JPH0465449B2 - - Google Patents

Info

Publication number
JPH0465449B2
JPH0465449B2 JP60120018A JP12001885A JPH0465449B2 JP H0465449 B2 JPH0465449 B2 JP H0465449B2 JP 60120018 A JP60120018 A JP 60120018A JP 12001885 A JP12001885 A JP 12001885A JP H0465449 B2 JPH0465449 B2 JP H0465449B2
Authority
JP
Japan
Prior art keywords
ferrite
magnetic recording
thin film
magnetic
metal thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60120018A
Other languages
Japanese (ja)
Other versions
JPS61278017A (en
Inventor
Sanemori Soga
Narihiro Sato
Yoshiki Goto
Tokihiko Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12001885A priority Critical patent/JPS61278017A/en
Publication of JPS61278017A publication Critical patent/JPS61278017A/en
Publication of JPH0465449B2 publication Critical patent/JPH0465449B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)
  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、情報産業分野等で利用される高記録
密度の磁気記録媒体に関する。 従来の技術 従来のγ−Fe2O3,Co含有γ−Fe2O3,CrO2
の強磁性粉末を有機バインダー中に分散して非磁
性基板に塗布した塗布型磁気記録媒体に代つて、
メツキ法、スパツタリング法、真空蒸着法、イオ
ンプレーテイング法等の方法によつて強磁性金属
薄膜を非磁性基板上に設けた磁気記録媒体は高密
度記録用磁気記録媒体として研究されている。 しかしながら上述した方法で作られた強磁性金
属薄膜を用いた磁気記録媒体は、滑性、走行性、
耐摩耗性に問題がある。 そもそも磁気記録媒体は磁気信号の記録、再生
の過程において、磁気ヘツドとの高速相対運動の
下におかれる。この時、磁気記録媒体の走行が円
滑でかつ安定な状態で行なわなければならない。
また磁気ヘツドとの接触による摩耗や破損が起き
てはならない。 しかしながら上述した方法で作られた強磁性金
属薄膜は磁気記録、再生の過程の苛酷な条件に耐
えることができず、磁気ヘツド等の摩擦によつて
走行が不安定になつたり、摩耗粉の発生によつて
著しく出力が低下することがあつた。そのため、
強磁性金属薄膜の上に直接飽和脂肪酸またはその
金属塩より成る単分子層を形成することが提案さ
れている。(特開昭50−75001号公報) 発明が解決しようとする問題点 しかしながら、この場合初期の潤滑性は若干改
善が見られるが、滑性耐久性がなく、走行安定性
および耐摩耗性についても未だ充分であると言え
ない。これは飽和脂肪酸の単分子層と強磁性金属
薄膜との結合が物理的吸着程度の弱いものである
ため、走行中に摺動する磁気ヘツド等により、飽
和脂肪酸が削落させられるからである。 本発明はかかる点に鑑みてなされたもので、滑
性耐久性、走行性、耐摩耗性のすぐれた磁気記録
媒体を提供することを目的としている。 問題点を解決するための手段 非磁性基板上に設けた強磁性金属薄膜上に、フ
エライト含有層を形成し、そのフエライト含有層
表面に、少なくとも1層の飽和脂肪酸又はこれら
の金属塩よりなる単分子層を設ける。 作 用 飽和脂肪酸又はこれらの金属塩の単分子層は極
性基をフエライトに向けて強く結合する。そのた
め、磁気ヘツド等との摩擦によつて、前記化合物
が削り落されることがないので、潤滑耐久性、走
行性、耐摩耗性のすぐれた磁気記録媒体が得られ
る。前記化合物がフエライトに強く結合するの
は、フエライト中の金属イオンと配位結合等の結
合を形成して化学吸着するためと推定される。 実施例 図は本発明の磁気記録媒体の断面図である。図
において、1は非磁性基板、2は強磁性金属薄
膜、3はフエライト含有層、4は飽和脂肪酸又は
これらの金属塩よりなる単分子層である。 本発明による磁気記録媒体に使用しうる非磁性
基板1としては、ポリ塩化ビニル、酢酸セルロー
ス、ポリエチレンテレフタレート、ポリエチレ
ン、ポリプロピレン、ポリカーボネート、ポリイ
ミド、ポリアミド等の高分子材料、非磁性金属材
料、ガラス、磁器等のセラミツク材料等周知の材
料からなるフイルム、板等がある。 また、本発明の磁気記録媒体に使用しうる強磁
性金属薄膜2を形成する強磁性材料としては、周
知の任意の材料を使用でき、例えば鉄、コバル
ト、ニツケルの1種以上の合金またはこれらと、
他の金属例えばマンガン、クロム、チタン、リ
ン、イツトリウム、サマリウム、ビスマス等とを
組合せた合金があり、また上記金属の酸化物等が
ある。 非磁性基板1上に強磁性金属薄膜2を形成させ
るに当つては、真空蒸着法、スパツタリング法、
イオンプレーテイング法、メツキ法等任意の周知
の方法で形成させることができる。 本発明においては、上述した強磁性金属薄膜2
の上にフエライト含有層3を設けることが要点で
ある。 本発明に使用しうるフエライトは、一般式
MO・Fe2O3(M:2価の金属)なる組成を持つも
ので、たとえばMn2+,Zn2+,Fe2+,Co2+
Mi2+,Cu2+等があげられる。またMは単体の金
属でなく、Fe2+とZn2+等、複合になつていても
よい。(例:FexZn1-xO・Fe2O3,O<x<1) 本発明により強磁性金属薄膜2上に、フエライ
ト含有層3を形成させるに当つては、スパツタリ
ング法、湿式メツキ法、真空蒸着法、アーク蒸着
法、熔融スプレー法、沈積法、電気泳動電着法等
の方法で形成させることができる。 本発明により強磁性金属薄膜2上に、フエライ
ト含有層3を形成する場合、その膜厚は50〜400
Åが好適である。 上記膜厚が500Åより大きくすると、信号の再
生時にスペーシングロスにより出力が低下した。
また50Åより小さくすると、ピンホールが生じや
すくなつて、飽和脂肪酸またはその金属塩より成
る単分子膜との複合効果より期待される滑性耐久
性が見られなかつた。 本発明によれば、上述したフエライト含有層3
の上に、飽和脂肪酸又はこれらの金属塩よりなる
単分子層4を設ける。 本発明で使用しうる飽和脂肪酸又はこれらの金
属塩としては、炭素数12〜28の直鎖型飽和脂肪酸
及びこれらのBa,Cd,Pb,Ca等の金属塩が挙
げられる。両親媒性のバランスがよく、単分子膜
作製が容易な炭素数16〜22の飽和脂肪酸及びその
塩が好ましい。その例として、パルミチン酸、ス
テアリン酸、アラキン酸、ベヘン酸及びこれらの
金属塩がある。 フエライト含有層3上に、前記飽和脂肪酸又は
これらの金属塩よりなる単分子層4を形成させる
方法としては、ラングミユアーブロジエツト
