JPS594194A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS594194A
JPS594194A JP11459682A JP11459682A JPS594194A JP S594194 A JPS594194 A JP S594194A JP 11459682 A JP11459682 A JP 11459682A JP 11459682 A JP11459682 A JP 11459682A JP S594194 A JPS594194 A JP S594194A
Authority
JP
Japan
Prior art keywords
layer
groove
type
substrate
approx
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11459682A
Other languages
Japanese (ja)
Other versions
JPH0472394B2 (en
Inventor
Takeshi Hamada
健 浜田
Masaru Wada
優 和田
Kunio Ito
国雄 伊藤
Yuichi Shimizu
裕一 清水
Takashi Sugino
隆 杉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11459682A priority Critical patent/JPS594194A/en
Publication of JPS594194A publication Critical patent/JPS594194A/en
Publication of JPH0472394B2 publication Critical patent/JPH0472394B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode
    • H01S5/2234Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2237Buried stripe structure with a non-planar active layer

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a semiconductor laser device of the structure which can obtain high output by providing a portion which varies discontinuously for the depth direction of a striped groove formed in width on the surface of a substrate to become the grown base of the layers including an active layer. CONSTITUTION:A groove which has 1.5mum of depth and 4mum of width is formed in (011) direction on the (100) surface of an N type GaAs substrate 25, and the first layer N type Ga0.65Al0.35As clad layer 26 of approx. 1mum at the flat part of the substrate at both sides of the groove, the second layer non-doped Ga0.95 Al0.05As active layer 27 of approx. 0.1mum, the third layer P type Ga0.65Al0.35As clad layer 28 of approx. 1.5mum and the fourth layer N type GaAs layer 29 of approx. 0.5mum thick are sequentially grown and formed on the surface of the substrate. The shape of the groove at this time is deformed in the shape varying discontinuously in the depth. Then, an Si3N4 film 30 is formed on the grown surface, a striped window is formed on the top of the groove of the substrate, the film is diffused, so that the end of the diffused surface reaches the third P type Ga0.65Al0.35As clad layer 28. Thereafter, the film 30 on the surface is removed, a P type side electrode metal is deposited, and alloyed, thereby forming a P type side ohmic electrode 32.

Description

【発明の詳細な説明】 本発明は半導体レーザ装置に関するものである。[Detailed description of the invention] The present invention relates to a semiconductor laser device.

近年、ビデオティスフやディジタル・オーディオ・ディ
スク等のピックアップとして、安定な基本横モード発振
音する半2す体レーザの開発が盛んに行なわれてきた。
In recent years, much effort has been made to develop semi-binary lasers that emit stable fundamental transverse mode oscillations as pickups for video discs, digital audio discs, and the like.

こオ1.全実現きせる有力な方法として基板−にに溝全
形成する方法がある。
Ko 1. An effective method for realizing the entire structure is to form all the grooves on the substrate.

第1図(a)及び(b) iJ:基板):に溝全形成し
た従来の半導体レーザの一例である。第1図(21)は
西常C8P構造と呼ばれるレーザで、基板上にエツチン
グによって底の平坦な形の溝を設け、その上に活性層を
含む二重ヘテ「1構造の各層全成長させたものである。
FIGS. 1(a) and 1(b) are an example of a conventional semiconductor laser in which all grooves are formed in iJ: substrate. Figure 1 (21) shows a laser with a Nishijyo C8P structure, in which a groove with a flat bottom is etched on the substrate, and each layer of the double layer structure, including the active layer, is grown on top of the groove. It is something.

