JPS6353860A - Diaphragm fro redox flow cell - Google Patents

Diaphragm fro redox flow cell

Info

Publication number
JPS6353860A
JPS6353860A JP61195575A JP19557586A JPS6353860A JP S6353860 A JPS6353860 A JP S6353860A JP 61195575 A JP61195575 A JP 61195575A JP 19557586 A JP19557586 A JP 19557586A JP S6353860 A JPS6353860 A JP S6353860A
Authority
JP
Japan
Prior art keywords
ion exchange
membrane
diaphragm
present
immersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61195575A
Other languages
Japanese (ja)
Other versions
JPH0638340B2 (en
Inventor
Takahisa Yamamoto
宜契 山本
Yasuhiro Kagiyama
鍵山 安弘
Toshikatsu Sada
佐田 俊勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP61195575A priority Critical patent/JPH0638340B2/en
Publication of JPS6353860A publication Critical patent/JPS6353860A/en
Publication of JPH0638340B2 publication Critical patent/JPH0638340B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To reduce metal ion transmission quantity and to increase voltage efficiency as well as Coulomb efficiency by having a specific quantity of pyrrole compound polymer exist on one side of an ion exchange membrance surface. CONSTITUTION:There exists 1X10<-6>-5X10<-1>mg/cm<2> of pyrrole compound polymer on the surface of an ion exchange membrance. This results in an exceedingly low metal ion transmissivity in the change and discharge time of a redox cell. In addition, exceedingly small quantity of pyrrole compound polymer on the membrance surface causes almost no increase of membrance resistance, thus voltage drop in charge and discharge time is reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はレドックスフロー電池用隔膜に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a diaphragm for redox flow batteries.

詳しくは、イオン交換膜の少なくとも一方の表面にビロ
ール化合物の重合体の特定量を存在させた、特に鉄/ク
ロム系のレドックスフロー電池システムにおいて電圧効
率およびクーロン効率を高くするために好適なレドック
スフロー電池用隈膜を提供するものである。
Specifically, a redox flow suitable for increasing the voltage efficiency and coulombic efficiency in an iron/chromium-based redox flow battery system in which a specific amount of a polymer of a virol compound is present on at least one surface of an ion exchange membrane. The present invention provides a masking film for batteries.

(従来技術) 従来、隔膜によシ:”91極と陰極を分離した陽極室お
よび陰極室と、陽極、夜として塩化鉄/塩酸の溶液、陰
極液として塩化クロム/塩酸の@に!i、金それぞれ循
環し、各々の金属イオンが2価−1−3価と酸化還元す
ることで充・放電を行うンドノクスフロー電池が知られ
ている。かかるレドックスフロー電池用の隔膜としては
、■プロトン透過性に優れクロム(Cr)イオンや鉄(
Fe )イオンの透過の少ないこと■耐塩酸性で且つ強
度が優れること■便用系での膜抵抗が小さく充・放電時
の電気抵抗が小さいこと等が要求されており、例えば陰
イオン交換膜(特開昭53−112431号)や、また
陽イオン交換膜(野崎ら、電子技術総合研究所調査報告
、第201号、(1979))が提案されている。しか
しながら、陰イオン交換膜の場合、両極室の金属イオン
の混合は防止できるが、クロルイオン(CC)が膜中を
移動すること等により、使用系での膜抵抗が大きく、充
・放電時の電圧降下(I Rdrop )が大きくなる
問題がある。又、陽イオン交換膜の場合、プロトンイオ
ンが膜中を移動するため使用系での膜抵抗は小さくなる
が、金属イオンの混合が生じるため、自己放電の原因と
なったり、金属塩等の活物質の溶解度や濃度を低下させ
る問題がある。
(Prior art) Conventionally, a diaphragm was used: "91 An anode chamber and a cathode chamber that separated the electrode and cathode, an anode, a solution of iron chloride/hydrochloric acid as the night solution, and a solution of chromium chloride/hydrochloric acid as the catholyte!i, A redox flow battery is known that charges and discharges by circulating gold and redoxing each metal ion to divalent, monovalent, and trivalent ions.As a diaphragm for such a redox flow battery, ■ proton It has excellent permeability and does not contain chromium (Cr) ions or iron (
Fe ) ion permeation is required to be low; - resistance to hydrochloric acid and excellent strength; - low membrane resistance in toilet systems, and low electrical resistance during charging and discharging. For example, anion exchange membranes ( JP-A-53-112431) and a cation exchange membrane (Nozaki et al., Research Report of Electronic Technology Research Institute, No. 201, (1979)) have been proposed. However, in the case of anion exchange membranes, although mixing of metal ions in both electrode chambers can be prevented, the membrane resistance in the system used is large due to the movement of chlorine ions (CC) in the membrane, and the membrane resistance during charging and discharging is large. There is a problem that the voltage drop (IRdrop) becomes large. In addition, in the case of cation exchange membranes, proton ions move through the membrane, which reduces the membrane resistance in the system in use, but since metal ions are mixed, this may cause self-discharge or the activation of metal salts. There is a problem of reducing the solubility and concentration of substances.

