JPH0136164B2 - - Google Patents

Info

Publication number
JPH0136164B2
JPH0136164B2 JP15218682A JP15218682A JPH0136164B2 JP H0136164 B2 JPH0136164 B2 JP H0136164B2 JP 15218682 A JP15218682 A JP 15218682A JP 15218682 A JP15218682 A JP 15218682A JP H0136164 B2 JPH0136164 B2 JP H0136164B2
Authority
JP
Japan
Prior art keywords
magnetic
substrate
less
magnetic recording
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15218682A
Other languages
Japanese (ja)
Other versions
JPS5942638A (en
Inventor
Takashi Suzuki
Shigeki Kawase
Nobuo Nakamura
Takashi Fujita
Masaru Odagiri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15218682A priority Critical patent/JPS5942638A/en
Publication of JPS5942638A publication Critical patent/JPS5942638A/en
Publication of JPH0136164B2 publication Critical patent/JPH0136164B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/85Coating a support with a magnetic layer by vapour deposition

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、磁気テープ、磁気デイスク等の磁気
記録媒体の製造方法に関する。 従来例の構成とその問題点 鉄、コバルト、ニツケル、またはそれらを主成
分とする合金、あるいは、それらの酸化物薄膜を
真空蒸着、スパツタリング、イオンプレーテイン
グ等の真空中成膜法で、ポリエステルフイルム、
ポリイミドフイルム等の高分子フイルム基板上に
形成した強磁性薄膜型磁気記録媒体は、従来の塗
布型磁気記録媒体に比べて記録密度を飛躍的に向
上せしめることが可能であるが、この高密度化の
ためには、磁気記録媒体の表面を平滑化せしめて
スペーシングロスを極力減少せしめる必要があ
る。しかし、あまり表面を平坦化しすぎると、ヘ
ツドタツチ、走行面で支障をきたす。近年一般市
場に普及してきた回転ヘツド型ビデオテープレコ
ーダーシステムにおいて、磁気テープ記録密度を
一段と向上せしめんとする場合、強磁性薄膜型磁
気記録媒体の適用が必要となるが、このようなシ
ステムに特に要求される磁気記録媒体の実用性能
としては、ヘツドタツチ、ヘツド耐摩耗性が良好
であつて、ヘツド目づまりを生じ難く、かつ、回
転ヘツド用シリンダー、テープガイドポスト、オ
ーデイオ用固定ヘツド等との接触部における安定
した走行性(低摩擦、耐摩耗性良好)が得られる
ことが掲げられる。強磁性薄膜型磁気記録媒体の
表面性は磁性層厚さが0.1〜0.5μm程度と非常に
小さいためほとんどすべて基板であるプラスチツ
クフイルムの表面形状に依存する。したがつて従
来フイルムの表面性に関して、多くの提案がなさ
れてきた。その例は、特開昭53−116115号公報、
特開昭53−128683号公報、特開昭54−94574号公
報、特開昭56−10455号公報、特開昭56−16937号
公報等に記載されている。これらの例において
は、いずれも表面形状を比較的微細かつ均一に粗
面化せしめる、たとえば、しわ状突起を形成せし
めたり、波状、ミミズ状あるいは粒状突起を形成
せしめることにより、ヘツドタツチ、走行性を一
挙に改善しようとするものである。しかし、ビデ
オ用回転ヘツドはその接触幅が数百ミクロン以下
と狭く、しかも磁気テープとの相対速度が数メー
トル/秒と速いのに対して、磁気テープ走行系の
摩擦は、低速(数センチメートル/秒)大面積接
触であるためそれら相方に対して同等の走行性を
持たせる(すなわち、摩擦係数速度依存性が小さ
い。)ことが必要であるが、上記の各例のものは、
概して、摩擦係数の速度依存性が比較的大きく、
そのために実走行において、鳴きを生じやすく、
エンベロープ特性が不安定となりやすいといつた
問題点を有していた。 発明の目的 本発明は、摩擦係数の速度依存性が小さく、走
行安定性に優れ、エンベロープ特性良好な金属薄
膜型磁気記録媒体を提供することを目的とする。 発明の構成 本発明による金属薄膜型磁気記録媒体は、表面
が平滑かあるいは、表面にしわ状、ミミズ状もし
くは粒状の突起を有する非磁性基板表面の少なく
とも走行寄与部分に直径100Å以下の超微粒子を
5%以上含有する厚さ1000Å以下で表面凹凸の間
隔が300Å以下である樹脂の薄層を設けたのち酸
素雰囲気中での真空斜め蒸着により入射角20゜以
上で磁性金属薄層を形成することを特徴とする。 実施例の説明 第1〜3図は、本発明の実施例における製造方
法で得られる代表的な磁気記録媒体の厚さ方向の
断面図である。図において、1,1′,1″は非磁
性基板、2,2′,2″は、上記非磁性基板上に形
成された表面に微細凹凸を有する非磁性下地層、
3,3′,3″は、上記非磁性下地層上に酸素雰囲
気中の斜め蒸着により形成された強磁性金属薄膜
である。略図中、Q1〜Q3は斜め蒸着の主入射角、
矢印は入射方向、d1〜d3は強磁性金属薄膜表面に
形成された微小突起の平面方向の直径を示してい
る。なお、この直径は走査型電子顕微鏡による観
察で測定できる。第1図は平滑な非磁性基板1上
の全面に微小突起集合体3が形成されている場
合、第2図は表面を微細に粗面化した非磁性基板
1′上の全面に微小突起集合体3′が形成されてい
る場合、第3図は平滑な非磁性基板1″の一部に
非磁性下地層2″の盛り上りが形成され、その部
分のみに微小突起集合体3″が形成されている場
合である。この図の例では、実走行に寄与するの
は3″の部分である。 第4図は長尺非磁性基板上に連続斜め蒸着によ
つて強磁性金属薄膜を形成させる方法を示したも
ので、図中、4は真空容器、5は非磁性基板、6
はその巻出部、7は巻取部、8はa方向に回転す
るドラム、9は蒸発容器、10は強磁性金属の溶
融物から成る蒸発源、8は蒸発蒸気の非磁性基板
への入射角の下限を規制するマスクである。θは
入射角一般を、θminは最小入射角、すなわち主
入射角を表わす。 真空蒸着によつて強磁性金属薄膜が基板上に形
成される場合、蒸発源より飛出した強磁性金属蒸
気が基板上に付着し続いてその基板上を移動しつ
つ適当な場所に固定されていくことによつて強磁
性金属の結晶が形成される。真空中に酸素ガスが
存在すると基板上に付着した強磁性金属蒸気の一
部は基板上を移動する過程で早期に酸素と反応す
るためにその移動が大幅に制限される。したがつ
て、酸素雰囲気中の斜め蒸着においては基板表面
の微細な凹凸の形が強調されたような表面を有す
る蒸着膜の形成が期待される。本発明者らの検討
の結果、基板表面の凹凸の間隔が非常に小さい場
合、すなわち、約300Å以下の場合、前述の期待
通りの効果が現われ、この効果により得られる表
面形状が磁気記録媒体の走行性に大きく寄与する
ことが明らかになつた。第1〜3図は、この効果
を模式的に図示したものである。なお、基板表面
の凹凸の間隔が300Å以上になると信号再生出力
のエンベロープにわずかな乱れを生じる。 ここで、凹凸の間隔について、従来の場合との
比較を第1表に示す。ただし、本発明と従来例と
の相違は単にこの凹の間隔のみでなく、本発明の
効果は、他の条件との相乗的な作用にもとづくも