第1図(b) f<:l、この溝の形7.Il−v字形
としたもの、ざら(て第1図(c) iJ’、 ’(t
♂rの形iU字形にしたものである。これらの図におい
て、1げn型GaAs基板、2ばn型Cra1.、XA
lXAsクラード層、3は)71゛−ブ0″、 、 A
IYAs活性層、4ばp型Ga1−XAIXAs クラ
ッド層、5 (d n !1iIj GaAs 層、6
 U !1fi−鉛拡散領域、7はp側オーミック電極
11」金属膜である。
Figure 1(b) f<:l, shape of this groove7. Figure 1 (c) iJ', '(t
It is shaped like an iU-shape. In these figures, 1 is an n-type GaAs substrate, 2 is an n-type Cra1. ,XA
lXAs cladding layer, 3)71゛-b0'', , A
IYAs active layer, 4bp type Ga1-XAIXAs cladding layer, 5 (d n !1iIj GaAs layer, 6
U! 1fi - a lead diffusion region; 7 a p-side ohmic electrode 11'' metal film;

第1図(a)、 (b)および(Q)の構造の半導体レ
ーザにおいてt」゛、第1層クランド層2の溝の外側で
薄く、溝部で厚くなるように形成し、活成層2内の光が
基板へ漏J1.出すことによる吸収損失の差に、1:っ
て、活性層2に屈折率分布が設けられている。この結果
、発振横モードに1゛溝部直JHの活性層2内に閉じ込
めC)れる。
In the semiconductor lasers having the structures shown in FIGS. 1(a), (b), and (Q), the first ground layer 2 is formed to be thinner on the outside of the groove and thicker on the groove part, and inside the active layer 2. light leaks to the board J1. The active layer 2 is provided with a refractive index distribution based on the difference in absorption loss due to the absorption loss. As a result, the oscillation transverse mode is confined C) within the active layer 2 of the 1° trench JH.

ところで最j![VCなって尤ディスクファイル等の1
!−き込み月1として、基本横モード発振に加えて旨出
力の゛し、17体レーザが求められるようになった。
By the way, the best! [1 of VC disk files etc.
! - For the first month of input, a 17-body laser was required due to its fundamental transverse mode oscillation and high output power.

′?flL伺き)、(:仮の゛IL心体レーザで高出力
を実現するに&:]:、J114扱への吸収]11失全
低減することと、単位断面債当りのバ1j7−密度を・
小さくするためにmと垂直な面内での尤の分布7(でき
るだけ広く一4″ることか必甥である。ところか、第1
1゛祖a)の(IIl造の半導体レーザでに第3層クラ
ッド・層2にI’、 ff/fのタト側平坦gl(で浩
く、溝の両側で側面イ・1近で次第に厚くなり、771
14層の溝中火9猪の上の)<13分で亀が充分閉じ1
/\めらn/!:)4′!I′度にノν?くシであるた
めに、溝の両側((n f・j近のクラッド層のテーバ
ーバ(5分では基板への尤の吸収が存在する。、そのた
め、溝ゲ深くする1・1的でテーパ一部ケ広くするとテ
ーパ一部での4t」失が大さくなり、その結果外部微分
量子効率が低下するっ、一方、テーパ一部が狭くなるよ
うにff/fを形成すると溝の深きが浅くなり、溝中央
部でのクラッド層の厚さを充分と71なくなる。第11
71 (b)に示すV溝路イJノーににa4成する半導
体レーザの場合、niJ irシの吸収損失が一層顕著
になると考えらn7る。
′? flL interview), (: Provisional ``Achieving high output with an IL centrifugal laser &:]:, Absorption to J114 handling] 11 Reduction of failure and bar density per unit cross-section bond.・
In order to reduce the likelihood distribution in the plane perpendicular to m, it is necessary to make it as wide as possible.
In the semiconductor laser of 1゛A), the third layer cladding layer 2 is I', ff/f is thick on the vertical side flat GL (and thick on both sides of the groove, and gradually thicker near the side surface 1). Nari, 771
14 layers of fur on medium heat 9)<13 minutes until the turtle is fully closed 1
/\mera n/! :) 4'! I' degree no ν? Because it is a comb, both sides of the groove ((n) There is significant absorption into the substrate in the cladding layer near f.j. If the taper is widened, the 4t'' loss in a part of the taper increases, and as a result, the external differential quantum efficiency decreases.On the other hand, if the ff/f is formed so that the taper part becomes narrow, the depth of the groove becomes shallow. , if the thickness of the cladding layer at the center of the groove is sufficient, 71 will disappear.
In the case of a semiconductor laser having a V-groove path shown in FIG.

