG. In the latter case, it is desirable that the underlayer regions exist over 10% or more of the entire surface at intervals of at least 2 0 μm or less. Such a state can be obtained, for example, by adding a small amount of silicone oil to the coating liquid when forming the base layer. In any case,
It is necessary that the microprotrusion aggregates exist in the protruding portions of the magnetic layer, that is, in the portions that contribute to travel.

酸素雰囲気中での真空蒸着に関しては、特公昭66−2
3208.特公昭67−2393−1.特公昭57−2
9770.特開昭66−16014゜特開昭67−37
719等に記載されているが、本発明の効果は、前述の
主入射角が2σ以上ざらに好ましくは30°以上であっ
て、得られる膜厚が400Å以上、酸素含有率(強磁性
金属に対する酸素の原子比)3%以上で顕著と士る◇な
お、本発明の実施に際して、磁性層表面、あるいは非磁
性基板裏面等に、各種滑剤含有層、防錆剤含有層等を設
けることもできる。
Regarding vacuum evaporation in an oxygen atmosphere, Japanese Patent Publication No. 66-2
3208. Tokuko Showa 67-2393-1. Special Public Service 1977-2
9770. JP-A-66-16014° JP-A-67-37
719, etc., the effects of the present invention are such that the main incident angle is 2σ or more, preferably 30° or more, the obtained film thickness is 400 Å or more, and the oxygen content (relative to ferromagnetic metals) is 400 Å or more. (atomic ratio of oxygen) 3% or more ◇In addition, when implementing the present invention, it is also possible to provide various lubricant-containing layers, rust preventive agent-containing layers, etc. on the surface of the magnetic layer or the back surface of the non-magnetic substrate. .

次により具体的な実施例の説明を行う。Next, a more specific example will be explained.

厚さ12μmで表面に表面粗さRmax−約250人、
間隔約2μmの波状突起を有するポリエステル長尺フィ
ルムの表面に平均粒径8o人のシリカコロイド(アルコ
キシシランの加水分解生成物)10ppm、共重合ポリ
エステル樹脂30 ppmを含む溶液を塗布乾燥した。
Surface roughness Rmax - approx. 250 people with a thickness of 12 μm,
A solution containing 10 ppm of silica colloid (a hydrolyzed product of alkoxysilane) with an average particle size of 8 µm and 30 ppm of a copolymerized polyester resin was applied to the surface of a long polyester film having wavy projections with an interval of about 2 μm and dried.

これを円筒ドラム周面上に沿わせ、5 X 105To
rr  の真空度で酸素ガスを0.3ノ/minの流量
で導入し、電子ビーム加熱により溶融したCoNi合金
(Ni含有量20 wt%)を連続蒸着して、厚さ10
00人の酸素含有coNi強磁性薄膜をフィルム上に形
成せしめた。この際、入射角限定用マスクの位置を変え
ることにより、主入射角が30°、 20’、 100
. Ooの4種類の試料を得た。これらの試料をそれぞ
れA、B、C,Dとした。また比較のためにシリカコロ
イド処理を行なわない元のフィルムにも主入射角300
で上記と同様の蒸着を行なった。このものを試料Eとし
た。さらに、試料ly造条件において酸素導入を行なわ
ない場合についても実験し、この試料をFとした。試料
A−Fの膜中の平均酸素量は、CoN1E+1o%、F
〈1%であった。走査型電顕観察によって、試料A、B
には平均直径200Aの微小突起集合体が全表面に形成
されていることが確認された。しかし、試料0.D、F
では、微小突起集合体の根跡らしきものがようやく認め
られる程度であり、試料Eでは、その根跡も認められな
かった。これらの試料を所定幅に切断して磁気テープと
し、試作デツキでエンベロープ特性を観察するとともに
、6#Iffφのステンレス製丸棒に1800巻付けて
走行させ摩擦係数の速度依存性を測定した。エンベロー
プは下記の順で良好であった。
Place this along the circumferential surface of the cylindrical drum, and
Oxygen gas was introduced at a flow rate of 0.3 n/min at a vacuum degree of
An oxygen-containing coNi ferromagnetic thin film was formed on the film. At this time, by changing the position of the incident angle limiting mask, the main incident angle can be set to 30°, 20', or 100°.
.. Four types of samples of Oo were obtained. These samples were designated as A, B, C, and D, respectively. For comparison, the original film without silica colloid treatment also had a principal incidence angle of 300.
The same vapor deposition as above was carried out. This product was designated as sample E. Furthermore, an experiment was also conducted in the case where oxygen was not introduced under the sample manufacturing conditions, and this sample was designated as F. The average amount of oxygen in the films of samples A-F is CoN1E+1o%, F
<It was 1%. By scanning electron microscopy, samples A and B
It was confirmed that microprotrusion aggregates with an average diameter of 200A were formed on the entire surface. However, sample 0. D,F
In sample E, only traces of roots of microprotrusion aggregates were observed, and in sample E, no traces of such roots were observed. These samples were cut into predetermined widths to make magnetic tapes, and the envelope characteristics were observed on a prototype deck, and the tapes were wrapped around a 6#Iffφ stainless steel round bar 1800 times and run to measure the speed dependence of the friction coefficient. The envelopes were good in the following order.