のである。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for manufacturing magnetic recording media such as magnetic tapes and magnetic disks. Structures of conventional examples and their problems Polyester films are made of iron, cobalt, nickel, alloys containing these as main components, or thin films of their oxides using vacuum deposition methods such as vacuum evaporation, sputtering, and ion plating. ,
Ferromagnetic thin-film magnetic recording media formed on polymer film substrates such as polyimide films can dramatically improve recording density compared to conventional coating-type magnetic recording media. In order to achieve this, it is necessary to smooth the surface of the magnetic recording medium to reduce spacing loss as much as possible. However, if the surface is made too flat, it will cause problems in head touching and running surface. In order to further improve the magnetic tape recording density in rotating head video tape recorder systems that have become popular in the general market in recent years, it is necessary to apply ferromagnetic thin film magnetic recording media. Practical performance requirements for magnetic recording media include good head touch and head abrasion resistance, resistance to head clogging, and contact areas with rotating head cylinders, tape guide posts, audio fixed heads, etc. The objective is to achieve stable running performance (low friction, good wear resistance) in The surface properties of ferromagnetic thin film magnetic recording media depend almost entirely on the surface shape of the plastic film substrate, since the magnetic layer thickness is very small, about 0.1 to 0.5 μm. Therefore, many proposals have been made regarding the surface properties of films. An example is Japanese Patent Application Laid-open No. 116115/1983,
They are described in JP-A-53-128683, JP-A-54-94574, JP-A-56-10455, JP-A-56-16937, and the like. In all of these examples, the surface shape is roughened relatively finely and uniformly, for example, by forming wrinkle-like protrusions, wavy, earthworm-like, or granular protrusions, thereby improving head touch and running properties. This is an attempt to improve all at once. However, whereas the video rotary head has a narrow contact width of several hundred microns or less and a relative speed of several meters/second with the magnetic tape, the friction of the magnetic tape running system is slow (a few centimeters/second). /sec) Since it is a large-area contact, it is necessary to provide the same running performance with respect to the other partners (that is, the friction coefficient speed dependence is small), but in each of the above examples,
In general, the speed dependence of the friction coefficient is relatively large;
Therefore, during actual driving, it is easy to cause squealing,
The problem was that the envelope characteristics tended to become unstable. OBJECTS OF THE INVENTION It is an object of the present invention to provide a thin metal film type magnetic recording medium that has a small dependence of friction coefficient on speed, excellent running stability, and good envelope characteristics. Structure of the Invention The metal thin film type magnetic recording medium according to the present invention includes ultrafine particles with a diameter of 100 Å or less on at least a portion of the surface of a nonmagnetic substrate that is smooth or has wrinkle-like, earthworm-like, or granular projections on the surface that contributes to travel. After providing a thin layer of resin containing 5% or more and having a thickness of 1000 Å or less and a surface unevenness interval of 300 Å or less, a thin magnetic metal layer is formed by vacuum oblique deposition in an oxygen atmosphere at an incident angle of 20° or more. It is characterized by DESCRIPTION OF EMBODIMENTS FIGS. 1 to 3 are cross-sectional views in the thickness direction of typical magnetic recording media obtained by the manufacturing method according to the embodiments of the present invention. In the figure, 1, 1', 1'' are non-magnetic substrates, 2, 2', 2'' are non-magnetic underlayers having fine irregularities on the surface formed on the non-magnetic substrates,