不発明Q−1こn、らの欠点を改善し、高出力を実現し
イ!Iる(1?)漬の半導体レーザ装置孕提供するもの
である。
Uninvented Q-1 We have improved these shortcomings and achieved high output! The present invention provides a semiconductor laser device that is immersed in water (1?).

以1・−図面とともに不発明の実施例における!1″:
導体レーザ装置6を説、明する。
1.--In the embodiments of the non-invention along with the drawings! 1″:
The conductor laser device 6 will be described and explained.

n gljノ1(、l&25.11’(Tip2(’X
I(aHC示−r J: ウfz深fiノ不連続に変化
するf’f/iヶ設ける。ぞの基414表面に液相エビ
タギ/ヤルθ、に、Vす、第1層n型クラッド層26、
第2層ツノドープ活+11層27、第1層n型クラッド
層28、第4層n型電流制限層29奮j111続成J(
さ、仕る(第2図(b))。次に成長表面よりp型不純
物金)IL(l)ri/I′f’jfl上にストライブ
状に選択拡散し、拡散フロントが第3層クラッド層28
 VC達する。1:うにする(第2図(C))。選択拡
散のために表面にイ・jけた拡散19月1−膜30孕除
去した後、p側オーεツク市伜32ケ形成する。又、基
(Ji側にn側オーεツク電f&< 33を形成し、第
2図(d)に示すように作製する。
n gljノ1(,l&25.11'(Tip2('X
I (aHC-r J: f'f/i which changes discontinuously from fz depth fi is provided. On the surface of the base 414, liquid phase Eitagi/yaru θ, ni, Vsu, first layer n-type cladding is provided. layer 26,
2nd layer horn-doped active +11 layer 27, 1st layer n-type cladding layer 28, 4th layer n-type current limiting layer 29
Serve (Figure 2 (b)). Next, the p-type impurity gold (gold) IL(l)ri/I'f'jfl is selectively diffused in stripes from the growth surface, and the diffusion front reaches the third cladding layer 28.
Reach VC. 1: Sea urchin (Figure 2 (C)). After removing 30 films on the surface for selective diffusion, 32 p-side ovens are formed. Further, an n-side open circuit f&<33 is formed on the Ji side, and the fabrication is performed as shown in FIG. 2(d).

この構造の半導体レーザ装置σ、第1図f&)及び(b
)のイ1η造のイ、のと比べて、活性層に対して垂直方
向にもゝIL行力打力/(も)Y−分布が広くとれる上
に、溝部両側のテーパ一部の長さ葡短くできて、クラッ
ド層26が広い範囲にわたって厚くなり、基板への尤の
吸収全最小1ニ1¥におさ對−ることかできる。さらに
、第1図(Q)のような構造に比べて溝の縁にテーパー
昔[3を設けたことにより、溝の内11川と夕)イ1用
との屈折率の変化をなだらかにし、そfLにより、基本
横モートで発振させることのできる溝幅な・広くとるこ
とかでき、一段と高出力化ケニ」かることができるとい
うギj徴を持っでいる。
Semiconductor laser device σ of this structure, Fig. 1f&) and (b
) has a wider distribution of IL running force/(Y) in the direction perpendicular to the active layer, and also has a longer tapered part on both sides of the groove. By making the cladding layer 26 shorter, the cladding layer 26 can be made thicker over a wider area, and the total absorption into the substrate can be reduced to a minimum of 1. Furthermore, compared to the structure shown in Fig. 1 (Q), by providing a taper [3] at the edge of the groove, the change in refractive index between the grooves (11 and 1) is made gentler. The fL allows the width of the groove that can be oscillated by the basic transverse motor to be widened, and has the advantage of being able to achieve even higher output.

