JPS5940849B2 - Cation exchange membrane - Google Patents

Cation exchange membrane

Info

Publication number
JPS5940849B2
JPS5940849B2 JP57153376A JP15337682A JPS5940849B2 JP S5940849 B2 JPS5940849 B2 JP S5940849B2 JP 57153376 A JP57153376 A JP 57153376A JP 15337682 A JP15337682 A JP 15337682A JP S5940849 B2 JPS5940849 B2 JP S5940849B2
Authority
JP
Japan
Prior art keywords
ion exchange
polymer
exchange membrane
cation exchange
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57153376A
Other languages
Japanese (ja)
Other versions
JPS5859225A (en
Inventor
研介 藻谷
俊勝 佐田
正勝 西村
昭彦 中原
信行 倉元
順一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP57153376A priority Critical patent/JPS5940849B2/en
Publication of JPS5859225A publication Critical patent/JPS5859225A/en
Publication of JPS5940849B2 publication Critical patent/JPS5940849B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】 本発明は、絶縁性物質で被覆した熱伝導性の基材を芯材
として用いたイオン交換膜を提供する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an ion exchange membrane using a thermally conductive base material coated with an insulating material as a core material.

従来、イオン交換膜法食塩電解については、既に幾つか
の方法が提案されている。例えば、弗素系イオン交換膜
を用いる二室式電解法やイオン交換膜の他に保護隔膜を
併用する三室式電解法は、いずれもその基本的態様とも
言うべく、各々について種々のモデイフイケーシヨンが
提出されている。しかし、それらに共通して言える欠陥
は、低電流効率であるか、さもなければ膜の耐久性に問
題がある。もともと電流効率が低い場合はとも角そうで
ない場合は、通電当初は良好な性能を示す膜でも、次第
に電気抵抗、電流効率等の性能面及び機械的強度等の物
性面で劣化が認められるようになる。この様な劣化の原
因としては種々考えられるが、電流密度を上昇させた場
合に劣化の進行が著しいことから、おそらくは通電時の
膜内部での発熱が一つの大きな原因であろうと推察され
る。
Conventionally, several methods have already been proposed for ion exchange membrane salt electrolysis. For example, the two-chamber electrolysis method using a fluorine-based ion exchange membrane and the three-chamber electrolysis method using a protective diaphragm in addition to the ion exchange membrane are both basic aspects, but various modifications can be made to each. has been submitted. However, their common drawback is low current efficiency or otherwise poor membrane durability. In some cases, the current efficiency may be low to begin with, but in other cases, even if the film exhibits good performance at the beginning of current application, deterioration may gradually be observed in terms of performance such as electrical resistance and current efficiency, and physical properties such as mechanical strength. Become. There are various possible causes of such deterioration, but since the deterioration progresses markedly when the current density is increased, it is inferred that one major cause is probably heat generation within the membrane during energization.

即ち、この様な発熱が、電流分布や膜組成の不均一さ等
ともに関係して、膜内部で局部的に可成りの温度上昇を
起し、そのために膜が劣化するのであろう。本発明者等
は、上記の点に留意し、種々検討した結果、イオン交換
膜の芯材即ちパッキングとして絶縁性物質で被覆された
熱伝導性の基材即ち熱伝導性の材質から成るものを用い
ることにより、叙上の問題の解決が可能であることを見
出した。即ち本発明は絶縁性物質で被覆された熱伝導性
の基材を芯材として用いた陽イオン交換膜である。本発
明における芯材に用いる基材としては、熱伝導性のもの
であれば特に制限されないが、一般には、熱伝導率がO
、0Olcal/ se(・・−・℃以上好ましくはO
、005calsec−CffL・゜C以上であるもの
が良好に用いられる。具体的には、金属或は炭素質の網
状物が特に好適に用いられる。以下、芯材と1、て網状
物を代表させて説明する。金属網状物としては、構成金
属が電解条件において極度に侵かされるものでなければ
、特に制限はない。
That is, such heat generation, in conjunction with the current distribution, non-uniformity of the film composition, etc., causes a considerable local temperature rise inside the film, which causes the film to deteriorate. With the above points in mind, the inventors of the present invention have conducted various studies, and as a result, the core material, or packing, of an ion exchange membrane has been made of a thermally conductive base material, that is, a thermally conductive material, coated with an insulating material. We have found that the above problem can be solved by using this method. That is, the present invention is a cation exchange membrane using a thermally conductive base material coated with an insulating material as a core material. The base material used for the core material in the present invention is not particularly limited as long as it is thermally conductive, but generally, the base material has a thermal conductivity of O
, 0 Olcal/se (...--℃ or higher, preferably O
, 005 calsec-CffL·°C or more is preferably used. Specifically, a metal or carbonaceous mesh material is particularly preferably used. Hereinafter, a core material and a net-like material will be representatively explained. There are no particular limitations on the metal network as long as the constituent metals are not severely eroded under electrolytic conditions.