最良 A−B)F、−C−F)D また、第6図に摩擦係数の速度依存性を示した。Best A-B)F, -C-F)D Furthermore, FIG. 6 shows the speed dependence of the friction coefficient.

発明の効果 本発明の磁気記録媒体は、摩擦係数の速度依存性が小さ
く、走行安定性に秀れ、エンベロープ特性良好であり、
さらに、微細な突起集合体によるヘッドクリーニング効
果を期待されるため、その実用的価値は非常に高いもの
である。
Effects of the Invention The magnetic recording medium of the present invention has a small speed dependence of the coefficient of friction, excellent running stability, and good envelope characteristics.
Furthermore, since a head cleaning effect is expected due to the aggregate of fine protrusions, its practical value is extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図はそれぞれ本発明の実施例であ
る磁気記録媒体の断面図、第4図は連続斜め蒸着装置の
断面図、第5図は本発明の実施例における磁気記録媒体
の摩擦係数の速度依存性を示す図である。 1・・・・・・非磁性基板、2・・・・・・下地層、3
・・・・・・強磁性金属薄膜。 代理人の氏名 ノf理士 中 尾 敏 男 はが1名第
1図 82図 第4図 第5図 i! 漬 け)う、ジ
1, 2, and 3 are sectional views of a magnetic recording medium according to an embodiment of the present invention, FIG. 4 is a sectional view of a continuous oblique evaporation apparatus, and FIG. 5 is a sectional view of a magnetic recording medium according to an embodiment of the present invention. FIG. 3 is a diagram showing the speed dependence of the friction coefficient of a recording medium. 1...Nonmagnetic substrate, 2...Underlayer, 3
...Ferromagnetic metal thin film. Name of agent Toshi Nakao, Physician, 1 person Figure 1 Figure 82 Figure 4 Figure 5 i! Pickled) U, Ji

Claims (1)

【特許請求の範囲】[Claims] 磁気記録媒体の磁性層表面における少なくとも走行寄与
部分が、酸素雰囲気中の斜め蒸着により発現された平均
直径20〜300Aの微小突起集合体で構成されている
ことを特徴とする金属薄膜型磁気記録媒体。
A metal thin film type magnetic recording medium characterized in that at least a portion of the surface of the magnetic layer of the magnetic recording medium that contributes to running is composed of aggregates of microprotrusions with an average diameter of 20 to 300 A developed by oblique vapor deposition in an oxygen atmosphere. .
JP15218682A 1982-08-31 1982-08-31 Metallic thin film type magnetic recording medium Granted JPS5942638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15218682A JPS5942638A (en) 1982-08-31 1982-08-31 Metallic thin film type magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15218682A JPS5942638A (en) 1982-08-31 1982-08-31 Metallic thin film type magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS5942638A true JPS5942638A (en) 1984-03-09
JPH0136164B2 JPH0136164B2 (en) 1989-07-28

Family

ID=15534935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15218682A Granted JPS5942638A (en) 1982-08-31 1982-08-31 Metallic thin film type magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS5942638A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61196429A (en) * 1985-02-25 1986-08-30 Konishiroku Photo Ind Co Ltd Production of magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61196429A (en) * 1985-02-25 1986-08-30 Konishiroku Photo Ind Co Ltd Production of magnetic recording medium

Also Published As

Publication number Publication date
JPH0136164B2 (en) 1989-07-28

Similar Documents

Publication Publication Date Title
JPS5868227A (en) Magnetic recording medium
US5589263A (en) Magnetic recording medium having a ferromagnetic metal thin film, a dry etched layer, a carbonaceous film, and a lubricant film
JPS5942638A (en) Metallic thin film type magnetic recording medium
JPS5948825A (en) Magnetic recording medium
JPS5868225A (en) Magnetic recording medium
JP2608868B2 (en) Magnetic recording media
JP2000011342A (en) Cleaning tape and its production
JPS5942639A (en) Metallic thin film type magnetic recording medium
JPH02769B2 (en)
JPH0612568B2 (en) Magnetic recording medium
US5472778A (en) Magnetic recording medium
JPS61139920A (en) Magnetic recording medium
JPS618720A (en) Magnetic recording medium
JPS628325A (en) Magnetic recording medium
JPS59157833A (en) Magnetic recording medium
JPH0666085B2 (en) Method of manufacturing magnetic recording medium
JPS59175030A (en) Production of magnetic recording medium
JPH0335727B2 (en)
JPS60111319A (en) Magnetic recording medium
JPH0357532B2 (en)
JPS60124021A (en) Magnetic recording medium
JPS6154044A (en) Manufacture and its device of magnetic recording medium
JP2002329311A (en) Magnetic recording medium
JPS58222444A (en) Magnetic recording medium
JPH01162215A (en) Magnetic recording medium