(LB)法〔Phys.Rev,51,964(1937)〕がある。 本発明によりフエライト含有層3上に、前記飽
和脂肪酸又はこれらの金属塩よりなる単分子層4
を形成する場合、1層〜21層が好適であり、3層
〜15層が滑性の点で好ましかつた。ただし、フエ
ライト含有層3と合わせた厚さを500Å以下にす
る必要がある。500Åより大きくなると、信号の
再生時にスペーシングロスにより出力が低下する
ので好ましくない。 以下に具体的な例を挙げて本発明を説明する。 実施例 1〜3 厚さ20μmのポリイミドフイルム基板上に、真
空蒸着法によりコバルト(90%)−クロム(10%)
からなる膜厚1500Åの強磁性金属薄膜を作つた。
この強磁性金属薄膜を形成した基板から100×100
mmの大きさの片を切りとり、上記金属薄膜の上
に、スパツタ法により、膜厚100Åの下記のフエ
ライト薄膜を設けた。 実施例1 Znフエライト 実施例2 Mnフエライト 実施例3 マグネタイト 実施例4 Mn・Znフエライト(Mn:
Zn=1:1) 次に、LB膜累積装置(協和界面科学製)を用
い、ステアリン酸の単分子層を3層した。 実施例 5 実施例1において、ステアリン酸の代わりにス
テアリン酸Baの単分子層を3層形成した。 比較例 実施例1において、Znフエライト層を形成せ
ず、Co−Crの強磁性金属薄膜の上に直接、ステ
アリン酸の単分子層を3層形成した。 実施例1〜4で作成した試料を室温乾燥後、ス
テアリン酸の単分子層を3層累積した膜をエリプ
ソメーターで測定したところ、膜厚は75〜80Åで
あつた。 実施例1〜5、比較例の試料の動摩擦係数を摩
擦係数計(DFPM形、協和界面科学製)で測定
した。用いたヘツドは直径3mmの鋼球で、ヘツド
荷重100g、ヘツドの走行速度1.0mm/sで測定し
た。その結果を下記の表に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a high recording density magnetic recording medium used in the information industry and the like. Conventional technology This technology replaces the conventional coated magnetic recording media in which ferromagnetic powders such as γ-Fe 2 O 3 , Co-containing γ-Fe 2 O 3 , CrO 2 are dispersed in an organic binder and coated on a non-magnetic substrate. ,
Magnetic recording media in which a ferromagnetic metal thin film is provided on a nonmagnetic substrate by methods such as plating, sputtering, vacuum evaporation, and ion plating are being studied as magnetic recording media for high-density recording. However, magnetic recording media using ferromagnetic metal thin films made by the method described above have poor slipperiness, running properties,
There are problems with wear resistance. In the first place, a magnetic recording medium is subjected to high-speed relative motion with a magnetic head during the process of recording and reproducing magnetic signals. At this time, the magnetic recording medium must run smoothly and stably.
Also, wear and damage due to contact with the magnetic head must not occur. However, the ferromagnetic metal thin film made by the above method cannot withstand the harsh conditions of the magnetic recording and reproducing process, and the running becomes unstable due to the friction of the magnetic head, etc., and wear particles are generated. In some cases, the output decreased significantly. Therefore,
It has been proposed to form a monomolecular layer of saturated fatty acid or its metal salt directly on a ferromagnetic metal thin film. (Japanese Unexamined Patent Publication No. 50-75001) Problems to be Solved by the Invention However, in this case, although the initial lubricity is slightly improved, there is no lubricity durability, and running stability and wear resistance are also affected. I cannot say that it is still sufficient. This is because the bond between the monomolecular layer of saturated fatty acids and the ferromagnetic metal thin film is weak at the level of physical adsorption, and the saturated fatty acids are scraped off by the sliding magnetic head or the like during running. The present invention has been made in view of these points, and an object of the present invention is to provide a magnetic recording medium with excellent lubricity durability, runnability, and abrasion resistance. Means for Solving the