例えば、Ti、Zr、Nb、Ta、Mo、W、Fe、C
o、Ni、Cu、Ag、Au、Ru、Rh、Pd、Co
、Ir、Pを、V、Cに、Mn等の金属またはそれらの
合金が好適に使用できる。又炭素質網状物としては、各
種炭素繊維で構成される織布、マット類等の他、黒鉛フ
ィルムの如きものも使用できる。これらの網状物の形状
には、特に制限はないが、極端に厚いものは、電槽を徒
らに大きくする他、膜自体の電気抵抗を増大させる意味
で好ましくない。
For example, Ti, Zr, Nb, Ta, Mo, W, Fe, C
o, Ni, Cu, Ag, Au, Ru, Rh, Pd, Co
, Ir, P, V, and C, metals such as Mn or alloys thereof can be suitably used. Further, as the carbonaceous net-like material, in addition to woven fabrics and mats made of various carbon fibers, materials such as graphite film can also be used. There are no particular restrictions on the shape of these nets, but extremely thick ones are not preferred because they not only make the battery case unnecessarily large but also increase the electrical resistance of the membrane itself.

一般に厚さ5詣以下、好ましくは2mm以下で0.05
朋以上のものが好適に用いられる。又、網目の形状につ
いても制限はなく、種々の織り方のものが好適に用いら
れる他、多孔板やスポンジ状のもの、不織布も使用して
何等遜色がない。即ち、ここに言う網状物とは、網以外
に多孔板やスポンジ状物をも含めた多孔板の総称である
。更に網状物の目(空隙)の大きさは、一般にはイオン
の通過を妨げない程度以上であれば特に制限はないが、
極端に目開きの大きいものでは効果が薄れるので通常は
5mmの径または角以下、好ましくは1m7!Lの径ま
たは角以下のものが好適に使用される。
Generally, the thickness is 5 mm or less, preferably 2 mm or less and 0.05
A person higher than me is preferably used. Further, there is no restriction on the shape of the mesh, and in addition to various weaving methods, perforated plates, sponge-like materials, and non-woven fabrics may also be used without any inferiority. That is, the net-like material referred to herein is a general term for perforated plates including perforated plates and sponge-like materials in addition to nets. Furthermore, the size of the mesh (voids) is generally not limited as long as it does not impede the passage of ions, but
If the opening is extremely large, the effect will be diminished, so the diameter or angle is usually less than 5mm, preferably 1m7! A diameter or angle smaller than L is preferably used.

更に、興昧深いことは、本発明のイオン交換膜の芯材に
、該イオン交換膜のイオン交換基が有する電荷と同一符
号の電位を、該イオン交換膜の外部から荷して電解を行
うことにより得られる。
Furthermore, what is interesting is that the core material of the ion exchange membrane of the present invention is charged with a potential having the same sign as the charge possessed by the ion exchange groups of the ion exchange membrane from outside the ion exchange membrane to perform electrolysis. It can be obtained by

即ち、陽イオン交換膜の場合は、一般にそのイオン交換
基は負の電荷を有するから、それと同一符号の負の電位
を、該陽イオン交換膜の芯材に、陽イオン交換膜の外部
から荷して例えば電解を行う。本発明の陽イオン交換膜
を製造する際に芯材として用いる熱伝導性従つてまた電
気伝導性を有する基材に、イオン交換性を有する或はイ
オン交換性に変換しうる高分子物質を付着せしめるとき
に、芯材となる基材と該高分子物質の間に絶縁囲物質を
介する必要がある。例えば予め芯材となる基材を電気伝
導性、イオン電導性を有しない物質で被覆して後、イオ
ン交換性を有する或は容易にイオン交換性を賦与しうる
物質を付着せしめて後、必要によりイオン交換基の導入
をしてもよい。このような場合には、熱電導性、電気伝
導性の芯材に賦与する電位は特に限定的ではない。即ち
、数Vから数100Vの電位を賦与してもよい。このと
きには例えば陽イオン交換膜は負の静電位を帯び即ち、
陽イオン交換膜の細孔内の界面は負の電位を帯びて、陽
イオンを選択的に透過し、陰イオンの透過を阻止する機
能が促進される。ところで、このようにイオン交換膜の
芯材に賦与される電位は、一定の電位を持続して賦与し
てもよいが、また間歇的に賦与してもよい。
That is, in the case of a cation exchange membrane, since the ion exchange group generally has a negative charge, a negative potential of the same sign as the ion exchange group is applied to the core material of the cation exchange membrane from outside the cation exchange membrane. For example, electrolysis is performed. A polymeric substance that has ion exchange properties or can be converted to ion exchange properties is attached to a thermally conductive and electrically conductive base material used as a core material when producing the cation exchange membrane of the present invention. When this is done, it is necessary to interpose an insulating material between the base material serving as the core material and the polymer material. For example, after coating the base material that will become the core material in advance with a substance that does not have electrical conductivity or ion conductivity, and then attaching a substance that has ion exchange properties or can easily impart ion exchange properties, the necessary An ion exchange group may be introduced by. In such a case, the potential applied to the thermally conductive and electrically conductive core material is not particularly limited. That is, a potential of several volts to several 100 volts may be applied. At this time, for example, the cation exchange membrane has a negative electrostatic potential, that is,
The interface within the pores of the cation exchange membrane is charged with a negative potential, promoting the function of selectively permeating cations and blocking the permeation of anions. Incidentally, the potential applied to the core material of the ion exchange membrane in this manner may be applied continuously at a constant level, or may be applied intermittently.