上記した問題に対して、最近では例えば陰イオン交換薄
層と陽イオン交換薄層を有し、塩酸中での交流抵抗が0
.03〜2Ω・副2である隔膜(特開昭59−2051
65号)、両表層が陰イオン交換薄層よシなり、更にそ
の中間層として少くとも陽イオン交換層が存在し、塩酸
中の交流抵抗が0.03〜2Ω・1M2である隔膜(特
開昭60−20462号)、陽イオン交換膜の表面を高
架橋度の陽イオン交換街脂、高架橋度の陰イオン交換樹
脂、ポリアミン、疎水性高分子から選ばれた物質により
被覆せしめた隔膜(特開昭60−160560号)、ピ
ロール化合物から電気化学的に製造された1合物から成
る隔膜(特開昭59−205491号)等が提案されて
いる。
To solve the above-mentioned problem, recently, for example, a thin anion exchange layer and a thin cation exchange layer have been developed, and AC resistance in hydrochloric acid is 0.
.. Diaphragm that is 03~2Ω/sub2 (Japanese Patent Application Laid-Open No. 59-2051
No. 65), both surface layers are anion-exchange thin layers, and at least a cation-exchange layer is present as an intermediate layer, and the AC resistance in hydrochloric acid is 0.03 to 2Ω・1M2 (Japanese Patent Application Laid-Open No. No. 60-20462), a diaphragm in which the surface of a cation-exchange membrane is coated with a substance selected from highly cross-linked cation-exchange street fat, highly cross-linked anion-exchange resin, polyamine, and hydrophobic polymer (Unexamined Japanese Patent Publication No. 60-20462); 160560/1982), a diaphragm made of a compound electrochemically produced from a pyrrole compound (Japanese Patent Application Laid-open No. 205491/1983), etc. have been proposed.

(発明が解決しようとする課頂) しかしながら、上記の如き提案された隔膜も、その要求
される全ての機能を満足するものでなく、工業的なレド
ックスフロー電池用の隔膜として用いた場合に、更に金
属イオンの透過量が小さく電圧効率およびクーロン効率
の高い隔膜が要望されている。
(Issues to be Solved by the Invention) However, the diaphragm proposed above does not satisfy all the required functions, and when used as a diaphragm for an industrial redox flow battery, Furthermore, there is a demand for a diaphragm that allows a small amount of metal ions to pass through and has high voltage efficiency and Coulombic efficiency.

(課題を解決するための手段) 本発明者らは、上記した課題に鑑み鋭意研究した結果、
イオン交換膜の少なくとも一方の表面にピロール化合物
の重合体を特定量存在させることにより、金属イオンの
透過量が小さく、電圧効率およびクーロン効率の高いレ
ドックスフロー電池用隔膜が得られることを見い出し、
本発明を提案するに至った。即ち、本発明によれば、イ
オン交換膜の少なくとも一方の表面に、ピロール化合物
の重合体を各々片面でI X 10−6〜5 X 10
−’Q/m”存在させたレドックスフロー電池用隔膜が
提供される。
(Means for Solving the Problems) As a result of intensive research in view of the above problems, the present inventors found that
We have discovered that by allowing a specific amount of a polymer of a pyrrole compound to exist on at least one surface of an ion exchange membrane, it is possible to obtain a diaphragm for redox flow batteries with a small amount of permeation of metal ions and high voltage efficiency and coulombic efficiency.
This led us to propose the present invention. That is, according to the present invention, on at least one surface of the ion exchange membrane, a polymer of a pyrrole compound is applied on each side in an amount of I.times.10-6 to 5.times.10.
A diaphragm for a redox flow battery is provided in which the present invention has the following characteristics: -'Q/m''.

本発明のイオン交換膜としては、有機系イオン交換膜に
限らず、例えばリン酸ジルコニウム等の無機イオン交換
膜そのもの、及びこれらを適渦な有機、無機の結合剤に
よって加圧・加熱成型したものも好適に用いられる。有
機系のイオン交換膜としては、重合系のイオン交換膜、
甜ゆるスチレン−ジビニルベンゼン系の共重合体でイオ
ン交換基が結合したもの、縮合等のイオン交換膜で陽イ
オン交換基及び/または陰イオン交換基を結合したもの
が好適に用いられる。かかる有機系イオン交換膜として
は従来公知の均−系、不均一系のイオン交換膜を用いる
ことも出来、該イオン交換膜の基体として炭化水素系の
もの、ぶつ化炭素系のもの、ノクーフルオロカーデン系
のものの如何に関係なく好適に用いられる。
The ion exchange membrane of the present invention is not limited to organic ion exchange membranes, but also includes inorganic ion exchange membranes themselves such as zirconium phosphate, and those formed by pressurizing and heat molding them with a suitable organic or inorganic binder. is also suitably used. Organic ion exchange membranes include polymeric ion exchange membranes,
A styrene-divinylbenzene copolymer to which ion exchange groups are bonded, and a cation exchange group and/or anion exchange group bonded to an ion exchange membrane such as a condensation membrane are preferably used. As such an organic ion exchange membrane, conventionally known homogeneous or heterogeneous ion exchange membranes can be used, and the base material of the ion exchange membrane can be hydrocarbon-based, buttomized carbon-based, or It is suitably used regardless of the fluorocarbon type.

また、本発明に用いられるイオン交換膜は、乾燥した該
イオン交換膜のIIあたり一般に0.1〜15ミリ当量
のイオン交換基を結合しているものであれば特に限定さ
れない。そのイオン交換基としては、従来公知の陽イオ
ン交換基であるスルホン酸、カルデン酸、リン酸、亜リ
ン酸、スルホン酸エステル、フェノール性水酸基、チオ
ール基、三級のノ4−フルオロアルコールなどが用いら
れ、陰イオン交換基としては一級、二級、三級アミン、
第四級アンモニウム、第三級スルホニウム、第四級ホス
ホニウム、コ・ぐルチラニウム等のオニウム塩基が好適
である。
Further, the ion exchange membrane used in the present invention is not particularly limited as long as it has generally 0.1 to 15 milliequivalents of ion exchange groups bonded to II of the dried ion exchange membrane. Examples of the ion exchange group include conventionally known cation exchange groups such as sulfonic acid, caldic acid, phosphoric acid, phosphorous acid, sulfonic acid ester, phenolic hydroxyl group, thiol group, and tertiary 4-fluoroalcohol. The anion exchange group used is primary, secondary, tertiary amine,
Onium bases such as quaternary ammonium, tertiary sulfonium, quaternary phosphonium, co-glutiranium and the like are preferred.