以−FMCGaAs −(’5at−xAlzAs系に
」:り構成した本発明の半導体レーザ装置6の実施例を
示す。
Hereinafter, an embodiment of a semiconductor laser device 6 of the present invention will be shown, which is constructed from FMCGaAs ('5at-xAlzAs system).

n 型GaAs)に板26の(100)而」−にノ11
〉方向に深さ1゜5/J、幅4μm溝全形成し、第3図
のような形状にする。溝を設けた基板表向上に液相エピ
タキンヤル法VCJ: ッ(第1)@n型Gao、65
A1 o、55Asクラット層26を溝部両側の基板平
坦部で約1/ノm、第2層ツノl−−ゾGao、95A
1cosAs fjQイくi一層2アを約0.1μm、
第3層p +(17Gat+、6sA1o、55Asク
ラッド層28を約1.5μm、第4層n Qlj Ga
As層29を約0.571mの厚さに連続1jlE長を
行ない第2図(b)のようVこ各層を形成する。このと
き溝の形状はメルトバックにより第21ン1(a)に示
すように深さが不連続に変化する形に変形する。そして
溝上部の幅は約γμm となるようl’l−る。次vc
 +Jvi; k f)而にSi 5N41d7307
゜イ・骨す、基板溝部−lx部にストライブ状の窓を形
成し、そこへ拡散を行ない、拡散面の先端が第3屠p型
Ga c65A1o、 35ASクラッド層28に達す
る」:うにする(第2図(C))。その後、表面の5i
3Na膜30全除去し、p側電極用金属を蒸着し、合金
処理全行なってI) fullオーミック電極32ケ形
成する。基板側VCはn 1+111電等用金属を蒸着
し、合金処理を行なってn明オーミック電極33ケ形成
−・rる(第2図(d))。ζ、のようにして作成した
半導体ウェハーをへき開し、S1ブロツクにマウントシ
て完成する。
(100) of plate 26 on n-type GaAs) - Ni no 11
Grooves with a depth of 1°5/J and a width of 4 μm are completely formed in the > direction to form a shape as shown in Fig. 3. Liquid phase epitaxy method VCJ on the substrate surface with grooves: (1st) @ n-type Gao, 65
A1 o, 55As The crat layer 26 is approximately 1/nm thick on the flat parts of the substrate on both sides of the groove, and the second layer horn is 95A.
1cosAs fjQ Ikui 2A approximately 0.1μm,
The third layer p + (17Gat+, 6sA1o, 55As cladding layer 28 is about 1.5 μm thick, the fourth layer n Qlj Ga
The As layer 29 is formed continuously to a thickness of about 0.571 m and a length of 1 jlE to form V layers as shown in FIG. 2(b). At this time, the shape of the groove is deformed by meltback into a shape in which the depth changes discontinuously as shown in the 21st line 1(a). The width of the upper part of the groove is set to about γμm. next vc
+Jvi; k f) And Si 5N41d7307
2. Form a stripe-shaped window in the substrate groove lx part, perform diffusion there, and the tip of the diffusion surface will reach the third p-type Ga c65A1o, 35AS cladding layer 28. (Figure 2 (C)). After that, 5i on the surface
3Na film 30 is completely removed, p-side electrode metal is vapor deposited, and alloying is performed to form 32 full ohmic electrodes. On the substrate side VC, an n1+111 electrical metal is deposited and alloyed to form 33 n-light ohmic electrodes (FIG. 2(d)). The semiconductor wafer prepared as shown in ζ is cleaved and mounted on the S1 block to complete the process.

この(’#f造の゛l″ii?7体レーザ装置により、
基本横モード発振で光出力60mWという高出力を実現
させることができた。
With this ('#f-built 'l'ii?7 body laser device,
We were able to achieve a high optical output of 60 mW with fundamental transverse mode oscillation.

上記の実施例でけGaAs−GaAlAs系の半導体レ
ーザ装置i’Vf取りあけたが、InP −InGaA
sP等他の混晶糸のレーザでも本発明に、全く同様の効
果が期待できる。廿た溝の形状も、実施例でけメルトバ
ノクケ刊111シて溝全傾斜させたものを取りあげたが
、第4図(IL)の3につに溝の深さが階段状に変化す
zンもの、あ2)いt−1’、第4図(b)のように等
方的な工ノナ/ダ%r月1いて?f’iを彫b!21.
た場合も1i1様の効1)シ忙もたらすものである。
In the above embodiment, the GaAs-GaAlAs semiconductor laser device i'Vf was opened, but the InP-InGaA
Exactly the same effect can be expected in the present invention with lasers using other mixed crystal fibers such as sP. As for the shape of the wide groove, in the example, we took up a case in which the groove was completely sloped, but in Figure 4 (IL) 3, the depth of the groove changes in a step-like manner. 2) Is it t-1', isotropic as shown in Figure 4(b)? Carve f'i b! 21.
1i1-like effect 1) also brings about busyness.

以1−説明した。1:うに本発明のP ノ!u f4−
レーリ゛装置に1、基不横モート全安定V′C発撮さぜ
ることが−CきるとともVこ、冒出力化全実現でき;I
)イ、ので、上YにのオIIJIIイ曲1的が1冒】い
1-Explained. 1: Sea urchin P of the present invention! u f4-
1. In the Rayleigh device, it is possible to completely stabilize V'C in the baseless transverse mode.
)I, so the song 1 of the above Y is blasphemous.

【図面の簡単な説明】[Brief explanation of the drawing]

弟1図(a)、 (b)、 (Q)紹そ几そ几従宋の満
−伺き1愉)゛一体レーザ装置の断面図、第2図(a)
〜(d)(r、r木光明の一実施例vcb・ける半導体
レーザ装置の製;”;1、上イ“1″にお−ける断面図
、第31ン1、第4図(a)、(t)) l’、’L:
 1”i’i’;明の半導体レーザ装置に係る基板の形
状を・示す断面図である。 1 、、、− n 型GaAS基扱、2−− n型Cr
a 、 −、Al、 Asクラッド層、3・・・・ノン
ドープGa、、−YAl、 A瞬占1/1一層、4−−
 p型Ga、 、AlXAs クラ71層、6− =−
n 11;llGaAs層、6・・−・・用ジ鉛拡散領
域、Y・・・p 11111オーミツク電(−シス川金
属膜、8 ・・・n 1llIオーミツク電(駅用金属
膜、25−・・・n型GaAs基板、26・・・・・n
型eal XAIXASクラッド層、27 =−ノン(
・−ゾGu、、YAIYAs  /占1’l  l+”
i 、  2 8−−p)eすCra、、Al、Asク
ラCIl・層、29・・−・n型GaAs 、 30・
・・・絶縁膜、31 ・ 曲鉛拡11グiiτ支域、3
2−・・・p側オーミック市伜j月金1.旧1σ、33
−・・・n側オーイック電]4Zj月令属膜1、 代理人の氏名 フ1′!理I−中 尾 敏 男 はが1
名第1図 第 2 図 第3図 (p) (b)
Figure 1 (a), (b), (Q) Introduction to the Continuing Song Dynasty (1) ゛Cross-sectional view of the integrated laser device, Figure 2 (a)
~(d) (r, r An embodiment of Mitsuaki Ki's vcb/manufacturing of a semiconductor laser device; 1. Cross-sectional view at "1" on top A, No. 31, No. 1, FIG. 4(a) , (t)) l','L:
1"i'i'; is a sectional view showing the shape of a substrate related to a bright semiconductor laser device. 1, ... - n-type GaAS based, 2-- n-type Cr
a, -, Al, As cladding layer, 3...non-doped Ga, -YAl, A 1/1 layer, 4--
p-type Ga, , AlXAs layer 71, 6- =-
n 11; llGaAs layer, 6... dilead diffusion region, Y...p 11111 ohmic electrode (-Sis River metal film, 8...n 1llI ohmic electrode (metal film for station, 25-... ...n-type GaAs substrate, 26...n
type eal XAIXAS cladding layer, 27 =-non(
・-Zo Gu,,YAIYAs/Uranus 1'l l+”
i, 2 8--p) eS Cra, , Al, As Cra CIl layer, 29... n-type GaAs, 30.
... Insulating film, 31 ・ Curved lead expansion 11g iiτ branch area, 3
2-...p side ohmic city \ j mon fri 1. Old 1σ, 33
-... n side Ohic Den] 4Zj month age genus membrane 1, agent's name fu 1'! Science I-Toshi Nakao Male Haga 1
Figure 1 Figure 2 Figure 3 (p) (b)

Claims (1)

【特許請求の範囲】[Claims] 活性層を含む各層の成長母体となる基板の表面に形成さ
れたストライプ状溝の溝幅が、溝の深さ方向に対して不
連続に変化する部分治−有する半導体レーザ装置。
A semiconductor laser device having a partial cure in which the groove width of a striped groove formed on the surface of a substrate, which is a growth base for each layer including an active layer, changes discontinuously in the depth direction of the groove.
JP11459682A 1982-06-30 1982-06-30 Semiconductor laser device Granted JPS594194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11459682A JPS594194A (en) 1982-06-30 1982-06-30 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11459682A JPS594194A (en) 1982-06-30 1982-06-30 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPS594194A true JPS594194A (en) 1984-01-10
JPH0472394B2 JPH0472394B2 (en) 1992-11-18

Family

ID=14641813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11459682A Granted JPS594194A (en) 1982-06-30 1982-06-30 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS594194A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646593A (en) * 1979-09-12 1981-04-27 Xerox Corp Heteroostructure semiconductor laser
JPS56138977A (en) * 1980-03-31 1981-10-29 Sharp Corp Semiconductor laser element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646593A (en) * 1979-09-12 1981-04-27 Xerox Corp Heteroostructure semiconductor laser
JPS56138977A (en) * 1980-03-31 1981-10-29 Sharp Corp Semiconductor laser element

Also Published As

Publication number Publication date
JPH0472394B2 (en) 1992-11-18

Similar Documents

Publication Publication Date Title
US4946802A (en) Semiconductor laser device fabricating method
JPS594194A (en) Semiconductor laser device
JPS6163031A (en) Method of producing semiconductor device
JP3303631B2 (en) Semiconductor quantum well structure
JPS5940317B2 (en) Rib guide stripe type semiconductor multilayer thin film optical waveguide and its manufacturing method
JPS61285781A (en) Semiconductor laser
FR2587852A1 (en) PROCESS FOR PRODUCING A BLEED RIBBON SEMICONDUCTOR LASER WITH OR WITHOUT DIFFRACTION NETWORK AND LASER OBTAINED BY THIS PROCESS
JP2740165B2 (en) Semiconductor laser
JPS5834988A (en) Manufacture of semiconductor laser
JPS5882585A (en) Manufacture of semiconductor laser
JPS596588A (en) Semiconductor laser
JPS63169093A (en) Semiconductor laser
JPS60149184A (en) Manufacture of semiconductor laser element
JPS60107881A (en) Manufacture of semiconductor laser
JPS5832482A (en) Semiconductor laser
JPS59127889A (en) Semiconductor laser
JPS59117286A (en) Manufacture of semiconductor laser
JPS61236187A (en) Semiconductor laser device and its manufacture
JPS5943839B2 (en) semiconductor laser
JPS59222984A (en) Semiconductor laser device
JPS60189986A (en) Semiconductor laser
JPS5969984A (en) Semiconductor laser device and manufacture thereof
JPS63287079A (en) Manufacture of semiconductor laser
JPH04111382A (en) Manufacture of semiconductor laser device
JPS5858783A (en) Semiconductor laser