Problem A ferrite-containing layer is formed on a ferromagnetic metal thin film provided on a non-magnetic substrate, and at least one layer of monolayer consisting of saturated fatty acids or metal salts thereof is coated on the surface of the ferrite-containing layer. Provide a molecular layer. Effect: A monomolecular layer of saturated fatty acids or their metal salts strongly binds polar groups toward ferrite. Therefore, the compound is not scraped off by friction with a magnetic head, etc., so that a magnetic recording medium with excellent lubrication durability, runnability, and wear resistance can be obtained. The reason why the above compound strongly binds to ferrite is presumed to be because it forms bonds such as coordinate bonds with metal ions in ferrite and is chemically adsorbed. Embodiment The figure is a sectional view of a magnetic recording medium of the present invention. In the figure, 1 is a nonmagnetic substrate, 2 is a ferromagnetic metal thin film, 3 is a ferrite-containing layer, and 4 is a monomolecular layer made of a saturated fatty acid or a metal salt thereof. Examples of the nonmagnetic substrate 1 that can be used in the magnetic recording medium of the present invention include polymeric materials such as polyvinyl chloride, cellulose acetate, polyethylene terephthalate, polyethylene, polypropylene, polycarbonate, polyimide, and polyamide, nonmagnetic metal materials, glass, and porcelain. There are films, plates, etc. made of well-known materials such as ceramic materials such as . Further, as the ferromagnetic material forming the ferromagnetic metal thin film 2 that can be used in the magnetic recording medium of the present invention, any known material can be used, such as an alloy of one or more of iron, cobalt, and nickel, or an alloy of these. ,
There are alloys in combination with other metals such as manganese, chromium, titanium, phosphorus, yttrium, samarium, bismuth, etc., and oxides of the above metals. In forming the ferromagnetic metal thin film 2 on the non-magnetic substrate 1, vacuum evaporation method, sputtering method,
It can be formed by any known method such as ion plating method or plating method. In the present invention, the above-mentioned ferromagnetic metal thin film 2
The key point is to provide the ferrite-containing layer 3 on top of the ferrite-containing layer 3. The ferrite that can be used in the present invention has the general formula
It has the composition MO・Fe 2 O 3 (M: divalent metal), such as Mn 2+ , Zn 2+ , Fe 2+ , Co 2+ ,
Examples include Mi 2+ , Cu 2+ , etc. Furthermore, M is not a single metal, but may be a composite such as Fe 2+ and Zn 2+ . (Example: FexZn 1-x O.Fe 2 O 3 , O<x<1) In forming the ferrite-containing layer 3 on the ferromagnetic metal thin film 2 according to the present invention, sputtering method, wet plating method, It can be formed by a method such as a vacuum evaporation method, an arc evaporation method, a melt spray method, a deposition method, or an electrophoretic electrodeposition method. When the ferrite-containing layer 3 is formed on the ferromagnetic metal thin film 2 according to the present invention, the film thickness is 50 to 400 mm.
Å is preferred. When the film thickness was greater than 500 Å, the output decreased due to spacing loss during signal reproduction.