或は交流を整流して得た脈流波であつてもよい。このと
き脈流の週期は特に限定的ではない。或は通常電子工業
において用いられる鋸波型の電位を適用してもよい。又
、熱伝導性、電気伝導性をもつ芯材の多くは、機械的強
度に優れたものが多いので、所謂芯材としての補強面で
の働きにおいても他に協色がない。
Alternatively, it may be a pulsating wave obtained by rectifying alternating current. At this time, the period of the pulsating flow is not particularly limited. Alternatively, a sawtooth type potential commonly used in the electronics industry may be applied. In addition, many of the core materials having thermal conductivity and electrical conductivity have excellent mechanical strength, so they are not compatible with other materials in terms of reinforcing function as a so-called core material.

更に、芯材の形状を適当に保つことにより、複雑な形状
の膜を造ることも可能である。即ち、芯材の形状を適宜
選択し、それにイオン交換樹脂分を被覆させればよい。
例えば、必要な曲面に適合する金型を造り、その間に芯
材を芯として挟んだ士単量体混合物を流し込んで重合成
型するとか、或いは熱可塑性の樹脂分を芯材と共に加熱
加圧成型する等、または平板状のものを作り、これを製
膜後任意の形状に変形する方法等種々の方式により望み
の形状のイオン交換膜を造ることができる。本発明に使
用するイオン交換樹脂膜の種類は、特に制限なく場合に
応じて適宜使い分けることが出来る。また、金属或は炭
素質の網状物を芯材として膜を製造する方法は、何ら制
限されず、通常の技術者が想到し得る任意の方法が採用
される。以下、熱伝導性の基材を芯材として用いた陽イ
オン交換膜の製造法について若干の例を示す。2)不均
一系の陽イオン交換膜の場合には、重合系、縮合系の陽
イオン交換樹脂或は無機のイオン交換体の微粉末を適当
な熱可塑性高分子と均一に混合し、これに絶縁性物質で
被覆した網状物を埋込んで膜状に加熱成型すればよい。
Furthermore, by maintaining the shape of the core material appropriately, it is also possible to create membranes with complex shapes. That is, the shape of the core material may be appropriately selected and the ion exchange resin may be coated on it.
For example, a mold that fits the required curved surface is made, and a monomer mixture with a core material sandwiched between them is poured into the mold for polymerization, or a thermoplastic resin is molded under heat and pressure together with the core material. An ion exchange membrane of a desired shape can be produced by various methods such as a method of making a flat plate and transforming it into an arbitrary shape after film formation. The type of ion exchange resin membrane used in the present invention is not particularly limited and can be appropriately selected according to the situation. Further, the method of manufacturing a membrane using a metal or carbonaceous mesh material as a core material is not limited in any way, and any method that can be conceived by a normal engineer may be adopted. Some examples of methods for producing cation exchange membranes using a thermally conductive base material as a core material will be shown below. 2) In the case of a heterogeneous cation exchange membrane, a fine powder of a polymerized or condensed cation exchange resin or an inorganic ion exchanger is uniformly mixed with an appropriate thermoplastic polymer, and then What is necessary is to embed a net-like material coated with an insulating material and heat mold it into a film shape.

また上記微粉状イオン交換樹脂を線状高分子を溶解した
粘稠なポリマー溶夜中に均一に分散し、これを塗布、浸
漬、噴霧等によつて該網状物を被覆し溶媒を飛散させて
膜状としてもよい。或は無機のイオン交換体等とセメン
トを混和したものの中に該網状物を埋込んで膜状として
もよい。このように、従来公知の不均一系イオン交換膜
製造の際の技術を適用して該網状物入りイオン交換膜を
製造することができる。2)同様に、均一系の陽イオン
交換膜についても従来一般に均一系イオン交換膜製造の
ために提案されている各種の技術を適用して絶縁性物質
で被覆された網状物入りイオン交換膜をつくることがで
きる。
In addition, the above-mentioned fine powder ion exchange resin is uniformly dispersed in a viscous polymer solution in which a linear polymer is dissolved, and this is coated on the network by coating, dipping, spraying, etc., and the solvent is scattered to form a film. It may also be in the form of Alternatively, the mesh may be embedded in a mixture of an inorganic ion exchanger or the like and cement to form a membrane. In this way, the network-containing ion exchange membrane can be manufactured by applying conventionally known techniques for manufacturing heterogeneous ion exchange membranes. 2) Similarly, for homogeneous cation exchange membranes, various techniques conventionally proposed for the production of homogeneous ion exchange membranes are applied to create ion exchange membranes containing a mesh coated with an insulating material. be able to.

次に、いくつかの態様をあげると、 (a)まず、ビニル、アリル等の重合性官能基を有する
単量体を用い塗布・浸漬・噴霧等の手段によつて、直接
絶縁性物質で被覆された網状物を被覆し、これを加熱重
合する態様があげられる。
Next, to list some embodiments, (a) First, a monomer having a polymerizable functional group such as vinyl or allyl is used to directly coat with an insulating material by means such as coating, dipping, or spraying. An example is an embodiment in which the net-like material is coated and then heated and polymerized.