また、上記したイオン交換膜としては、イオン交換基が
基体に均一に分散しているもの、一方に片寄って存在し
ているもの、濃度勾配が存在するものなど各種のものが
必要に応じて好適に用いられる。このようなイオン交換
膜に存在するイオン交換基は、陽イオン交換基のみが存
在する場合、陰イオン交換基のみが存在する場合、両イ
オン交換基が同時に存在する場合も含まれるが、特に陽
イオン交換基より構成される陽イオン交換膜および両性
イオン交換基より構成される両性イオン交換膜は、本発
明の効果が顕著となるため好ましい。
In addition, various types of ion exchange membranes such as those in which ion exchange groups are uniformly dispersed in the substrate, those in which ion exchange groups are present biased to one side, and those in which a concentration gradient exists are suitable as the above-mentioned ion exchange membranes. used for. The ion exchange groups present in such an ion exchange membrane include cases where only cation exchange groups are present, cases where only anion exchange groups are present, cases where both ion exchange groups are present at the same time, but especially cation exchange groups are present. Cation exchange membranes composed of ion exchange groups and amphoteric ion exchange membranes composed of amphoteric ion exchange groups are preferred because the effects of the present invention are significant.

そのような両イオン交換基が同時に存在する場合は、二
種のイオン交換基が二層以上に亘って層状に存在する場
合、任意に均一に存在する場合のいづれでもよい。また
、陽イオン交換基が存在する層があシ、陽イオン交換基
と陰イオン交換基が任意に分布する層がちり、再び陽イ
オン交換基が存在する層がある場合、或いは陰イオン交
換基を有する層が存在する層がある場合、或いはこれの
逆の場合など各種のイオン交換基の存在状態によって各
種のイオン交換膜が形成されるが、これら全ての形態の
イオン変換膜がそれぞれ本発明の方法において有効に適
用される。なお、上記した陽イオン交換基および陰イオ
ン交換基は、同一種類の陽イオン交換基、陰イオン交換
基を意味するのでなく、例えばカルデン酸基とスルホン
酸基といった異なった場イオン交換基であってもよいが
、異種のものを用いたとき、特に有効である場合が多い
When both such ion exchange groups are present at the same time, the two types of ion exchange groups may be present in a layered form over two or more layers, or arbitrarily uniformly present. In addition, if there is a layer in which cation exchange groups exist, if there is a layer in which cation exchange groups and anion exchange groups are arbitrarily distributed, or if there is a layer in which cation exchange groups exist, or if there is a layer in which cation exchange groups exist, or if there is a layer in which cation exchange groups exist, Various types of ion exchange membranes are formed depending on the state of existence of various ion exchange groups, such as when there is a layer having a layer having , or vice versa. It is effectively applied in the method of Note that the above-mentioned cation exchange group and anion exchange group do not mean the same type of cation exchange group and anion exchange group, but rather different field ion exchange groups such as a caldenic acid group and a sulfonic acid group. However, it is often particularly effective when different types are used.

さらに、上記した無機イオン交換膜、有機イオン交換膜
はそれぞれ単独のマトリックスのものに限定されるもの
ではなく、両者の複合体も好適に用いられる。具体的に
は、無機イオン交換体の微粉体を熱可m性の有機イオン
交換体によって成型して適当な形状としたもの、或いは
適当な溶媒に高分子電解質または不活性な高分子を溶解
し、これに無機イオン交換体を分散させて溶媒を飛散さ
せることにより、必要とする形状のイオン交換膜とする
ことが出来る。
Furthermore, the above-described inorganic ion exchange membranes and organic ion exchange membranes are not limited to those having a single matrix, but a composite of the two may also be suitably used. Specifically, fine powder of an inorganic ion exchanger is molded into an appropriate shape using a thermoplastic organic ion exchanger, or a polymer electrolyte or an inert polymer is dissolved in an appropriate solvent. By dispersing an inorganic ion exchanger therein and scattering the solvent, an ion exchange membrane having a desired shape can be obtained.

本発明において、イオン交換膜の少なくとも一方の表面
にビロール化合物の重合体を存在させる方法は、特に限
定されないが、一般にはビロール化合物を酸化剤の存在
下で酸化重合させる方法が用いられる。
In the present invention, the method of making the polymer of the virol compound exist on at least one surface of the ion exchange membrane is not particularly limited, but generally a method of oxidative polymerization of the virol compound in the presence of an oxidizing agent is used.

本発明に用いられるビロール化合物としては、ビロール
及び置換ビロール、例えばN−アルキルビロール、N−
アリールビロール、モノアルキル又はジアルキル置換ビ
ロール、モノハI:Iダン又はジハロゲン置換ビロール
より選ばれる少なくとも1種との混合物等である。また
、酸化剤としては、従来公知の酸化剤が特に制限なく、
例えばH2O2*(C6H5Co)20□などの過酸化
物、FeCt5r CuSO4*CuC22,RuC2
,などの金属塩、Na2S2O8,Na2SO3゜(N
′H4)2S05などのベルオクソ酸(塩)、NaC2
0。
Virol compounds used in the present invention include virol and substituted virols, such as N-alkylvirol, N-
These include mixtures with at least one selected from aryl virol, monoalkyl- or dialkyl-substituted virol, monohalogen-substituted virol, and dihalogen-substituted virol. In addition, as the oxidizing agent, conventionally known oxidizing agents can be used without particular limitation.
For example, peroxides such as H2O2*(C6H5Co)20□, FeCt5r CuSO4*CuC22, RuC2
, metal salts such as Na2S2O8, Na2SO3゜(N
'H4) Beroxo acids (salts) such as 2S05, NaC2
0.

NaBr0 、 NaClO2などの酸素酸塩などが挙
げられる。
Examples include oxyacid salts such as NaBr0 and NaClO2.

即ち、三価の鉄イオン、二価の銅イオン、三価のルテニ
ウムイオンなどの荷電が酸化遺元によって変化する有機
化合物あるいは金属錯体陽イオンなどの陽イオン類、ま
た過硫酸イオン、過はう素イオン、過塩素酸などの酸化
性を有する陰イオン類が好適に用いられる。これら陽イ
オン及び陰イオンは酸化状態でイオン交換膜の交換基と
イオン交換しイオン交換体内に均一に分散するので好適
である。また逆にイオン交換体の表層部のみにおいて酸
化重合反応を実施したいときには、長鎖アルキル基を結
合した過酸、或いはナフタリン環のようなイオン交換体
の細孔内に容易に入り得ないような化合物に過酸基が結
合したようなものを用いることが出来る。さらに、例え
ば陰イオン交換体に対して陽イオンの酸化剤、また陽イ
オン交換体に対して陰イオンの酸化剤を用いることによ
り、それぞれイオン交換体に酸化剤が均一に含有され難
い点を利用して、片り11にのみ酸化重合可能な単量体
を容易に重合することもできる。
In other words, cations such as trivalent iron ions, divalent copper ions, trivalent ruthenium ions, organic compounds or metal complex cations whose charge changes depending on the oxidizing element, persulfate ions, superoxides, etc. Oxidizing anions such as elementary ions and perchloric acid are preferably used. These cations and anions are suitable because they undergo ion exchange with the exchange groups of the ion exchange membrane in an oxidized state and are uniformly dispersed within the ion exchange body. Conversely, when it is desired to carry out the oxidative polymerization reaction only in the surface layer of the ion exchanger, a peracid with long-chain alkyl groups or a naphthalene ring that cannot easily enter the pores of the ion exchanger may be used. A compound in which a peracid group is bonded can be used. Furthermore, for example, by using a cationic oxidizing agent for an anion exchanger and an anionic oxidizing agent for a cationic exchanger, each takes advantage of the fact that it is difficult to uniformly contain the oxidizing agent in the ion exchanger. In this way, a monomer that can be oxidatively polymerized can be easily polymerized only on the piece 11.

上記した酸化重合により、イオン交換膜の少なくとも一
方の表面にビロール化合物の重合体を存在させる方法は
特に限定的でないが、一般には■酸化剤を含有するイオ
ン交換膜中で20一ル化合物を重合させ己方法、■ビロ
ール化合物を含有するイオン交換膜に酸化剤を接恕させ
イオン交換膜中でビロール化合物を重合させる方法、■
イオン交換膜を介して、一方の側から酸化剤を移動させ
且つ他方の側からビロール化合物を移動させて、該イオ
ン交換膜中でビロール化合物を重合させる方法などで、
特に■および■の方法が好適である。
The method of making a polymer of a pyrrole compound exist on at least one surface of an ion exchange membrane by the above-mentioned oxidative polymerization is not particularly limited, but in general: ■ A method of bringing an oxidizing agent into contact with an ion exchange membrane containing a virol compound to polymerize the virol compound in the ion exchange membrane;
A method in which the virol compound is polymerized in the ion exchange membrane by moving an oxidizing agent from one side and moving the virol compound from the other side, etc.
Particularly preferred are methods (1) and (2).

■の方法は、一般にイオン交換膜を酸化剤溶液に浸漬し
、次いで水洗、乾燥させて得た酸化剤を含有するイオン
交換膜を有機溶媒、例えばアセトニトリル、エチルアル
コール、或いは無機系の溶媒、例えば水の中にビロール
化合物を溶解、或いは分散した中に浸漬すればよい。浸
漬は溶媒が凍結しない範囲での冷却下、或いは溶媒が沸
騰しない範囲での加熱下に行なわれる。また、■の方法
は、一般にイオン交換膜を介して、一方の側から無機系
の溶媒中に酸化剤を溶解或いは分散した液を移勲させ、
他方から有機溶媒或いは無機系の溶媒にビロール化合物
を溶解或いは分散した液を移動させることによって、該
イオン交換膜中においてビロール化合物の重合が達成さ
れる。上記した方法の重合において、−ロール化合物の
濃度は特に限定的でなく、一般に0.OIJから飽和1
でよく、懸濁状態で重合させてもよい。重合時間は、ビ
ロール化合物やイオン交換膜の種類等によって変わシ、
一般に1分以上72時間までの適当な時間を選定して行
う・ことが出来る。次いで、一般に水洗。
In method (2), the ion exchange membrane is generally immersed in an oxidizing agent solution, then washed with water, and then dried. The virol compound may be dissolved or dispersed in water and immersed therein. The immersion is carried out under cooling to the extent that the solvent does not freeze, or under heating to the extent that the solvent does not boil. In addition, method (2) generally involves transferring a solution in which an oxidizing agent is dissolved or dispersed in an inorganic solvent from one side through an ion exchange membrane.
Polymerization of the virol compound is achieved in the ion exchange membrane by transferring a liquid in which the virol compound is dissolved or dispersed in an organic or inorganic solvent from the other side. In the polymerization method described above, the concentration of the -role compound is not particularly limited and is generally 0. Saturation 1 from OIJ
or may be polymerized in a suspended state. Polymerization time varies depending on the type of virol compound and ion exchange membrane, etc.
Generally, it can be carried out by selecting an appropriate time from 1 minute to 72 hours. Then, it is generally washed with water.

メタノール洗浄等を行った後、必要によりコンディショ
ニング処理する。
After washing with methanol, etc., conditioning is performed if necessary.

本発明のレドックスフロー電池用隔膜において、ピロー
ル化合物の重合体をイオン交換膜表面に存在させる量も
至って重要であり、イオン交換膜の種類、電荷等によっ
て異なるが、少なくとも片面で1×10〜5×10 ■
/帰2、特に5×10〜5 X 10−2■/傭2が好
ましい。その量が1x 1o−’mp/−2より少ない
場合には、金属イオンの透過量が大きくクーロン効率が
低下するし、逆に5 X 10−’rn9/crn2よ
り大きい場合には、放電時のI Rdropが大きくな
シ、いづれの場合も本発明の目的が満足に達成されない
In the redox flow battery diaphragm of the present invention, the amount of the pyrrole compound polymer present on the surface of the ion exchange membrane is also very important, and varies depending on the type of ion exchange membrane, charge, etc., but at least 1 x 10 to 5 ×10 ■
/2, especially 5 x 10-5 x 10-2 /2 is preferred. If the amount is less than 1 x 1o-'mp/-2, the amount of metal ion permeation will be large and the Coulombic efficiency will be reduced, and if it is larger than 5 x 10-'rn9/crn2, the In either case, the object of the present invention cannot be satisfactorily achieved if I Rdrop is large.

(作用および効果) 以上の説明のように、ピロール化合物の重合体をイオン
交換膜の表面に特定量存在させた本発明のレドックスフ
ロー電池用隔膜によれば、特に鉄/クロム系レドックス
フロー電池システムにおいて電圧効率およびクーロン効
率を高くすることが出来る。この様な本発明の隔膜が優
れた性能を発揮する詳しい作用機構は明確ではないが、
本発明者等は次のように推定している。即ち、本発明で
用いるピロール化合物は、機械的にも化学的にも強く、
またプロトンイオンの透過性に優れ且つ電荷の大きいイ
オン種や水利イオン半径の小さいイオン種の透過を阻止
するピロール化合物の重合体がイオン交換膜の表面に存
在するため、レドックスフロー電池における充・放電時
の金属イオンの透過が極めて小さく、さらに膜表面にお
けるピロール化合物の重合体の存在量が極めて小さいた
め、膜抵抗の上昇が殆どない。そのため、充・放電時に
おける電圧降下が小さくなる。
(Functions and Effects) As explained above, according to the diaphragm for redox flow batteries of the present invention in which a specific amount of a polymer of a pyrrole compound is present on the surface of an ion exchange membrane, the diaphragm for redox flow batteries of the present invention can be used particularly for iron/chromium-based redox flow battery systems. It is possible to increase the voltage efficiency and coulomb efficiency. Although the detailed mechanism by which the diaphragm of the present invention exhibits such excellent performance is not clear,
The present inventors estimate as follows. That is, the pyrrole compound used in the present invention is mechanically and chemically strong;
In addition, since a polymer of pyrrole compounds, which has excellent permeability to proton ions and blocks the permeation of highly charged ionic species and ionic species with a small radius of water-containing ions, is present on the surface of the ion exchange membrane, charging and discharging in redox flow batteries is possible. Since the permeation of metal ions is extremely small and the amount of the pyrrole compound polymer present on the membrane surface is extremely small, there is almost no increase in membrane resistance. Therefore, the voltage drop during charging and discharging becomes smaller.

(実施例) 以下、本発明を実施例に基づき詳細に説明するが、本発
明は以下の実施例に特に限定されるものではない。
(Examples) Hereinafter, the present invention will be described in detail based on Examples, but the present invention is not particularly limited to the following Examples.

実施例1および比較例1 スチレン100部、4ビニルぜリジン10o’1および
純度約55チのジビニルベンゼン30部の混合物にポリ
塩化ビニルの微粉末を加えて得たペースト状混合物にベ
ンゾイル/4’−オキサイドを加え、これをぼりプロピ
レン製の不織布に塗布し加熱して重合し膜状物とした。
Example 1 and Comparative Example 1 Benzoyl/4' was added to a paste-like mixture obtained by adding fine powder of polyvinyl chloride to a mixture of 100 parts of styrene, 10 o'1 of 4-vinylzeridine, and 30 parts of divinylbenzene with a purity of about 55. - Oxide was added, applied to a nonwoven fabric made of propylene, heated and polymerized to form a film.

これを97%硫酸に浸漬して、ゆるやかに3日間かけて
スルホン化処理した。次いで、これを−旦0.1規定の
苛性ソーダ中に浸漬したあと、ヘキサンとヨウ化メチル
からなる浴に浸漬して、ピリジン環をアルキル化処理し
た。
This was immersed in 97% sulfuric acid and gently sulfonated for 3 days. Next, this was immersed in 0.1N caustic soda for one hour, and then immersed in a bath consisting of hexane and methyl iodide to alkylate the pyridine ring.

このようにして得た両性イオン交換膜の陰イオン交換容
量は、1.42ミリ当量/グラム乾燥膜で、陰イオン交
換容量は0.61ミリ当量/グラム乾燥膜であった。
The anion exchange capacity of the amphoteric ion exchange membrane thus obtained was 1.42 meq/g dry membrane, and the anion exchange capacity was 0.61 meq/g dry membrane.

この両性イオン交換膜を用いて以下に示す二つの処理を
行なりた。
The following two treatments were performed using this amphoteric ion exchange membrane.

(、)  三塩化ルテニウムの水溶液中に膜を浸漬して
膜をルテニウムイオン壓に変換し、次いで水洗乾燥した
後、2%の一ロール水溶液中に浸漬したところ両性イオ
ン交換膜表面でビロールが含浸重合した。その後、水洗
およびメタノール洗浄をした。
(,) The membrane was immersed in an aqueous solution of ruthenium trichloride to convert it into ruthenium ion bottles, then washed with water and dried, and then immersed in a 2% aqueous solution of 1 roll, and the surface of the amphoteric ion exchange membrane was impregnated with virol. Polymerized. After that, it was washed with water and methanol.

(b)  過硫酸ソーダの5%水溶液中に浸漬して過硫
酸イオン型にしたのち、ビロールの3%水溶液中に浸漬
したところ両性イオン交換膜表面で一ロールが含浸重合
した。次いで、水洗およびメタノール洗浄をした。
(b) After being immersed in a 5% aqueous solution of sodium persulfate to form a persulfate ion form, the roll was immersed in a 3% aqueous solution of virol, and one roll was impregnated and polymerized on the surface of the amphoteric ion exchange membrane. Next, it was washed with water and methanol.

いずれの膜も1規定の塩酸水@液に浸漬し、本発明の隔
膜を合成した。
Each membrane was immersed in 1N hydrochloric acid solution to synthesize the diaphragm of the present invention.

これらの膜を陽極および塗板の各々にカーデンクロス電
極を有する電甑面櫃10α2である液流通型の単一池セ
ルに組み込み、1.5Mのクロムおよび1.5Mの鉄を
含ひ4規定の塩酸水溶液で、温度40℃、電流密度40
 mA/cm2において充・放電の実験を行なった。
These membranes were assembled into a liquid flow type single cell cell of 10α2 type with a carden cross electrode on each of the anode and the coated plate, and a 4N cell containing 1.5M chromium and 1.5M iron was used. Hydrochloric acid aqueous solution, temperature 40℃, current density 40
Charge/discharge experiments were conducted at mA/cm2.

結果を第1表に示す。The results are shown in Table 1.

第1表 他方、比較のだめアルキル化処理して得た両性イオン交
換膜を比較膜として使用した。
Table 1 On the other hand, an amphoteric ion exchange membrane obtained by alkylation treatment was used as a comparative membrane.

実施例2および比較例2 スチレン100部、 N、N’−ゾオクチルアシノメチ
ルスチレン80部、純度約55悌のノビニルベンゼン2
0部およびジオクチルフタレート10部の混合物にポリ
塩化ビニルの微粉末を加えて得たペースト状混合物にア
ゾイソブチロニトリルを加え、これをポリ塩化ビニル製
の布に塗布し、加熱重合して膜状物とした。これを95
%以上の硫酸に浸漬してゆるやかに2日間かけてスルホ
ン化処理した。次いで、これを0.1規定の力性ソータ
中に浸漬したあと、n−へブタンとブチルブロマイドか
らなる液に浸漬し、アルキル化処理した。
Example 2 and Comparative Example 2 100 parts of styrene, 80 parts of N,N'-zooctylacinomethylstyrene, novinylbenzene with a purity of about 55 °C 2
Add azoisobutyronitrile to a paste mixture obtained by adding fine powder of polyvinyl chloride to a mixture of 0 parts of 0 parts and 10 parts of dioctyl phthalate, apply this to a cloth made of polyvinyl chloride, and polymerize it by heating to form a film. It was made into a shape. This is 95
% or more of sulfuric acid and was gently sulfonated for 2 days. Next, this was immersed in a 0.1 normal force sorter, and then immersed in a liquid consisting of n-hebutane and butyl bromide for alkylation treatment.

この様にして得だ両性イオン交換膜の陽イオン交換容量
は、1.21ミリ当量/グラム乾燥膜で陰イオン交換容
量0.85ミlJ当量/グラム乾燥膜であった。
The cation exchange capacity of the amphoteric ion exchange membrane thus obtained was 1.21 meq/g dry membrane and the anion exchange capacity 0.85 milJ equiv/g dry membrane.

この両性イオン交換膜を用いて、以下に示す三つの処理
を行なった。
Using this amphoteric ion exchange membrane, the following three treatments were performed.

(、)  膜を塩化第2鉄の5%水溶液中に浸漬し、陽
イオン交換基の部分に鉄イオンをイオン交換し、水洗後
、ピロールの2%エタノール溶液中に浸漬したところ、
膜表面の陽イオン交換基が存在する部分でピロールが重
合した。次いで水洗およびメタノール洗浄した。
(,) When the membrane was immersed in a 5% aqueous solution of ferric chloride to ion-exchange iron ions to the cation exchange group, and after washing with water, it was immersed in a 2% ethanol solution of pyrrole.
Pyrrole polymerized on the membrane surface where cation exchange groups existed. Then, it was washed with water and methanol.

(b)  膜を5チの一ロールが分散した水溶夜中に浸
漬し、室温で4時間攪拌し、次に過硫酸アンモニウムの
10チ水溶液に浸漬しビロールを重合させたのち、水洗
、メタノール洗浄した。
(b) The membrane was immersed overnight in an aqueous solution in which 1 roll of 5T was dispersed, stirred at room temperature for 4 hours, then immersed in an aqueous solution of 10T of ammonium persulfate to polymerize the virol, and then washed with water and methanol.

(c)  膜を2室に分割したセルに組み込み、一方の
室に塩化第2鉄の5チ水溶液を入れ平衡にして、第2鉄
イオン型とした。次いでビロールの2%水溶液をもう一
方の室に入れ、膜の片表面で重合させた。そののち、水
洗およびメタノールで洗浄した。
(c) The membrane was assembled into a cell divided into two chambers, and a 5-thi aqueous solution of ferric chloride was placed in one chamber for equilibrium to form a ferric ion type cell. A 2% aqueous solution of virol was then introduced into the other chamber and allowed to polymerize on one surface of the membrane. After that, it was washed with water and methanol.

このいずれの膜も1規定の塩酸に浸漬し、本発明の隔膜
を合成した。
Both of these membranes were immersed in 1N hydrochloric acid to synthesize the diaphragm of the present invention.

他方、比較のだめ実施例2で得た両性イオン交換膜を比
較膜として用いた。
On the other hand, the amphoteric ion exchange membrane obtained in Example 2 was used as a comparative membrane.

これらの膜を以下、実施例1と同様にして充・放電実験
を行なった。その結果を第2表に示す。
Charge/discharge experiments were conducted on these films in the same manner as in Example 1. The results are shown in Table 2.

第2表 実施例3および比較例3 スチレン50部、ブタノエン30部、およびN、N’−
ツメチルビニルベンジルアミン50 部t !Jピング
アニオン重合してブロック共重合体を合成した。これを
平板上にキャスティングしてフィルムとした。このフィ
ルムを硫酸によってスルホン化してスルホン酸基を導入
して、次いでメタノールで置換したのち、沃化メチルで
処理して第4級アンモニウム基を導した。
Table 2 Example 3 and Comparative Example 3 50 parts of styrene, 30 parts of butanoene, and N, N'-
50 parts of trimethylvinylbenzylamine! A block copolymer was synthesized by J-ping anionic polymerization. This was cast onto a flat plate to form a film. This film was sulfonated with sulfuric acid to introduce sulfonic acid groups, then substituted with methanol, and then treated with methyl iodide to introduce quaternary ammonium groups.

この様にして得た膜を、三塩化鉄の水溶液中に浸漬して
、鉄イオンを陽イオン交換基にイオン交換させた。
The membrane thus obtained was immersed in an aqueous solution of iron trichloride to exchange iron ions with cation exchange groups.

次いで、これをピロールの2チのアセトニトリル溶液中
に浸漬しビロールを含浸させ酸化重合した。その後、水
洗、メタノール洗浄し、更に1規定の塩酸に浸漬し、本
発明の隔膜を得た。
Next, this was immersed in an acetonitrile solution of pyrrole to impregnate it with pyrrole and oxidatively polymerized. Thereafter, it was washed with water and methanol, and further immersed in 1N hydrochloric acid to obtain a diaphragm of the present invention.

他方、比較のため、実施例3の酸化重合していない膜を
比咬嘆として用いた。
On the other hand, for comparison, the membrane of Example 3, which had not been oxidized and polymerized, was used as a comparative bite.

この膜を以下、実施グ]1と同様にして充・放電実験を
行なった。その結果を第3表に示す。
A charging/discharging experiment was conducted on this film in the same manner as in Example 1 below. The results are shown in Table 3.

第3表 実施例4 スルホン酸基が結合したイオン交換容量が2.3ミリ当
′fk/ダラム乾燥膜である陽イオン交換膜を塩化第2
鉄の5チ水溶液中に浸漬し、平衡にしてfJ2鉄イオン
型とした。
Table 3 Example 4 A cation exchange membrane having an ion exchange capacity of 2.3 mEfk/Durham dry membrane with sulfonic acid groups bound thereto was
It was immersed in an aqueous solution of iron and equilibrated to form the fJ2 iron ion type.

次いで、−ロールの2チ水溶液中に浸漬し攪拌した。3
0分後に取り出し、水洗、エタノールで洗浄後、1規定
の塩酸中に浸漬し、くり返し塩酸をとりかえた。螢光X
線によって鉄の吸収を見たところ、膜から鉄は除去され
ていた。こうして本発明の隔膜を得た。
Next, two rolls were immersed in the aqueous solution and stirred. 3
After 0 minutes, it was taken out, washed with water and ethanol, and then immersed in 1N hydrochloric acid, and the hydrochloric acid was replaced repeatedly. Fluorescent X
When we looked at the absorption of iron using the wire, we found that iron had been removed from the membrane. In this way, the diaphragm of the present invention was obtained.

他方、比較のため、実施例4の陽イオン交換膜を比較膜
として用いた。
On the other hand, for comparison, the cation exchange membrane of Example 4 was used as a comparative membrane.

この漠を以下、実施例1と同様にして充・放電実験を行
なった。その結果を第4表に示す。
Hereinafter, charging and discharging experiments were conducted in the same manner as in Example 1. The results are shown in Table 4.

第4表Table 4

Claims (1)

【特許請求の範囲】[Claims] 1)イオン交換膜の少なくとも一方の表面に、ピロール
化合物の重合体を1×10^−^6〜5×10^−^1
mg/cm^2存在させたレドックスフロー電池用隔膜
1) On at least one surface of the ion exchange membrane, apply a polymer of pyrrole compound from 1×10^-^6 to 5×10^-^1
A diaphragm for redox flow batteries in which mg/cm^2 is present.
JP61195575A 1986-08-22 1986-08-22 Redox flow battery diaphragm Expired - Lifetime JPH0638340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61195575A JPH0638340B2 (en) 1986-08-22 1986-08-22 Redox flow battery diaphragm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61195575A JPH0638340B2 (en) 1986-08-22 1986-08-22 Redox flow battery diaphragm

Publications (2)

Publication Number Publication Date
JPS6353860A true JPS6353860A (en) 1988-03-08
JPH0638340B2 JPH0638340B2 (en) 1994-05-18

Family

ID=16343410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61195575A Expired - Lifetime JPH0638340B2 (en) 1986-08-22 1986-08-22 Redox flow battery diaphragm

Country Status (1)

Country Link
JP (1) JPH0638340B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006028292A1 (en) * 2004-09-10 2008-05-08 株式会社トクヤマ Membrane for fuel cell and manufacturing method thereof
JP2013168364A (en) * 2012-01-20 2013-08-29 Asahi Kasei E-Materials Corp Electrolyte membrane for redox flow secondary battery
JP2015523697A (en) * 2012-07-27 2015-08-13 ロッキード・マーティン・アドバンスト・エナジー・ストレージ・エルエルシーLockheed Martin Advanced EnergyStorage, LLC Redox flow battery with compatible ionomer membrane
US9768463B2 (en) 2012-07-27 2017-09-19 Lockheed Martin Advanced Energy Storage, Llc Aqueous redox flow batteries comprising metal ligand coordination compounds
US9865893B2 (en) 2012-07-27 2018-01-09 Lockheed Martin Advanced Energy Storage, Llc Electrochemical energy storage systems and methods featuring optimal membrane systems
US9899694B2 (en) 2012-07-27 2018-02-20 Lockheed Martin Advanced Energy Storage, Llc Electrochemical energy storage systems and methods featuring high open circuit potential
US10483581B2 (en) 2012-07-27 2019-11-19 Lockheed Martin Energy, Llc Electrochemical energy storage systems and methods featuring large negative half-cell potentials
CN111013669A (en) * 2019-12-04 2020-04-17 大连融科储能技术发展有限公司 Cation exchange membrane and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101265201B1 (en) 2011-04-18 2013-05-24 삼성에스디아이 주식회사 Separator for redox flow battery and redox flow battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59205491A (en) * 1983-04-23 1984-11-21 バスフ アクチェン ゲゼルシャフト Ion exchange membrane comprising pyrrole compound polymer
JPS60160560A (en) * 1984-01-31 1985-08-22 Asahi Glass Co Ltd Diaphragm for cell use

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59205491A (en) * 1983-04-23 1984-11-21 バスフ アクチェン ゲゼルシャフト Ion exchange membrane comprising pyrrole compound polymer
JPS60160560A (en) * 1984-01-31 1985-08-22 Asahi Glass Co Ltd Diaphragm for cell use

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006028292A1 (en) * 2004-09-10 2008-05-08 株式会社トクヤマ Membrane for fuel cell and manufacturing method thereof
JP4989226B2 (en) * 2004-09-10 2012-08-01 株式会社トクヤマ Membrane for fuel cell and manufacturing method thereof
JP2013168364A (en) * 2012-01-20 2013-08-29 Asahi Kasei E-Materials Corp Electrolyte membrane for redox flow secondary battery
US9899694B2 (en) 2012-07-27 2018-02-20 Lockheed Martin Advanced Energy Storage, Llc Electrochemical energy storage systems and methods featuring high open circuit potential
US9768463B2 (en) 2012-07-27 2017-09-19 Lockheed Martin Advanced Energy Storage, Llc Aqueous redox flow batteries comprising metal ligand coordination compounds
US9865893B2 (en) 2012-07-27 2018-01-09 Lockheed Martin Advanced Energy Storage, Llc Electrochemical energy storage systems and methods featuring optimal membrane systems
JP2015523697A (en) * 2012-07-27 2015-08-13 ロッキード・マーティン・アドバンスト・エナジー・ストレージ・エルエルシーLockheed Martin Advanced EnergyStorage, LLC Redox flow battery with compatible ionomer membrane
JP2018142548A (en) * 2012-07-27 2018-09-13 ロッキード マーティン エナジー, エルエルシーLockheed Martin Energy, Llc Redox flow battery including suitable ionomeric membrane
US10483581B2 (en) 2012-07-27 2019-11-19 Lockheed Martin Energy, Llc Electrochemical energy storage systems and methods featuring large negative half-cell potentials
US10651489B2 (en) 2012-07-27 2020-05-12 Lockheed Martin Energy, Llc Electrochemical energy storage systems and methods featuring optimal membrane systems
US10707513B2 (en) 2012-07-27 2020-07-07 Lockheed Martin Energy, Llc Aqueous redox flow batteries comprising metal ligand coordination compounds
CN111013669A (en) * 2019-12-04 2020-04-17 大连融科储能技术发展有限公司 Cation exchange membrane and preparation method and application thereof
CN111013669B (en) * 2019-12-04 2022-09-06 大连融科储能技术发展有限公司 Cation exchange membrane and preparation method and application thereof

Also Published As

Publication number Publication date
JPH0638340B2 (en) 1994-05-18

Similar Documents

Publication Publication Date Title
US4169023A (en) Electrolytic diaphragms, and method of electrolysis using the same
US4101395A (en) Cathode-structure for electrolysis
US5401408A (en) Bipolar membrane
JP3452358B2 (en) Electrochemical device for energy storage and / or power delivery with multi-compartment cell
US4090931A (en) Anode-structure for electrolysis
US3657104A (en) Bifunctional cation exchange membranes and their use in electrolyticcells
US4976860A (en) Conjugated polymer-cation exchanger composite membrane
WO2003003483A2 (en) Redox cell with non-selective permionic separator
KR20180134869A (en) Bipolar membrane
US2731411A (en) Electrically conductive membranes and the like comprising the sulfonated polymerizates of polyvinyl aryl compounds
JPS6353860A (en) Diaphragm fro redox flow cell
KR20150049753A (en) Amphoteric ion exchange membrane used for redox flow battery having low ion permeablility for vanadium ion and redox flow battery including the same
US4166014A (en) Electrolytic diaphragms, and method of electrolysis using the same
JPH10208767A (en) Diaphragm for vanadium-based redox flow cell and manufacture thereof
US4806219A (en) Method of double decomposition of neutral salt
JPH0443099B2 (en)
JP3261425B2 (en) Solid ionic conductor
Chieng Membrane processes and membrane modification for redox flow battery applications
JPS63118338A (en) Modified ion exchange membrane
JPS63270505A (en) Separation method
JPS6323933A (en) Production of ion exchanger
JPS6353861A (en) Diaphgram for redox flow cell
JPS6333428A (en) Production of ion exchange material
JPS63141271A (en) Electric cell
JPH0634929B2 (en) Improved anion exchange membrane