Further, when the thickness was smaller than 50 Å, pinholes were likely to occur, and the lubricity durability expected from the combined effect with a monomolecular film made of a saturated fatty acid or its metal salt could not be observed. According to the present invention, the above-mentioned ferrite-containing layer 3
A monomolecular layer 4 made of saturated fatty acids or metal salts thereof is provided thereon. Examples of the saturated fatty acids or metal salts thereof that can be used in the present invention include linear saturated fatty acids having 12 to 28 carbon atoms and metal salts thereof such as Ba, Cd, Pb, and Ca. Saturated fatty acids having 16 to 22 carbon atoms and salts thereof are preferred because they have a well-balanced amphipathic property and are easy to prepare as a monolayer. Examples are palmitic acid, stearic acid, arachidic acid, behenic acid and their metal salts. As a method for forming the monomolecular layer 4 made of the saturated fatty acid or a metal salt thereof on the ferrite-containing layer 3, the Langmuir-Blodget (LB) method [Phys.Rev, 51 , 964 (1937)] is used. be. According to the present invention, a monomolecular layer 4 made of the saturated fatty acid or a metal salt thereof is formed on the ferrite-containing layer 3.
1 to 21 layers are suitable, and 3 to 15 layers are preferable from the viewpoint of slipperiness. However, the combined thickness of the ferrite-containing layer 3 needs to be 500 Å or less. If it is larger than 500 Å, the output will decrease due to spacing loss during signal reproduction, which is not preferable. The present invention will be explained below by giving specific examples. Examples 1 to 3 Cobalt (90%) - chromium (10%) was deposited on a 20 μm thick polyimide film substrate by vacuum evaporation method.
A ferromagnetic metal thin film with a thickness of 1500 Å was fabricated.
100×100 from the substrate on which this ferromagnetic metal thin film was formed.
A piece with a size of mm was cut out, and the following ferrite thin film having a thickness of 100 Å was provided on the metal thin film by sputtering. Example 1 Zn ferrite Example 2 Mn ferrite Example 3 Magnetite Example 4 Mn/Zn ferrite (Mn:
Zn=1:1) Next, three monomolecular layers of stearic acid were formed using an LB film accumulation device (manufactured by Kyowa Kaimen Kagaku). Example 5 In Example 1, three monomolecular layers of Ba stearate were formed instead of stearic acid. Comparative Example In Example 1, three monomolecular layers of stearic acid were formed directly on the Co-Cr ferromagnetic metal thin film without forming the Zn ferrite layer. After drying the samples prepared in Examples 1 to 4 at room temperature, the film of three monomolecular layers of stearic acid was measured using an ellipsometer, and the film thickness was 75 to 80 Å. The dynamic friction coefficients of the samples of Examples 1 to 5 and Comparative Example were measured using a friction coefficient meter (DFPM type, manufactured by Kyowa Interface Science). The head used was a steel ball with a diameter of 3 mm, the head load was 100 g, and the head traveling speed was 1.0 mm/s. The results are shown in the table below.