この場合、重合原料夜の垂れを防ぐ必要がある場合は、
網状物の形状に応じ重合原料の粘度を調節したり或いは
、セロフアン等の適当なフイルム状のもので被覆すれば
よい。ここで用いられる液状の粘稠な塗布液は、含弗素
系ビニル、アリールモノマーを一種以上用いたものであ
り、粘度を上げるために適宜可溶性耐酸化性高分子微粉
状分散性の耐酸化性の高分子を存在させてもよい。この
適当に混合した粘稠なものを用い塗布・浸漬・噴霧等の
手段によつて直接該網状物を被覆し、これを加圧或は常
圧下に加熱重合する他、必要に応じスルホン化、加水分
解その他公知の手段により陽イオン交換基の導入、陽イ
オン交換基への変換を行えばよい。
In this case, if it is necessary to prevent the polymerization raw material from dripping,
The viscosity of the polymerization raw material may be adjusted depending on the shape of the net, or it may be coated with a suitable film such as cellophane. The liquid viscous coating solution used here uses one or more types of fluorine-containing vinyl and aryl monomers, and in order to increase the viscosity, it is appropriately coated with a soluble oxidation-resistant polymer finely dispersed oxidation-resistant polymer. A polymer may also be present. This properly mixed viscous material is directly coated on the network by coating, dipping, spraying, etc., and this is heated and polymerized under pressure or normal pressure, and if necessary, sulfonation, Introduction of a cation exchange group and conversion into a cation exchange group may be carried out by hydrolysis or other known means.

重合は、不溶な高分子構造物が構成される シならば、
ラジカル的にも、イオン重合的にも、重合させてよく、
放射線、X線、光のエネルギー等を用いてもよい。
Polymerization results in the formation of an insoluble polymer structure.
It can be polymerized both radically and ionicly,
Radiation, X-rays, optical energy, etc. may also be used.

(b)次に、線状高分子電解質を用いる方法があげられ
る。
(b) Next, there is a method using a linear polymer electrolyte.

即ち、含弗素系陰イオン性高分子電解質を適当な溶媒に
溶解し、これを用い塗布・浸漬・噴霧等の手段によつて
、絶縁性物質で被覆された網状物を被覆し、然る後、溶
媒を飛散させ、残つた膜状物が使用する条件下で、不溶
性であればそのまま、可溶性ならば、適当な手段、例え
ば放射線照射、X線照射、紫外線等によつて、不溶化す
ることができる。これらは若干の例であり、また線状高
分子電解質或は線状高分子電解質に加水分解等の簡単な
手段で線状高分子電解質に変換できる化合物で水に或い
は使用する塩・酸性・塩基性水溶夜に不溶な高分子電解
質で熱可塑性のあるものを加熱して前記網状物を被覆さ
せ、必要に応じイオン交換基の導入をする方法も有効で
ある。
That is, a fluorine-containing anionic polymer electrolyte is dissolved in a suitable solvent, and a net-like material coated with an insulating material is coated with the solution by means such as coating, dipping, or spraying, and then If the solvent is scattered and the remaining film is used, if it is insoluble, it can be left as it is; if it is soluble, it can be made insolubilized by appropriate means such as radiation irradiation, X-ray irradiation, ultraviolet rays, etc. can. These are just a few examples, and salts, acids, and bases used in water or with linear polyelectrolytes or compounds that can be converted into linear polyelectrolytes by simple means such as hydrolysis. It is also effective to heat a thermoplastic, water-insoluble polymer electrolyte to coat the network and, if necessary, introduce ion exchange groups.

この種の線状高分子としては次で表わされるものが特に
有効である。(但しmは正の整数、1,nはO又は正の
整数、Xはハロゲン又は−0H基を表す)(c)また不
活性な高分子化合物を用いる方法も存する。
As this type of linear polymer, those represented by the following are particularly effective. (However, m is a positive integer, 1 and n are O or a positive integer, and X represents a halogen or -OH group) (c) There is also a method using an inert polymer compound.

即ち、ポリ弗化ビニル、ポリ弗化ビ[ャ潟fン、ポリ3弗
化一塩化エチレン、ポリ4弗化エチレン等々の熱可塑性
高分子を加熱成形によつて絶縁性物質で被覆された網状
物上に付着させて薄い膜状物を形成させ、これに何らか
の方法でイオン交換基を導入するものである。高分子を
付着させる方法は特に制限されず例えば上記高分子化合
物の一種以上を適当な溶媒に溶解或いは分散し、これの
中に上記網状物を浸漬し、溶媒を飛散させる方法、上記
網状物にφ溶液・分散液を塗布・噴霧して溶媒を飛散さ
せる方法、或は上記高分子物の微粉状のものを静電的に
荷電させ、他方網状物も反対電荷に荷電させて、微粉状
のものを静電的に付着させてこれを加熱し微粉状の高分
子を融着させて膜状物とする方法、上記高分子を高温で
且つ熱分解しない温度で融解してこれに例えば前記網状
物を浸漬付着させる方法、上記高分子を前記網状物を芯
にして成形する方法等が有効である。これらの方法は用
いる高分子化合物の種類分子量等の高分子物の物肚値と
前記網状物の材質・形状及び前記網状物入りイオン交換
膜の使用目的によつて適宜最適の方法を選定すればよい
。付着せしめた高分子化合物にはイオン交換基を導入し
なければならない。
That is, a thermoplastic polymer such as polyvinyl fluoride, polyfluorinated vinyl, polytrifluoromonochloroethylene, polytetrafluoroethylene, etc. is coated with an insulating material by thermoforming. It is applied to a material to form a thin film-like material, and ion exchange groups are introduced into this film by some method. The method of attaching the polymer is not particularly limited, and for example, a method of dissolving or dispersing one or more of the above-mentioned polymer compounds in a suitable solvent, immersing the above-mentioned net-like material in the solvent, and scattering the solvent; A method in which the solvent is scattered by coating or spraying a φ solution/dispersion, or by electrostatically charging the fine powder of the above-mentioned polymer and also charging the net-like material with the opposite charge. A method of electrostatically adhering a substance and heating it to fuse a finely powdered polymer to form a film-like substance, and a method of melting the above-mentioned polymer at a high temperature that does not cause thermal decomposition to form a film-like substance, for example, Effective methods include a method of attaching a material by dipping, a method of molding the polymer using the network material as a core, and the like. The most suitable method may be selected depending on the type of polymer compound used, the physical properties of the polymer such as molecular weight, the material and shape of the mesh, and the purpose of use of the mesh-containing ion exchange membrane. . Ion exchange groups must be introduced into the attached polymer compound.

イオン交換基を導入する方法としては付着した高分子物
がイオン交換基導入可能な高分子である場合には、これ
を直接イオン交換基導入試薬で処理すればよい。また、
この付着した高分子化合物に重合可能なビニル、アリー
ル化合物を常温或は加温下に含浸させ同時にラジカル重
合開始剤を共存させて含浸した化合物が飛散しないよう
な条件下、例えば加圧下に加熱重合させればよい。この
場合架橋性のポリビニル化合物を共存させて三次元構造
を形成させてもよく或は線状のものであつてもよい。ま
た重合手段はラジカル重合に限定されずカチオン重合、
アニオン重合、レドツクス重合であつてもよい。更に上
記付着した高分子物にあまりに大量のビニル、アリール
化合物が含浸して寸法変化が著しく且つ機械的強度が弱
い場合には含浸浴に適当な溶媒を添加し希釈して含浸さ
せ、含浸量を減少させてもよい。また含浸量が少い場合
には予め付着した高分子物を溶媒で膨潤させて後、単量
体中に浸漬してもよい。勿論加温することにより含浸量
を増大させることもできる。また、上記含浸法の他に放
射線等によつて付着した高分子物にビニル、アリール単
量体をグラフト重合させてもよい。
As a method for introducing ion exchange groups, if the attached polymer is a polymer into which ion exchange groups can be introduced, it may be directly treated with an ion exchange group introduction reagent. Also,
This adhered polymer compound is impregnated with a polymerizable vinyl or aryl compound at room temperature or under heating, and at the same time, a radical polymerization initiator is coexisted, and the impregnated compound is heated and polymerized under conditions such that the impregnated compound does not scatter, for example, under pressure. Just let it happen. In this case, a crosslinkable polyvinyl compound may be present to form a three-dimensional structure, or a linear structure may be formed. In addition, the polymerization method is not limited to radical polymerization, but also cationic polymerization,
Anionic polymerization or redox polymerization may be used. Furthermore, if the adhered polymer is impregnated with an excessively large amount of vinyl or aryl compound, resulting in significant dimensional changes and weak mechanical strength, add an appropriate solvent to the impregnating bath to dilute it and impregnate it to reduce the impregnated amount. May be decreased. If the amount of impregnation is small, the pre-adhered polymer may be swollen with a solvent and then immersed in the monomer. Of course, the amount of impregnation can also be increased by heating. In addition to the above-mentioned impregnation method, a vinyl or aryl monomer may be graft-polymerized to a polymer attached by radiation or the like.

この場合予め付着した高分子に放射線を照射してラジカ
ルを形成させたのちに単量体中或は単量体混合物中に浸
漬してもよいし、浸漬したまま放射線を照射してもよく
、更には含浸させたのち放射線を照射して重合させても
よい。これら各種の方法のうち前記網状物入りイオン交
換膜の使用目的、付着した高分子物の種類、網状物の形
状、材質等によつて適宜最適のものを採用すればよい。
例えば弗化ビニリデンのシートを網状物上に加熱融着さ
せて、これをアクリル酸或はアクリル酸とスチレン、ジ
ビニルベンゼン等の混合物中に浸漬し、放射線を照射し
てグラフト重合させたのちに弗素化する方法、或はポリ
エチレンを加熱して網状物上に融着させ、これを加温し
たメタアクリル酸、ジビニルベンゼン及びベンゾイルパ
ーオキサイドの混合溶液中に浸漬し、付着したポリエチ
レンに充分に含浸させ、次いでオートクレーブ中で高圧
下に加熱重合して後、弗素化処理して本発明の陽イオン
交換膜を得る方法などがあげられる。(d)更に型わく
重合法による方法も存する。
In this case, the pre-adhered polymer may be irradiated with radiation to form radicals and then immersed in the monomer or monomer mixture, or the polymer may be irradiated with radiation while being immersed. Furthermore, after being impregnated, radiation may be irradiated to polymerize. Among these various methods, the most suitable one may be adopted depending on the purpose of use of the ion exchange membrane containing the mesh, the type of polymer attached, the shape of the mesh, the material, etc.
For example, a sheet of vinylidene fluoride is heat-fused onto a mesh material, immersed in acrylic acid or a mixture of acrylic acid and styrene, divinylbenzene, etc., and irradiated with radiation to cause graft polymerization. Alternatively, polyethylene is heated to fuse it onto the net-like material, and this is immersed in a heated mixed solution of methacrylic acid, divinylbenzene, and benzoyl peroxide to fully impregnate the attached polyethylene. Then, the cation exchange membrane of the present invention can be obtained by carrying out heating polymerization under high pressure in an autoclave, followed by fluorination treatment. (d) There is also a method based on mold polymerization.

即ち、アクリル酸、メタアクリル酸、スチレンスルホン
酸エステル類、ビニルスルホン酸エステル類等にビニル
ベンゼンのような架橋剤を加え、更にラジカル重合開始
剤を添加し、必要に応じ他の添加剤例えば希釈剤となる
溶媒、線状高分子、微粉状架橋性高分子等を加えて均一
に混合し、これを絶縁性物質で被覆した網状物の形状に
応じた型わくの中に芯として該網状物を挿入し、次いで
上記モノマー混合溶夜を流し込み加熱重合させる方法で
ある。この場合、耐酸化性がないときは、耐酸化性を賦
与するために、弗素化処理すればよい以上、本発明のイ
オン交換膜を作るための若干の例を示したが、以上の例
示によつて本発明が何ら限定されるものではない。
That is, a crosslinking agent such as vinylbenzene is added to acrylic acid, methacrylic acid, styrene sulfonate esters, vinyl sulfonate esters, etc., a radical polymerization initiator is further added, and other additives such as dilution are added as necessary. A solvent, a linear polymer, a fine powder crosslinkable polymer, etc. are added and mixed uniformly, and this is placed as a core in a mold corresponding to the shape of the net covered with an insulating material. This is a method in which the above-mentioned monomer mixture is poured and polymerized by heating. In this case, if there is no oxidation resistance, fluorination treatment is sufficient to impart oxidation resistance. Some examples for making the ion exchange membrane of the present invention have been shown, but the above examples are not sufficient. Therefore, the present invention is not limited in any way.

更に本発明は、陽イオン交換基を有する高分子体が膜状
をなし、且つ、その内部に絶縁性物質で被覆された網状
物を含有していることである。
Further, in the present invention, the polymer having a cation exchange group is in the form of a membrane, and the inside thereof contains a network coated with an insulating substance.

そして微細な亀裂、ピンホールの存在も許されない。即
ち、加圧下において水の透過が通常のイオン交換樹脂膜
程度しかないことが好ましい。即ち、透水量が10−5
cc/Dm2・Atm−Sec以下であることが望まし
い。本発明のイオン交換膜をアルカリ金属塩電解用に用
いる場合には、生成アルカリ水酸化物の電流効率を向上
させるために我々が先に提案した一方の膜面上に陰イオ
ン交換性の薄層を存在させてもよく、また中性の薄層を
存在させてもよい。
Also, the presence of minute cracks and pinholes is not allowed. That is, it is preferable that the permeation of water under pressure be as low as that of a normal ion exchange resin membrane. That is, the water permeability is 10-5
It is desirable that it is cc/Dm2·Atm-Sec or less. When the ion exchange membrane of the present invention is used for alkali metal salt electrolysis, an anion exchange thin layer is applied on one membrane surface as previously proposed in order to improve the current efficiency of the generated alkali hydroxide. may be present, or a neutral thin layer may be present.

この場合特に好ましいのは上記薄層が架橋されて緻密と
なつている場合である。また、この陰イオン交換性或は
中性の薄層の存在のさせ方は物理的又は化学的に付着・
吸着している場合、陽イオン交換樹脂部と薄層がその界
面において高分子鎖のからみ合いによつて付着している
場合でもよく、また、イオン結合、共有結合、配位結合
等によつて存在していてもよい。そして、薄層は陽イオ
ン樹脂部の上に層状に重ねて存在してもよく、また成形
された陽イオン交換樹脂部の内部に向つて適当な化学反
応によつて存在してもよい。その他、我々が先に提案し
た陽イオン交換性・中性・陰イオン交換性の単量体を含
浸重合させる方法も有効である。この場合、その後弗素
化してもよい。以上の処理によつて陽イオン交換膜本体
の電流効率、生成アルカリ金属水酸化物の純度向上など
の利点が得られるが、後処理の物質が耐酸化性のない場
合は、これを弗素化するか、或は酸化剤の存在しない陰
極側或いは膜内部に存在させればよい。また本発明の陽
イオン交換樹脂部分に結合して存在させるイオン交換基
としては、従来公知の水溶夜中で負の電荷となりうる官
能基なら何ら制限なく用いられる。
In this case, it is particularly preferred if the thin layer is crosslinked and becomes dense. In addition, the presence of this anion exchange or neutral thin layer is determined by physical or chemical adhesion.
In the case of adsorption, the cation exchange resin part and the thin layer may be attached to each other by entanglement of polymer chains at the interface, or by ionic bonds, covalent bonds, coordinate bonds, etc. May exist. The thin layer may then be present in a layered manner on top of the cationic resin part, or may be present by a suitable chemical reaction towards the interior of the molded cation exchange resin part. In addition, the method of impregnating and polymerizing cation-exchanging, neutral, and anion-exchanging monomers that we proposed earlier is also effective. In this case, fluorination may be performed afterwards. The above treatment provides advantages such as improving the current efficiency of the cation exchange membrane itself and improving the purity of the alkali metal hydroxide produced. However, if the post-treatment material does not have oxidation resistance, it may be necessary to fluorinate it. Alternatively, the oxidizing agent may be present on the cathode side or inside the membrane where no oxidizing agent is present. Further, as the ion exchange group bonded to the cation exchange resin portion of the present invention, any conventionally known functional group that can become negatively charged in aqueous solution can be used without any restriction.

即ち、スルホン酸基、カルボン酸基、リン酸基、亜リン
酸基、硫酸エステル基、リン酸エステル基、亜リン酸エ
ステル基、フエノール基、チオール基、ほう酸基、けい
酸基、スズ酸等である。これらのイオン交換基は、イオ
ン交換膜としての機能を有する程度に存在していればよ
い。また、前記表層部に薄層状に存在させる陰イオン交
換性の薄層中には水溶液中で負の電荷となりうる官能基
を有するもので、一級、二級、三級アミン、第4級アン
モニウム、第三級スルホニウム、第4級ホスホニウム、
アルソニウム、スチボニウム、コバルチシニウム等のオ
ニウム塩基類である。中性の薄層としては全く水溶液中
で解離しうる官能基が存在しない場合も、上記した陰イ
オン交換性の基と陽イオン交換性の基がほぼ等当量づつ
存在する場合もともに有効である。また表層部に薄層が
存在する場合には、この陰イオン交換性の薄層、中性の
薄層の上に更に陽イオン交換樹脂成分が存在し、サンド
ウイツチ状に陰イオン交換性、陽イオン交換性の薄層が
存在していてもよい。本発明のイオン交換膜を用いる態
様は、特に制限されず、陽極夜と陰極液の混合が起らず
且つ陽イオンの選択透過が必要な系における電気分解に
用いうる。
Namely, sulfonic acid group, carboxylic acid group, phosphoric acid group, phosphorous acid group, sulfuric acid ester group, phosphoric acid ester group, phosphorous acid ester group, phenol group, thiol group, boric acid group, silicate group, stannic acid group, etc. It is. It is sufficient that these ion exchange groups are present to the extent that it functions as an ion exchange membrane. In addition, the anion exchange thin layer present in the surface layer has functional groups that can be negatively charged in an aqueous solution, such as primary, secondary, tertiary amines, quaternary ammonium, Tertiary sulfonium, quaternary phosphonium,
Onium bases such as arsonium, stibonium, and cobalticinium. As a neutral thin layer, it is effective both when there is no functional group that can dissociate in an aqueous solution and when the above-mentioned anion exchange group and cation exchange group are present in approximately equal amounts. . In addition, when a thin layer exists on the surface layer, a cation exchange resin component exists on top of this anion exchange thin layer and neutral thin layer, forming a sandwich-like anion exchange and cation exchange resin component. Exchangeable thin layers may also be present. The embodiment using the ion exchange membrane of the present invention is not particularly limited, and can be used for electrolysis in a system where mixing of the anode and catholyte does not occur and selective permeation of cations is required.

例えば有機電解反応、アクリロニトリルの電解二量化反
応への利用などにも有効である。またアルカリ金属塩電
解用のみでなく広く無機電解質溶液の電気分解反応へ利
用できる。アルカリ金属塩の電解、即ちリチウム、ナト
リウム、カリウム、ルビジウム、セシウムのハロゲン化
物、硫酸塩、硝酸塩、リン酸塩等の電解に特に有効であ
り、また酸類の電気分解、即ち塩酸、硫酸、硝酸、リン
酸などの電気分解に用いうる。
For example, it is effective for use in organic electrolytic reactions and electrolytic dimerization reactions of acrylonitrile. Moreover, it can be used not only for alkali metal salt electrolysis but also for a wide range of electrolysis reactions of inorganic electrolyte solutions. It is particularly effective for the electrolysis of alkali metal salts, i.e., halides, sulfates, nitrates, phosphates, etc. of lithium, sodium, potassium, rubidium, cesium, etc. It is also effective for the electrolysis of acids, i.e., hydrochloric acid, sulfuric acid, nitric acid, Can be used for electrolysis of phosphoric acid, etc.

本発明のイオン交換樹脂部分としては、一般に耐酸化性
のある弗素系等のものを用いるのが好ましい。本発明に
おいて弗素系・無機物等の酸化剤に対して耐性のある材
質によつて陽イオン交換樹脂部分が構成されているとき
にはそのまま、陽極と陰極の間に設置して用いればよく
、また炭化水素系の耐酸化性を有さない材質により、陽
イオン交換樹脂部分が構成されているときで、しかも電
解時に陽極から酸化性物質が発生する場合にはこれによ
る樹脂部分の酸化劣化を防止するために前記した如く、
陽イオン交換膜部分を弗素化、塩素化等の耐酸性を賦与
する処理をすればよい。以下、実施例をあげるが、本発
明は、実絢例によつて何ら制限されるものではない。
As the ion exchange resin part of the present invention, it is generally preferable to use a fluorine-based resin having oxidation resistance. In the present invention, if the cation exchange resin part is made of a material that is resistant to oxidizing agents such as fluorine-based or inorganic substances, it may be used as it is by placing it between the anode and the cathode, or it may be used as is. When the cation exchange resin part is made of a material that does not have oxidation resistance in the system, and if oxidizing substances are generated from the anode during electrolysis, to prevent oxidative deterioration of the resin part due to this. As mentioned above,
The cation exchange membrane portion may be treated to impart acid resistance, such as fluorination or chlorination. Examples will be given below, but the present invention is not limited to the actual examples in any way.

実施例 テトラフルオロエチレンとパーフルオロアルキルビニル
エーテルスルホニルフルオライドの共重合体から得た交
換容量0.91meq/9乾燥樹脂となる高分子体を用
いて膜状物を成型した。
EXAMPLE A film-like material was molded using a polymer obtained from a copolymer of tetrafluoroethylene and perfluoroalkyl vinyl ether sulfonyl fluoride and resulting in a dry resin with an exchange capacity of 0.91 meq/9.

即ち、100メツシユのニツケルの金網をポリ弗化ビニ
リデンのジメチルホルムアミドの2%溶夜の中に浸漬し
、引き上げてこれを風乾したのち更に180℃の空気乾
燥器の中で加熱してニツケルの金網の上にポリ弗化ビニ
リデンの薄膜を形成させて絶縁させた。
That is, 100 mesh nickel wire mesh is immersed in a 2% dimethylformamide solution of polyvinylidene fluoride, pulled out, air-dried, and then heated in an air dryer at 180°C to form a nickel wire mesh. A thin film of polyvinylidene fluoride was formed on top of it for insulation.

Claims (1)

【特許請求の範囲】[Claims] 1 絶縁性物質で被覆した熱伝導性の基材を芯材として
用いた陽イオン交換膜。
1. A cation exchange membrane that uses a thermally conductive base material coated with an insulating material as a core material.
JP57153376A 1982-09-04 1982-09-04 Cation exchange membrane Expired JPS5940849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57153376A JPS5940849B2 (en) 1982-09-04 1982-09-04 Cation exchange membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57153376A JPS5940849B2 (en) 1982-09-04 1982-09-04 Cation exchange membrane

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP50140241A Division JPS5819750B2 (en) 1975-11-25 1975-11-25 Electrolysis method

Publications (2)

Publication Number Publication Date
JPS5859225A JPS5859225A (en) 1983-04-08
JPS5940849B2 true JPS5940849B2 (en) 1984-10-03

Family

ID=15561103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57153376A Expired JPS5940849B2 (en) 1982-09-04 1982-09-04 Cation exchange membrane

Country Status (1)

Country Link
JP (1) JPS5940849B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8570747B2 (en) 2008-12-04 2013-10-29 Hewlett-Packard Development Company, L.P. Carbon laminated enclosure

Also Published As

Publication number Publication date
JPS5859225A (en) 1983-04-08

Similar Documents

Publication Publication Date Title
US4090931A (en) Anode-structure for electrolysis
US4101395A (en) Cathode-structure for electrolysis
US6103078A (en) Methods for preparing membranes with fluid distribution passages
CN109071852B (en) Bipolar membrane
US11511237B2 (en) Ion-exchange membrane
CN107408704A (en) Porous electrode and by its obtained electrochemical cell and liquid accumulator cell
CN111936223B (en) Bipolar membrane and method for producing same
JPS5940849B2 (en) Cation exchange membrane
JPS6353860A (en) Diaphragm fro redox flow cell
JP2011072860A (en) Composite ion exchanger and manufacturing method of the same
JPS5819750B2 (en) Electrolysis method
KR20240005770A (en) Ion exchange membrane, manufacturing method of ion exchange membrane, and ion exchange membrane cell
JPH0813900B2 (en) Bipolar film manufacturing method
JPS5925813B2 (en) anion exchange membrane
JPS597795B2 (en) Cathode iron for electrolysis
JPS6339930A (en) Production of improved ion exchange membrane
CA1082133A (en) Cathode-structure for electrolysis
JPS609052B2 (en) Method for manufacturing cation exchanger
JPH11151430A (en) Bipolar membrane
JP3518633B2 (en) Bipolar membrane
WO2022201718A1 (en) Anion exchange membrane, and method for producing same
JP2624424B2 (en) Bipolar membrane
KR20240054919A (en) Anion exchange membrane and method of manufacturing the same
JPS5842274B2 (en) Fukugoukamamaku
JPH0673207A (en) Production of bipolar membrane