3, 3', and 3'' are ferromagnetic metal thin films formed on the nonmagnetic underlayer by oblique vapor deposition in an oxygen atmosphere. In the diagram, Q 1 to Q 3 are the main incident angles of oblique vapor deposition;
The arrow indicates the direction of incidence, and d 1 to d 3 indicate the diameters of the microprotrusions formed on the surface of the ferromagnetic metal thin film in the planar direction. Note that this diameter can be measured by observation using a scanning electron microscope. Fig. 1 shows a case in which microprotrusion aggregates 3 are formed on the entire surface of a smooth nonmagnetic substrate 1, and Fig. 2 shows a case in which microprotrusion aggregates 3 are formed on the entire surface of a nonmagnetic substrate 1' whose surface is finely roughened. When the body 3' is formed, FIG. 3 shows that a bulge of the nonmagnetic underlayer 2'' is formed in a part of the smooth nonmagnetic substrate 1'', and a microprotrusion aggregate 3'' is formed only in that part. In the example shown in this figure, it is the 3'' portion that contributes to the actual running. Figure 4 shows a method for forming a ferromagnetic metal thin film on a long non-magnetic substrate by continuous oblique evaporation, in which 4 is a vacuum vessel, 5 is a non-magnetic substrate, 6 is
7 is the unwinding part, 7 is the winding part, 8 is a drum rotating in the direction a, 9 is an evaporation container, 10 is an evaporation source made of a ferromagnetic metal melt, and 8 is the incidence of evaporated vapor on the non-magnetic substrate. This is a mask that regulates the lower limit of the corner. θ represents the general angle of incidence, and θmin represents the minimum angle of incidence, that is, the main angle of incidence. When a ferromagnetic metal thin film is formed on a substrate by vacuum evaporation, the ferromagnetic metal vapor ejected from the evaporation source adheres to the substrate, then moves on the substrate and is fixed at an appropriate location. As a result, ferromagnetic metal crystals are formed. When oxygen gas is present in a vacuum, a portion of the ferromagnetic metal vapor adhering to the substrate reacts with oxygen early in the process of moving over the substrate, so that its movement is significantly restricted. Therefore, in oblique vapor deposition in an oxygen atmosphere, it is expected that a vapor deposited film will be formed having a surface in which the fine irregularities on the substrate surface are emphasized. As a result of the studies conducted by the present inventors, the above-mentioned expected effect appears when the spacing between the unevenness on the substrate surface is very small, that is, about 300 Å or less, and the surface shape obtained due to this effect is It has become clear that this significantly contributes to driving performance. 1 to 3 schematically illustrate this effect. Note that if the distance between the unevenness on the substrate surface is 300 Å or more, a slight disturbance will occur in the envelope of the signal reproduction output. Here, Table 1 shows a comparison with the conventional case regarding the spacing between the concave and convex portions. However, the difference between the present invention and the conventional example is not simply the spacing between the recesses, but the effects of the present invention are based on synergistic effects with other conditions.

【表】 本発明に用いる非磁性基板としては、ボリエチ
レンテレフタレートまたはその共重合体、混合
体、ポリエチレンナフタレートまたはその共重合
体、混合体等から成るポリエステルフイルム、ポ
リエステルイミド、ポリイミド等のポリイミド系
フイルム、芳香族ポリアミドフイルム等であつて
とくに表面平滑性に秀れたものが適している。ポ
リエステルフイルムを例に掲げれば、重合残査か
ら成る微小突起をほとんど含まないか、あるい
は、微小突起の高さが数百Å以下である平滑性良
好なもの、前述のしわ状、ミミズ状、粒状等の均
一な微細突起を表面に形成せしめたもので表面粗
さが数百Å以下のもの、等々である。それらの表
面に後述の非磁性下地層を形成させたものるわけ
であるが、別途下地層を形成せずに、前述のしわ
状、ミミズ状、粒状等の均一な微細突起を表面に
形成せしめる際に、それらの表面形成素材中に直
径100Å以下の超微粒子を多数添加せしめること
によつて微細突起自体に後述の非磁性下地層の性
質を加味せしめたものを用いても良い。 本発明の製法により得られる磁気記録媒体の特
徴は、酸素雰囲気中の斜め蒸着により発現された
平均直径20〜300Åの微小突起集合体で構成され
た表面にあるが、このような表面は蒸着される基
板表面が凹凸のよりゆるやかな類似形状を有する
時に得られるものである。この種の形状は蒸着前
の時点であらかじめ調べようとしても通常の倍率
数万程度の走査型電顕では確認が困難なほど微細
な凹凸で、倍率10万以上の高分解能電顕の観察で
はじめて明らかになる程度のものである。しか
も、このような形状の表面に通常の入射角が90゜
に近い蒸着を行なつても本発明に有効であるよう
な微小突起集合体は得られず、また、単なる高真
空中での斜め蒸着においては、酸素雰囲気中にお
ける斜め蒸着で得られるごとき顕著な凹凸拡大効
果は得られない。このことは、たとえば、後述の
磁性面の動摩擦係数測定結果からも明らかであ
る。 非磁性下地層としては、直径100Å以下さらに
好ましくは10〜90Åの超微粒子を重量で5%以
上、さらに好ましくは10〜50%含有する樹脂の薄
層(厚さ1000Å以下、さらに好ましくは10〜500
Å)が適しており、たとえば超微粒子を分散せし
めた樹脂溶液(樹脂濃度1〜100ppm)を平滑、
あるいは前記のしわ状、ミミズ状、あるいは粒状
突起を有する基板表面に塗布することにより得る
ことができる。直径100Å以下の超微粒子として
は、たとえば、有機金属化合物の加水分解、ハロ
ゲン化金属の加水分解、酸アルカリによる分解、
塩溶液の還元、ガス中蒸発法、有機化合物・高分
子化合物等の凝集・結晶化等により得られるもの
であつて、アルミニウム、ケイ素、マグネシウ
ム、チタン、亜鉛、鉄等の酸化物、水酸化物、
金、銀、銅、ニツケル、鉄等の金属微粒子、ある
いは、有機化合物・高分子化合物の微粒子等を用
いることができる。なお、平均直径100Åの微粒
子を用いた場合に得られる下地層表面の平面方向
の微小突起平均直径は粒子の2次凝集のため200
〜300Å程度となる。 非磁性下地層は、第1〜2図に示したように基
板表面全域にわたつて設けてもよいが、第3図に
示したように部分的に設けてもよい。後者の場合
には下地層領域が少なくとも20μm以下の間隔で
全表面の10%以上にわたり存在することが望まし
い。このような状態は、たとえば下地層形成時の
塗布液中に微量のシリコンオイルを添加すること
により得ることができる。いずれにしても、磁性
層の突出部分、すなわち、走行寄与部分に微小突
起集合体を存在せしめることが必要である。 酸素雰囲気中での真空蒸着に関しては、特公昭
56−23208、特公昭57−23931、特公昭57−29770、
特開昭56−15014、特開昭57−37719等に記載され
ているが、本発明の効果は、前述の主入射角が
20゜以上さらに好ましくは30゜以上であつて、得ら
れる膜厚が400Å以上、酸素含有率(強磁性金属
に対する酸素の原子比)3%以上で顕著となる。 以上のように本発明の効果については、従来技
術との比較において、以下のように説明できる。 第6図a〜cは各々の場合を比較して示す。本
発明の特徴は、第1表に示した基板の表面形状の
上に、酸素雰囲気中で入射角20゜以上で斜め蒸着
することにある。この場合のメカニズムを推定す
ると、斜め蒸着の初期に、表面の蒸気入射角に垂
直あるいはそれに近い高入射角の部分(表面には
微細な凹凸があるのでその中の高入射角の部分)
にまず核が形成される。酸素の存在により付着し
た金属は部分酸化され付着後の基板上での移動す
なわちマイグレーシヨンが抑制され、限定された
選択的な結晶成長が行なわれる。これにより蒸着
磁性層表面には基板の微細凹凸形状が強調された
形の凹凸が形成される(第6図a)。 酸素雰囲気下におきましても入射角20゜以下の
垂直蒸着においては第6図bの通り形状が強調さ
れ難くなります。 また酸素のない場合には第6図cのごとく斜め
蒸着においてもマイグレーシヨン効果により形状
が強調され難くなる。 なお、本発明の実施に際して、磁性層表面、あ
るいは非磁性基板裏面等に、各種滑剤含有層、防
錆剤含有層等を設けることもできる。 次により具体的な実施例の説明を行う。 厚さ12μmで表面に表面粗さRmax=約250Å、
間隔約2μmの波状突起を有するポリエステル長
尺フイルムの表面に平均粒径80Åのシリカコロイ
ド(アルコキシシランの加水分解生成物)
10ppm、共重合ポリエステル樹脂30ppmを含む溶
液を塗布乾燥した。これを円筒ドラム周面上に沿
わせ、5×10-5Torrの真空度で酸素ガスを0.3
/minの流量で導入し、電子ビーム加熱により
溶融したCoNi合金(Ni含有量20wt%)を連続蒸
着して、厚さ1000Åの酸素含有CoNi強磁性薄膜
をフイルム上に形成せしめた。この際、入射角限
定用マスクの位置を変えることにより、主入射角
が30゜、20゜、10゜、0゜の4種類の試料を得た。これ
らの試料をそれぞれA、B、C、Dとした。また
比較のためにシリカコロイド処理を行なわない元
のフイルムにも主入射角30゜で上記と同様の蒸着
を行なつた。このものを試料Eとした。さらに、
試料A製造条件において酸素導入を行なわない場
合についても実験し、この試料をFとした。試料
A〜Fの膜中の平均酸素量は、CoNiに対する原
子数比(0/Co+Ni×100)で、A〜E≒10%、F <1%であつた。走査型電顕観察によつて、試料
A、Bには平均直径200Åの微小突起集合体が全
表面に形成されていることが確認された。しか
し、試料C、D、Fでは、微小突起集合体の根跡
らしきものがようやく認められる程度であり、試
料Eでは、その根跡も認められなかつた。これら
の試料を所定幅に切断して磁気テープとし、試作
デツキでエンベロープ特性を観察するとともに、
5mmφのステンレス製丸棒に180゜巻付けて走行さ
せ摩擦係数の速度依存性を測定した。エンベロー
プは下記の順で良好であつた。 最良A・B>E・C・F>D また、第5図に摩擦係数の速度共依存性を示し
た。 発明の効果 本発明の製造方法による磁気記録媒体は、摩擦
係数の速度依存性が小さく、走行安定性に秀れ、
エンベロープ特性良好であり、さらに、微細な突
起集合体によるヘツドクリーニング効果を期待さ
せるため、その実用的価値は非常に高いものであ
る。
[Table] Non-magnetic substrates used in the present invention include polyester films made of polyethylene terephthalate or copolymers or mixtures thereof, polyester films made of polyethylene naphthalate or copolymers or mixtures thereof, polyesterimide, polyimide-based materials such as polyimide, etc. Films, aromatic polyamide films, etc., which have particularly excellent surface smoothness, are suitable. Taking polyester film as an example, it has good smoothness with almost no microprotrusions made of polymerization residues or the height of the microprotrusions is several hundred Å or less, the wrinkle-like, worm-like, etc. These include those on which uniform fine protrusions such as granules are formed on the surface, and the surface roughness is several hundred Å or less. Although a non-magnetic underlayer, which will be described later, is formed on the surface of these materials, uniform fine protrusions such as wrinkle-like, earthworm-like, granular, etc. mentioned above are formed on the surface without forming a separate underlayer. In this case, by adding a large number of ultrafine particles with a diameter of 100 Å or less to the surface forming material, the fine protrusions themselves may have the properties of a non-magnetic underlayer, which will be described later. The magnetic recording medium obtained by the manufacturing method of the present invention is characterized by a surface composed of aggregates of microprotrusions with an average diameter of 20 to 300 Å developed by oblique vapor deposition in an oxygen atmosphere. This is obtained when the surface of the substrate has a similar shape with gentler irregularities. Even if you try to examine this type of shape in advance before vapor deposition, it is difficult to confirm it with a scanning electron microscope with a normal magnification of about 100,000 or so, and it is difficult to confirm it with a high-resolution electron microscope with a magnification of 100,000 or more. It is only to the extent that it becomes clear. Moreover, even if the normal incidence angle is close to 90°, it is not possible to obtain a microprotrusion aggregate that is effective in the present invention, and even if vapor deposition is performed on a surface with such a shape at an angle of incidence close to 90°, it is impossible to obtain a microprotrusion aggregate that is effective in the present invention. In vapor deposition, it is not possible to obtain the remarkable unevenness enlarging effect that can be obtained by oblique vapor deposition in an oxygen atmosphere. This is clear, for example, from the results of measuring the coefficient of dynamic friction of the magnetic surface, which will be described later. As a non-magnetic underlayer, a thin layer of resin (with a thickness of 1000 Å or less, more preferably 10 to 50 Å) containing 5% or more, more preferably 10 to 50% by weight of ultrafine particles with a diameter of 100 Å or less, more preferably 10 to 90 Å, is used. 500
Å) is suitable, for example, by smoothing a resin solution (resin concentration 1 to 100 ppm) in which ultrafine particles are dispersed.
Alternatively, it can be obtained by coating the surface of a substrate having wrinkle-like, worm-like, or granular projections. Examples of ultrafine particles with a diameter of 100 Å or less include hydrolysis of organometallic compounds, hydrolysis of metal halides, decomposition by acids and alkalis,
Oxides and hydroxides of aluminum, silicon, magnesium, titanium, zinc, iron, etc., which are obtained by reduction of salt solutions, evaporation in gas, agglomeration and crystallization of organic compounds and polymer compounds, etc. ,
Fine particles of metals such as gold, silver, copper, nickel, iron, etc., or fine particles of organic compounds and polymer compounds can be used. Furthermore, when fine particles with an average diameter of 100 Å are used, the average diameter of microprotrusions in the plane direction on the surface of the underlayer is 200 Å due to secondary aggregation of the particles.
It will be about 300 Å. The nonmagnetic underlayer may be provided over the entire surface of the substrate as shown in FIGS. 1 and 2, or may be provided partially as shown in FIG. In the latter case, it is desirable that the underlayer regions exist over 10% or more of the entire surface at intervals of at least 20 μm or less. Such a state can be obtained, for example, by adding a small amount of silicone oil to the coating liquid when forming the base layer. In any case, it is necessary to have the microprotrusion aggregates present in the protruding portions of the magnetic layer, that is, in the portions that contribute to travel. Regarding vacuum evaporation in an oxygen atmosphere,
56-23208, Special Publication 57-23931, Special Publication 57-29770,
Although described in JP-A-56-15014, JP-A-57-37719, etc., the effect of the present invention is that the above-mentioned main angle of incidence is
This becomes noticeable when the angle is 20° or more, more preferably 30° or more, the resulting film thickness is 400 Å or more, and the oxygen content (atomic ratio of oxygen to ferromagnetic metal) is 3% or more. As described above, the effects of the present invention can be explained as follows in comparison with the prior art. FIGS. 6a to 6c show a comparison of each case. The feature of the present invention is that it is obliquely deposited on the surface shape of the substrate shown in Table 1 in an oxygen atmosphere at an incident angle of 20° or more. Estimating the mechanism in this case, at the beginning of oblique vapor deposition, a part with a high incidence angle that is perpendicular to or close to the vapor incidence angle on the surface (a part with a high incidence angle within the surface because there are minute irregularities)
A nucleus is first formed. Due to the presence of oxygen, the deposited metal is partially oxidized, its movement or migration on the substrate after deposition is suppressed, and limited selective crystal growth occurs. As a result, unevenness is formed on the surface of the deposited magnetic layer in a shape that emphasizes the fine unevenness of the substrate (FIG. 6a). Even in an oxygen atmosphere, the shape becomes difficult to emphasize in vertical evaporation at an incident angle of 20° or less, as shown in Figure 6b. Furthermore, in the absence of oxygen, the shape becomes difficult to be emphasized due to the migration effect even in oblique deposition as shown in FIG. 6c. In carrying out the present invention, various lubricant-containing layers, rust preventive agent-containing layers, etc. may be provided on the surface of the magnetic layer or the back surface of the non-magnetic substrate. Next, a more specific example will be explained. Surface roughness Rmax=approximately 250Å at a thickness of 12μm,
A silica colloid (hydrolysis product of alkoxysilane) with an average particle size of 80 Å is coated on the surface of a long polyester film having wavy projections with an interval of approximately 2 μm.
A solution containing 10 ppm and 30 ppm of copolymerized polyester resin was applied and dried. This was placed along the circumferential surface of the cylindrical drum, and 0.3% oxygen gas was pumped in at a vacuum level of 5×10 -5 Torr.
A CoNi alloy (Ni content: 20 wt%) melted by electron beam heating was continuously deposited to form an oxygen-containing CoNi ferromagnetic thin film with a thickness of 1000 Å on the film. At this time, by changing the position of the incident angle limiting mask, four types of samples with main incident angles of 30°, 20°, 10°, and 0° were obtained. These samples were designated as A, B, C, and D, respectively. For comparison, the original film without silica colloid treatment was also deposited in the same manner as above at a main incident angle of 30°. This product was designated as sample E. moreover,
An experiment was also carried out under the manufacturing conditions of sample A in which oxygen was not introduced, and this sample was designated as F. The average amount of oxygen in the films of samples A to F was A to E≈10% and F<1% in atomic ratio to CoNi (0/Co+Ni×100). By scanning electron microscopy, it was confirmed that microprotrusion aggregates with an average diameter of 200 Å were formed on the entire surface of Samples A and B. However, in Samples C, D, and F, only traces of the roots of the microprotrusion aggregates were barely recognized, and in Sample E, no traces of the roots were observed. These samples were cut to a predetermined width to make magnetic tape, and the envelope characteristics were observed on a prototype deck.
The speed dependence of the coefficient of friction was measured by winding the rod around a 5 mmφ stainless steel round rod at an angle of 180 degrees and running it. The envelopes were good in the following order. Best A・B>E・C・F>D In addition, Fig. 5 shows the speed codependency of the friction coefficient. Effects of the Invention The magnetic recording medium produced by the manufacturing method of the present invention has a small speed dependence of the coefficient of friction, excellent running stability,
It has good envelope characteristics and is expected to have a head cleaning effect due to the aggregate of fine protrusions, so its practical value is very high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図はそれぞれ本発明の実
施例である磁気記録媒体の断面図、第4図は連続
斜め蒸着装置の断面図、第5図は本発明の実施例
における磁気記録媒体の摩擦係数の速度依存性を
示す図、第6図は、形成される蒸着膜の状態を示
す説明図である。 1……非磁性基板、2……下地層、3……強磁
性金属薄膜。
1, 2, and 3 are sectional views of a magnetic recording medium according to an embodiment of the present invention, FIG. 4 is a sectional view of a continuous oblique evaporation apparatus, and FIG. 5 is a sectional view of a magnetic recording medium according to an embodiment of the present invention. FIG. 6, which is a diagram showing the speed dependence of the friction coefficient of the recording medium, is an explanatory diagram showing the state of the deposited film that is formed. 1...Nonmagnetic substrate, 2...Underlayer, 3...Ferromagnetic metal thin film.

Claims (1)

【特許請求の範囲】[Claims] 1 表面が平滑かあるいは、表面にしわ状、ミミ
ズ状、もしくは粒状の突起を有する非磁性基板表
面の少なくとも走行寄与部分に直径100Å以下の
超微粒子を5%以上含有する厚さ1000Å以下で表
面凹凸の間隔が300Å以下である樹脂の薄層を設
けたのち、酸素雰囲気中での真空斜め蒸着により
入射角20゜以上で磁性金属薄層を形成せしめるこ
とを特徴とする金属薄膜型磁気記録媒体の製造方
法。
1. A non-magnetic substrate with a smooth surface or with wrinkle-like, earthworm-like, or granular protrusions on the surface, at least in the portion contributing to running, with a thickness of 1000 Å or less containing 5% or more of ultrafine particles with a diameter of 100 Å or less. A thin metal film type magnetic recording medium characterized in that a thin layer of resin is formed with a spacing of 300 Å or less, and then a thin magnetic metal layer is formed at an incident angle of 20° or more by vacuum oblique evaporation in an oxygen atmosphere. Production method.
JP15218682A 1982-08-31 1982-08-31 Metallic thin film type magnetic recording medium Granted JPS5942638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15218682A JPS5942638A (en) 1982-08-31 1982-08-31 Metallic thin film type magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15218682A JPS5942638A (en) 1982-08-31 1982-08-31 Metallic thin film type magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS5942638A JPS5942638A (en) 1984-03-09
JPH0136164B2 true JPH0136164B2 (en) 1989-07-28

Family

ID=15534935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15218682A Granted JPS5942638A (en) 1982-08-31 1982-08-31 Metallic thin film type magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS5942638A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61196429A (en) * 1985-02-25 1986-08-30 Konishiroku Photo Ind Co Ltd Production of magnetic recording medium

Also Published As

Publication number Publication date
JPS5942638A (en) 1984-03-09

Similar Documents

Publication Publication Date Title
JPS5868227A (en) Magnetic recording medium
JPH0136164B2 (en)
JPH0328732B2 (en)
JPS5992428A (en) Magnetic recording medium
JPS5942639A (en) Metallic thin film type magnetic recording medium
JPS59157833A (en) Magnetic recording medium
JPS61233429A (en) Sputtering device
JPS60231911A (en) Magnetic recording medium
JPH0666085B2 (en) Method of manufacturing magnetic recording medium
JPH0459688B2 (en)
JPH0357532B2 (en)
JPS59207421A (en) Magnetic recording medium
JPS60111319A (en) Magnetic recording medium
JPS5942641A (en) Magnetic recording medium
JPS6154044A (en) Manufacture and its device of magnetic recording medium
JPS58188333A (en) Magnetic recording medium
JPH0465446B2 (en)
JPH0481247B2 (en)
JPH08235559A (en) Magnetic recording medium
JPH0459686B2 (en)
JPH0465447B2 (en)
JPS6187222A (en) Apparatus for producing magnetic recording medium
JPH02282917A (en) Magnetic recording medium
JPH0465449B2 (en)
JPS59223934A (en) Production of magnetic recording medium