【表】【table】

【表】 表のデータから本発明による実施例1〜5の磁
気記録媒体は初期動摩擦係数は勿論、200回往復
後においても動摩擦係数が低く、滑性耐久性にお
いて、比較例よりすぐれていることがわかる。 比較例では、ステアリン酸単分子層と磁性層と
の結合が弱いために、ヘツドにより削り取られ、
動摩擦係数がヘツド往復回数が増すに従つて大き
くなり、滑性耐久性が見られなかつた。 またこれらの磁気記録媒体を直径75mmの大きさ
の片に切りとり、市販のフロツピーデイスクと同
等の機能を有する試験機で走行させたところ、実
施例1〜5の磁気記録媒体は何れも、100時間後
も走行が安定し、摩耗傷は見られなかつた。それ
に対し比較例の磁気記録媒体は走行が不安定にな
り、磁性面に摩耗傷が見られた。 なお以上の実施例では、磁気デイスクについて
示したが、本発明の磁気記録媒体は、磁気テー
プ、磁気カード等にも適用できることは明らかで
ある。 発明の効果 本発明の磁気記録媒体は滑性耐久性、走行性、
耐摩耗性にすぐれ、それを長時間維持することが
できる。
[Table] From the data in the table, it can be seen that the magnetic recording media of Examples 1 to 5 according to the present invention have low coefficients of dynamic friction not only at the initial stage but also after 200 reciprocations, and are superior to the comparative example in terms of sliding durability. I understand. In the comparative example, the bond between the stearic acid monolayer and the magnetic layer was weak, so it was scraped off by the head.
The coefficient of dynamic friction increased as the number of reciprocations of the head increased, and no durability of lubricity was observed. Furthermore, when these magnetic recording media were cut into pieces with a diameter of 75 mm and run on a test machine having the same function as a commercially available floppy disk, all of the magnetic recording media of Examples 1 to 5 had a diameter of 100 mm. The vehicle continued to run stably even after several hours, and no wear scratches were observed. On the other hand, the magnetic recording medium of the comparative example ran unstable, and wear scratches were observed on the magnetic surface. In the above embodiments, magnetic disks have been described, but it is clear that the magnetic recording medium of the present invention can also be applied to magnetic tapes, magnetic cards, and the like. Effects of the Invention The magnetic recording medium of the present invention has smooth durability, runnability,
It has excellent wear resistance and can be maintained for a long time.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例における磁気記録媒体の断
面図である。 1……非磁性基板、2……強磁性金属薄膜、3
……フエライト含有層、4……飽和脂肪酸又はこ
れらの金属塩よりなる単分子層。
The figure is a sectional view of a magnetic recording medium in an embodiment of the present invention. 1...Nonmagnetic substrate, 2...Ferromagnetic metal thin film, 3
...Ferrite-containing layer, 4... Monomolecular layer consisting of saturated fatty acids or metal salts thereof.

Claims (1)

【特許請求の範囲】 1 非磁性基板上に設けた強磁性金属薄膜上に、
フエライト含有層を形成し、そのフエライト含有
層表面に少なくとも1層の飽和脂肪酸又はこれら
の金属塩よりなる単分子層を設けた磁気記録媒
体。 2 フエライト含有層の厚さが50〜400Åである
特許請求の範囲第1項記載の磁気記録媒体。
[Claims] 1. On a ferromagnetic metal thin film provided on a non-magnetic substrate,
A magnetic recording medium comprising a ferrite-containing layer and at least one monomolecular layer of a saturated fatty acid or a metal salt thereof provided on the surface of the ferrite-containing layer. 2. The magnetic recording medium according to claim 1, wherein the ferrite-containing layer has a thickness of 50 to 400 Å.
JP12001885A 1985-06-03 1985-06-03 Magnetic recording medium Granted JPS61278017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12001885A JPS61278017A (en) 1985-06-03 1985-06-03 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12001885A JPS61278017A (en) 1985-06-03 1985-06-03 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS61278017A JPS61278017A (en) 1986-12-08
JPH0465449B2 true JPH0465449B2 (en) 1992-10-20

Family

ID=14775866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12001885A Granted JPS61278017A (en) 1985-06-03 1985-06-03 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS61278017A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55117739A (en) * 1979-03-03 1980-09-10 Hitachi Maxell Ltd Magnetic recording medium
JPS5630609A (en) * 1979-08-21 1981-03-27 Kosaka Kenkyusho:Kk Polar coordinate recorder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55117739A (en) * 1979-03-03 1980-09-10 Hitachi Maxell Ltd Magnetic recording medium
JPS5630609A (en) * 1979-08-21 1981-03-27 Kosaka Kenkyusho:Kk Polar coordinate recorder

Also Published As

Publication number Publication date
JPS61278017A (en) 1986-12-08

Similar Documents

Publication Publication Date Title
JP2629725B2 (en) Magnetic recording media
JPH0465449B2 (en)
JPS5930231A (en) Magnetic recording medium
JP4046397B2 (en) Magnetic tape
JPH0465446B2 (en)
JPS61278016A (en) Magnetic recording medium
JPH0465448B2 (en)
JPS6050728A (en) Magnetic recording medium
JP3627298B2 (en) Magnetic recording medium
JPH01106314A (en) Magnetic recording medium
JP3962962B2 (en) Magnetic recording medium
JPH0325720A (en) Thin metal film type magnetic recording medium
JPS61117728A (en) Magnetic recording medium
JP2625839B2 (en) Magnetic recording media
JPH01106313A (en) Magnetic recording medium
JPH07311935A (en) Magnetic recording medium
JPH0278016A (en) Magnetic recording medium
JPS63183607A (en) Magnetic recording medium
JPH0833991B2 (en) Method of manufacturing magnetic recording medium
JPS61269219A (en) Magnetic recording medium
JPH0357532B2 (en)
JPS62159330A (en) Magnetic recording medium
JPH01107315A (en) Magnetic recording medium
JPH0432020A (en) Magnetic recording medium
JPS61246915A (en) Magnetic recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees