JPS5925813B2 - anion exchange membrane - Google Patents

anion exchange membrane

Info

Publication number
JPS5925813B2
JPS5925813B2 JP57153839A JP15383982A JPS5925813B2 JP S5925813 B2 JPS5925813 B2 JP S5925813B2 JP 57153839 A JP57153839 A JP 57153839A JP 15383982 A JP15383982 A JP 15383982A JP S5925813 B2 JPS5925813 B2 JP S5925813B2
Authority
JP
Japan
Prior art keywords
membrane
polymer
exchange membrane
anion exchange
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57153839A
Other languages
Japanese (ja)
Other versions
JPS5859226A (en
Inventor
研介 藻谷
俊勝 佐田
正勝 西村
昭彦 中原
信行 倉元
順一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP57153839A priority Critical patent/JPS5925813B2/en
Publication of JPS5859226A publication Critical patent/JPS5859226A/en
Publication of JPS5925813B2 publication Critical patent/JPS5925813B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 本発明は、改良された陰イオン交換膜に関する。[Detailed description of the invention] The present invention relates to improved anion exchange membranes.

すなわち、本発明は、熱伝導性の基材を芯材として用い
た陰イオン交換膜を提供する。従来、陰イオンは電気透
析用として種々提案されている。
That is, the present invention provides an anion exchange membrane using a thermally conductive base material as a core material. Conventionally, various anions have been proposed for use in electrodialysis.

しかし、それらに共通して言える欠陥は、低電流効率で
あるか、さもなければ膜の耐久性に問題がある。もとも
と電流効率が低い場合はとも角そうでない場合は、通電
当初は良好な性能を示す膜でも、次第に電気抵抗、電流
効率等の性能面及び機械的強度等の物性面で劣化が認め
られるようになる。このような劣化の原因としては種々
考えられるが、電流密度を上昇させた場合に劣化の進行
が著しいことから、おそらくは通電時の膜内部での発熱
が一つの大きな原因であろうと推察される。
However, their common drawback is low current efficiency or otherwise poor membrane durability. In some cases, the current efficiency may be low to begin with, but in other cases, even if the film exhibits good performance at the beginning of current application, deterioration may gradually be observed in terms of performance such as electrical resistance and current efficiency, and physical properties such as mechanical strength. Become. Although various causes of such deterioration can be considered, since the deterioration progresses significantly when the current density is increased, it is inferred that one major cause is probably heat generation inside the membrane during energization.

すなわち、このような発熱が電流分布や膜組成の不均一
さ等ともに関係して、膜内部で局部的に可成りの温度上
昇を起し、そのために膜が劣化するのであろう。本発明
者等は、上記の点に留意し、種々検討した結果、陰イオ
ン交換膜の芯材すなわちバッキングとして熱伝導性の基
材すなわち熱伝導性の材質から成るものを用いることに
より、叙上の問題の解決が可能であることを見出した。
In other words, such heat generation is associated with current distribution, non-uniformity of film composition, etc., and causes a considerable local temperature rise inside the film, which causes the film to deteriorate. Keeping the above points in mind, the present inventors have conducted various studies, and as a result of using a thermally conductive base material, i.e., a thermally conductive material, as the core material, i.e., backing, of the anion exchange membrane. We found that it is possible to solve this problem.

ここで、熱伝導性の材質から成る芯材を用いた場合の利
点は、次の如くに解釈される。
Here, the advantage of using a core material made of a thermally conductive material can be interpreted as follows.

すなわち、芯材が熱の良導体として膜内部で発生した熱
の分散をたすけるものであろう。膜自体が電気抵抗を有
している以上、程度の差こそあれ、通電時の発熱は免れ
得ない。熱伝導性の材質で構成された芯材は発生した熱
を運び去り、局部的な異常な温度上昇を妨げると共に、
全体的にも温度の上昇を抑える方向に働く。このように
して、温度上昇に基づく膜の劣化が抑制されるものであ
ろう。本発明における芯材に用いる基材としては熱伝導
性のものであれば特に制限されないが一般には、熱伝導
率がO、0Olcal、/ sec−CTn・℃以上好
ましくはO、005cal/ sec−c−IrL・℃
以上であるものが良好に用いられる。
In other words, the core material serves as a good thermal conductor and helps disperse the heat generated inside the membrane. Since the membrane itself has electrical resistance, it is inevitable that heat will be generated when electricity is applied, although there may be differences in degree. The core material made of thermally conductive material carries away the generated heat and prevents localized abnormal temperature rises.
Overall, it works to suppress the rise in temperature. In this way, deterioration of the film due to temperature rise will be suppressed. The base material used for the core material in the present invention is not particularly limited as long as it is thermally conductive, but in general, it has a thermal conductivity of O. -IrL・℃
Those having the above-mentioned properties are preferably used.

具体的には金属あるいは炭素質の網状物が特に好適に用
いられる。以下、芯材として網状物を代表させて説明す
る。金属網状物としては、構成金属が電解条件において
極度に侵かされるものでなければ、特に制限はない。
Specifically, metal or carbonaceous nets are particularly preferably used. Hereinafter, a net-like material will be explained as a representative core material. There are no particular limitations on the metal network as long as the constituent metals are not severely eroded under electrolytic conditions.

例えば、Ti、Zr、Nb、、Ta、、Mo、W、Fe
、Co、Ni、Cu、Ag、Au、、Ru、Rh、、P
d、、Co、、Ir−、pt−り−Cr−Mn゛o金属
またはそれらの合金が好適に使用できる。また炭素質網
状物としては、各種炭素繊維で構成される織布、マツト
類等の他、黒鉛フイルムの如きものも使用できる。これ
らの膜状物の形状には、特に制限はないが、極端に厚い
ものは、電槽を徒らに大きくする他、膜自体の電気抵抗
を増大させる意味で好ましくない。
For example, Ti, Zr, Nb, Ta, Mo, W, Fe
, Co, Ni, Cu, Ag, Au, , Ru, Rh, , P
d, Co, Ir-, pt-ri-Cr-Mno metals or alloys thereof can be suitably used. Further, as the carbonaceous net-like material, in addition to woven fabrics and mats made of various carbon fibers, materials such as graphite film can also be used. There are no particular restrictions on the shape of these membranes, but extremely thick membranes are undesirable because they not only make the battery case unnecessarily large but also increase the electrical resistance of the membrane itself.

一般に厚さ5mm以下、好ましくは2mW!以下で0.
05mm以上のものが好適に用いられる。また、網目の
形状についても制限はなく、種々の織り方のものが好適
に用いられる他、多孔板やスポンジ状のもの、不織布も
使用して何等遜色がない。すなわちここに言う網状物と
は、網以外に多孔板やスポンジ状物をも含めた多孔板の
総称である。更に網状物の目(空隙)の大きさは、一般
にはイオンの通過を妨げない程度以上であれば特に制限
はないが、極端に目開きの大きいものでは効果が薄れる
ので、通常は5mmの径または角以下、好ましくは1m
mの径または角以下のものが好適に使用される。また、
上記網状物はイオン交換膜の芯材として用いられるもの
であるから、イオン交換樹脂分との親和性を向上させる
ために、該網状物の表面をエツチング等により適宜加工
しておくことも行つて効果がある。
Generally less than 5mm thick, preferably 2mW! Below is 0.
A diameter of 0.05 mm or more is preferably used. Furthermore, there is no restriction on the shape of the mesh, and in addition to various weaving methods, perforated plates, sponge-like materials, and non-woven fabrics may also be used without any inferiority. That is, the net-like material referred to herein is a general term for perforated plates including perforated plates and sponge-like materials in addition to nets. Furthermore, the size of the openings (voids) in the mesh is generally not limited as long as it does not impede the passage of ions, but if the openings are extremely large, the effect will be diminished, so a diameter of 5 mm is usually used. or below the corner, preferably 1m
A diameter or angle of less than m is preferably used. Also,
Since the above net-like material is used as the core material of the ion exchange membrane, the surface of the net-like material may be appropriately processed by etching etc. in order to improve the affinity with the ion exchange resin. effective.

更に、興味深いことは、上記のような陰イオン交換膜の
芯材に、該イオン交換膜のイオン交換基が有する電荷と
同一符号の電位を、該イオン交換膜の外部から荷して例
えば電解を行うことにより得られる。
Furthermore, what is interesting is that the core material of the anion exchange membrane as described above is charged with a potential of the same sign as the charge possessed by the ion exchange groups of the ion exchange membrane from outside the ion exchange membrane, for example, to cause electrolysis. Obtained by doing.

すなわち、一般に、熱伝導性の基材は、同時に、全て電
気伝導性であることから、芯材に、電位を荷すことより
、芯材全体が略々同電位に保たれることになる。そして
、このような電位は、その大きさを適当に調節すること
により、陰イオン交換膜の芯材に正の電位を荷した場合
は陽イオンの通過を妨げ、イオン交換膜の選択通過性を
一層向上させる如く作用する。なお、芯材に電位を荷す
場合、芯材自体が電極として作用しない程度の電位に留
めねばならぬことは言うまでもない。
That is, since all thermally conductive base materials are generally electrically conductive at the same time, by applying a potential to the core material, the entire core material is maintained at approximately the same potential. By appropriately adjusting the magnitude of this potential, if a positive potential is applied to the core material of the anion exchange membrane, it will prevent the passage of cations and reduce the selective passage of the ion exchange membrane. It acts to further improve the results. It goes without saying that when a potential is applied to the core material, the potential must be kept to such an extent that the core material itself does not function as an electrode.

また芯材として用いる熱伝導性従つてまた電気伝導性を
有する基材に、イオン交換性を有するあるいはイオン交
換性に変換しうる高分子物質を付着せしめるときに、芯
材となる基材と該高分子物質の間に絶縁性物質を介して
いてもよい。
In addition, when a polymeric substance having ion exchange properties or which can be converted into ion exchange properties is attached to a thermally conductive and electrically conductive base material used as a core material, the base material that will become the core material and the An insulating material may be interposed between the polymer materials.

例えば予め芯材となる基材を電気伝導性、イオン電導性
を有しない物質で被覆して後、イオン交換性を有するあ
るいは容易にイオン交換性を賦与しうる物質を付着せし
めて後、必要によりイオン交換基の導入をしてもよい。
このような場合には、熱伝導性、電気伝導性の芯材に賦
与する電位は特に限定的ではない。すなわち、数Vから
数100Vの電位を賦与してもよい。ところで、前記の
ように陰イオン交換膜の芯材に賦与される電位は、一定
の電位を持続して賦与してもよいが、また間歇的に賦与
してもよい。
For example, after coating the base material that will become the core material in advance with a substance that does not have electrical conductivity or ion conductivity, and then attaching a substance that has ion exchange properties or that can easily impart ion exchange properties, if necessary, An ion exchange group may be introduced.
In such a case, the potential applied to the thermally conductive and electrically conductive core material is not particularly limited. That is, a potential of several volts to several hundred volts may be applied. Incidentally, as described above, the potential applied to the core material of the anion exchange membrane may be applied continuously at a constant potential, or may be applied intermittently.

あるいは交流を整流して得た脈流波であつてもよい。こ
のとき脈流の周期は特に限定的ではない。あるいは通常
電子工業において用いられる鋸波型の電位を適用しても
よい。また、熱伝導性、電気伝導性をもつ芯材の多くは
、機械的強度に優れたものが多いので所謂芯材としての
補強面での働きにおいても他に遜色がない。
Alternatively, it may be a pulsating wave obtained by rectifying alternating current. At this time, the period of the pulsating flow is not particularly limited. Alternatively, a sawtooth potential commonly used in the electronics industry may be applied. In addition, many of the core materials having thermal conductivity and electrical conductivity have excellent mechanical strength, so that they are comparable to others in terms of reinforcing function as a so-called core material.

更に、芯材の形状を適当に保つことにより、複雑な形状
の膜を造ることも可能である。一すなわち、芯材の形状
を適宜選択し、それにイオン交換樹脂分を被覆させれば
よい。例えば、必要な曲面に適合する金型を造り、その
間に芯材を芯として挟んだ上単量体混合物を流し込んで
重合成型するとかあるいは熱可塑性の樹脂分を芯材と共
に加熱加圧成型する等、または平板状のものを作りこれ
を製膜後任意の形状に変形する方法等種々の方式により
望みの形状のイオン交換膜を造ることができる。本発明
に使用する陰イオン交換樹脂膜の種類は、特に制限なく
場合に応じて適宜使い分けることが出来る。
Furthermore, by maintaining the shape of the core material appropriately, it is also possible to create membranes with complex shapes. In other words, the shape of the core material may be appropriately selected and the ion exchange resin may be coated on it. For example, a mold that fits the required curved surface is made, a core material is sandwiched between the molds, and the upper monomer mixture is poured into the mold for polymerization, or a thermoplastic resin is heated and pressure molded together with the core material. An ion exchange membrane in a desired shape can be produced by various methods such as a method in which a flat plate is formed and then transformed into an arbitrary shape after film formation. The type of anion exchange resin membrane used in the present invention is not particularly limited and can be appropriately selected depending on the case.

また、金属あるいは炭素質の網状物を芯材として膜を製
造する方法は何ら制限されず、通常の技術者が想到し得
る任意の方法が採用される。以下、熱伝導性の基材を芯
材として用いた陰イオン交換膜の製造法について若干の
例を示す。(1)不均一系の陰イオン交換膜の場合には
、重合系、縮合系の陰イオン交換樹脂あるいは無機のイ
オン交換体の微粉末を適当な熱可塑性高分子と均一に混
合し、これに網状物を埋込んで膜状に加熱成型すればよ
い。また上記微粉末イオン交換樹脂を線状高分子を溶解
した粘稠なポリマー溶液中に均一に分散し、これを塗布
、浸漬、噴霧等によつて網状物を被覆し溶媒を飛散させ
て膜状としてもよい。あるいは無機のイオン交換体等と
セメントを混和したものの中に網状物を埋込んで膜状と
してもよい。このように、従来公知の不均一系イオン交
換膜製造の際の技術を適用して網状物入りイオン交換膜
を製造することができる。(2)同様に、均一系の陰イ
オン交換膜についても従来一般に均一系イオン交換膜製
造のために提案されている各種の技術を適用して網状物
入りイオン交換膜をつくることができる。
Further, the method of manufacturing a membrane using a metal or carbonaceous mesh material as a core material is not limited in any way, and any method that can be conceived by a normal engineer may be adopted. Some examples of methods for producing anion exchange membranes using a thermally conductive base material as a core material will be shown below. (1) In the case of a heterogeneous anion exchange membrane, a fine powder of a polymerized or condensed anion exchange resin or an inorganic ion exchanger is uniformly mixed with an appropriate thermoplastic polymer, and then What is necessary is to embed a mesh material and heat mold it into a film shape. In addition, the above-mentioned fine powder ion exchange resin is uniformly dispersed in a viscous polymer solution in which a linear polymer is dissolved, and the net is coated with this by coating, dipping, spraying, etc., and the solvent is scattered to form a film. You can also use it as Alternatively, a membrane may be formed by embedding a mesh in a mixture of an inorganic ion exchanger or the like and cement. In this way, a network-containing ion exchange membrane can be manufactured by applying conventionally known techniques for manufacturing heterogeneous ion exchange membranes. (2) Similarly, for a homogeneous anion exchange membrane, a network-containing ion exchange membrane can be manufactured by applying various techniques conventionally proposed for manufacturing a homogeneous ion exchange membrane.

更に具体的に説明すれば、例えばビニル、アリル等の重
合性官能基を有する単量体を用い塗布、浸漬、噴霧等の
手段によつて直接網状物を被覆しこれを加熱重合する態
様があげられる。
More specifically, for example, there is an embodiment in which a monomer having a polymerizable functional group such as vinyl or allyl is used to directly coat the net-like material by means such as coating, dipping, or spraying, and then heat-polymerize it. It will be done.

この場合、重合原料液の垂れを防ぐ必要がある場合は、
網状物の形状に応じ重合原料の粘度を調節したりあるい
は、セロフアン等の適当なフイルム状のもので被覆すれ
ばよい。ここで用いられる液状の粘稠な塗布液は、含弗
素系ビニル、アリールモノマーを一種以上用いたもので
あり、粘度を上げるために適宜可溶性耐酸化性高分子微
粉状分散性の耐酸化性の高分子を存在させてもよい。こ
の適当に混合した粘稠なものを用い、塗布、浸漬、噴霧
等の手段によつて直接網状物を被覆し、これを加圧ある
いは常圧下に加熱重合する他、必要に応じ他公知の手段
により陰イオン交換基の導入、陰イオン交換基への変換
を行えばよい。
In this case, if it is necessary to prevent the polymerization raw material solution from dripping,
The viscosity of the polymerization raw material may be adjusted depending on the shape of the net-like material, or it may be coated with a suitable film-like material such as cellophane. The liquid viscous coating solution used here uses one or more types of fluorine-containing vinyl and aryl monomers, and in order to increase the viscosity, it is appropriately coated with a soluble oxidation-resistant polymer finely dispersed oxidation-resistant polymer. A polymer may also be present. Using this appropriately mixed viscous material, directly coat the net-like material by means such as coating, dipping, or spraying, and polymerize this by heating under pressure or normal pressure, or use other known methods as necessary. Introduction of an anion exchange group and conversion to an anion exchange group may be carried out by using the method.

重合は、不溶な高分子構造物が構成されるならば、ラジ
カル的にも、イオン重合的にも、重合させてよく、放射
線、X線、光のエネルギー等を用いてもよい。また不活
性な高分子化合物を用いる方法も存する。
As long as an insoluble polymer structure is formed, the polymerization may be carried out by radical or ionic polymerization, and radiation, X-rays, light energy, etc. may be used. There is also a method using an inert polymer compound.

すなわち、熱可塑性高分子を加熱成形によつて網状物上
に付着させて薄い膜状物を形成させ、これに何らかの方
法でイオン交換基を導入するものである。高分子を付着
させる方法は特に制限されず例えば上記高分子化合物の
一種以上を適当な溶媒に溶解あるいは分散し、これの中
に上記網状物を浸漬し、溶媒を飛散させる方法、上記網
状物に該溶液、分散液を塗布、噴霧して溶媒を飛散させ
る方法、あるいは上記高分子物の微粉状のものを静電的
に荷電させ、他方網状物も反対電荷に荷電させて、微粉
状のものを静電的に付着させてこれを加熱し微粉状の高
分子を融着させて膜状物とする方法、上記高分子を高温
でかつ熱分解しない温度で融解してこれに例えば網状物
を浸漬付着させる方法、上記高分子を網状物を芯にして
成形する方法等が有効である。これらの方法は用いる高
分子化合物の種類、分子量等の高分子物の物囲値と網状
物の材質、形状及び網状物入りイオン交換膜の使用目的
によつて適宜最適の方法を選定すればよい。付着せしめ
た高分子化合物にはイオン交換基を導入しなければなら
ない。イオン交換基を導入する方法としては、付着した
高分子物がイオン交換基導入可能な高分子である場合に
は、これを直接イオン交換基導入試薬で網状物材質が著
しく腐食されないもので処理すればよい。また、この付
着した高分子化合物に重合可能なビニル、アリール化合
物を常温あるいは加温下に含浸させ同時にラジカル重合
開始剤を共存させて含浸した化合物が飛散しないような
条件下、例えば加圧下に加熱重合させればよい。この場
合架橋性ポリビニル化合物を共存させて三次元構造を形
成させてもよくあるいは線状のものであつてもよい。ま
た重合手段はラジカル重合に限定されず、カチオン重合
、アニオン重合、レドツクス重合であつてもよい。更に
上記付着した高分子物にあまりに大量のビニル、アリー
ル化合物が含浸して、寸法変化が著しくかつ機械的強度
が弱い場合には、含浸浴に適当な溶媒を添加し希釈して
含浸させ、含浸量を減少させてもよい。また含浸量が少
ない場合には予め付着した高分子物を溶媒で膨潤させて
後、単量体中に浸漬してもよい。勿論加温することによ
り含浸量を増大させることもできる。また、上記含浸法
の他に放射線等によつて付着した高分子物にビニル、ア
リール単量体をグラフト重合させてもよい。
That is, a thermoplastic polymer is attached onto a net-like material by thermoforming to form a thin film-like material, and ion exchange groups are introduced into this by some method. The method for attaching the polymer is not particularly limited, and for example, a method in which one or more of the above-mentioned polymer compounds is dissolved or dispersed in a suitable solvent, the above-mentioned net-like material is immersed in the solvent, and the solvent is scattered; A method in which the solution or dispersion is applied or sprayed to scatter the solvent, or a fine powder of the above-mentioned polymer is electrostatically charged, and the net-like material is also charged with an opposite charge. A method of electrostatically adhering the polymer and heating it to fuse the fine powder polymer to form a film-like material.A method of melting the above polymer at a high temperature that does not cause thermal decomposition and then applying a net-like material to the polymer. Effective methods include a method of immersion attachment and a method of molding the above-mentioned polymer using a net-like material as a core. The most suitable method may be selected depending on the type of polymer compound used, the range of the polymer such as molecular weight, the material and shape of the mesh, and the purpose of use of the ion exchange membrane containing the mesh. Ion exchange groups must be introduced into the attached polymer compound. As a method for introducing ion exchange groups, if the attached polymer is a polymer into which ion exchange groups can be introduced, it is necessary to directly treat it with an ion exchange group introduction reagent that does not significantly corrode the mesh material. Bye. In addition, the adhered polymer compound is impregnated with a polymerizable vinyl or aryl compound at room temperature or under heating, and at the same time, a radical polymerization initiator is coexisted so that the impregnated compound is not scattered under conditions such as heating under pressure. All you have to do is polymerize. In this case, a crosslinkable polyvinyl compound may be present to form a three-dimensional structure, or a linear structure may be formed. Further, the polymerization means is not limited to radical polymerization, and may be cationic polymerization, anionic polymerization, or redox polymerization. Furthermore, if the adhered polymer is impregnated with too much vinyl or aryl compound, resulting in significant dimensional changes and weak mechanical strength, add an appropriate solvent to the impregnation bath to dilute it and impregnate it. The amount may be decreased. If the amount of impregnation is small, the pre-adhered polymer may be swollen with a solvent and then immersed in the monomer. Of course, the amount of impregnation can also be increased by heating. In addition to the above-mentioned impregnation method, a vinyl or aryl monomer may be graft-polymerized onto a polymer attached by radiation or the like.

この場合予め付着した高分子に放射線を照射してラジカ
ルを形成させたのちに単量体中あるいは単量体混合物中
に浸漬してもよいし、浸漬したまま放射線を照射しても
よく、更には含浸させたのち放射線を照射して重合させ
てもよい。これら各種の方法のうち網状物入りイオン交
換膜の使用目的、付着した高分子物の種類、網状物の形
状、材質等によつて適宜最適のものを採用すればよ℃・
o以上、本発明の熱伝導性、電気伝導性の基材を芯材、
一般には網状物の芯材として用いた陰イオン交換膜を作
るための若千の例を示したが、以上の例示によつて本発
明が何ら限定されるものではない。
In this case, the pre-adhered polymer may be irradiated with radiation to form radicals and then immersed in the monomer or monomer mixture, or the polymer may be irradiated with radiation while being immersed. may be impregnated and then irradiated with radiation to polymerize. Among these various methods, the most suitable method should be adopted depending on the purpose of use of the ion exchange membrane containing the mesh, the type of polymer attached, the shape of the mesh, the material, etc.
o or above, the thermally conductive and electrically conductive base material of the present invention is used as a core material,
Although several examples for producing an anion exchange membrane generally used as a core material of a mesh have been shown, the present invention is not limited to the above examples in any way.

基本的には熱伝導性、電気伝導性の網状物と陰イオン交
換膜が何らかの方法で一体化しているものであればよい
。本発明は、陰イオン交換基を有する高分子体が膜状を
なし、かつ、その内部に網状物を含有していることであ
る。
Basically, any material may be used as long as the thermally conductive and electrically conductive network material and the anion exchange membrane are integrated in some way. The present invention is that a polymer having an anion exchange group is in the form of a membrane and contains a network within the membrane.

そして、微細な亀裂、ピンホールの存在も許されない。
すなわち、加圧下において水の透過が通常のイオン交換
樹脂膜程度しかないことが好ましい。すなわち、透水量
が10−5cc/Cd−Atm−Sec以下であること
が望ましい。また本発明の陰イオン交換樹脂部分に結合
して存在させるイオン交換基としてGζ従来公知の水溶
液中で正の電荷となりうる官能基なら何ら制限なく用い
られる。すなわち、一級、二級、三級アミン、第四級ア
ンモニウム、第三級スルホニウム第四級ホスホニウム、
アルソニウヘスチボニウム、ゴハルチシニウム等のオニ
ウム塩基類である。本発明のイオン交換膜を用いる態様
は、特に制限されず、陽極液と陰極液の混合が起らずか
つ陰イオンの選択透過が必要な系における電気透析、電
気分解に用いうる。以下、いくつかの実施例をあげるが
、本発明は、これらの実施例によつて何ら制限されるも
のではない。
Also, the presence of minute cracks and pinholes is not allowed.
That is, it is preferable that the permeation of water under pressure be as low as that of a normal ion exchange resin membrane. That is, it is desirable that the amount of water permeation is 10-5 cc/Cd-Atm-Sec or less. Further, as the ion exchange group bonded to the anion exchange resin portion of the present invention, any conventionally known functional group capable of becoming positively charged in an aqueous solution of Gζ can be used without any restriction. Namely, primary, secondary, tertiary amines, quaternary ammonium, tertiary sulfonium, quaternary phosphonium,
Onium bases such as arsonium stibonium and goharticinium. The embodiment using the ion exchange membrane of the present invention is not particularly limited, and can be used for electrodialysis and electrolysis in systems where mixing of the anolyte and catholyte does not occur and selective permeation of anions is required. Some examples will be given below, but the present invention is not limited to these examples in any way.

実施例 1 ポリ塩化ビニル微粉末100部、4−ビニルピリジン1
60部、スチレン10部、ジビニルベンゼン15部、ジ
オクチルフタレート25部、ベンゾイルパーオキサイド
3部よりなるペースト状混合物を厚さが0.3mmのニ
ツケルの100メツシユの金網に均一に脱気しながら塗
布してニツケルの金網を完全におおつた。
Example 1 100 parts of polyvinyl chloride fine powder, 1 part of 4-vinylpyridine
A paste mixture consisting of 60 parts of styrene, 10 parts of styrene, 15 parts of divinylbenzene, 25 parts of dioctyl phthalate, and 3 parts of benzoyl peroxide was uniformly applied to a 100-mesh nickel wire mesh with a thickness of 0.3 mm while degassing. completely covered the nickel wire mesh.

次いで、これの両面をセロフアンでおおい、90′Cで
8時間加熱重合して膜状高分子物を得た。該膜状物をメ
タノールとヨウ化メチルの1:1よりなる混合溶液にて
、25℃で10時間反応させ四級アンモニウム塩基を交
換基とする陰イオン交換膜とした。ここで得られた陰イ
オン交換膜を0.5NNaC1と1.0NHC1で充分
に平衡化したのちに、膜性質を測定したところ電気抵抗
は6.5Ω−Cdで、0.5NNaC1溶液を電気透析
して塩素イオン透過の電流効果を求めたところ98%で
あつた。なお、このとき電流密度は2A/Dm2であつ
た。実施例 2 2−メチル−5−ビニルピリジン250部、純度約50
%のジビニルベンゼン80部に、ポリイソブレン30部
を加え、ポリマー溶液としたのち、ベンゾイルパーオキ
サイド3部を加えて溶解し、ペースト状混合物を調製し
これに長さ約0.1CTI1の3デニール相当の炭素繊
維製のチヨツプを10部加えて、ホモゲナイザ一によつ
て均一に攪拌し分散させた。
Next, both sides of this were covered with cellophane and polymerized by heating at 90'C for 8 hours to obtain a film-like polymer. The membrane was reacted with a mixed solution of methanol and methyl iodide in a ratio of 1:1 at 25° C. for 10 hours to obtain an anion exchange membrane having a quaternary ammonium base as an exchange group. After fully equilibrating the anion exchange membrane obtained here with 0.5N NaCl and 1.0NHC1, the membrane properties were measured and found that the electrical resistance was 6.5Ω-Cd.The 0.5N NaCl solution was electrodialyzed. The current effect on chlorine ion permeation was determined to be 98%. Note that the current density at this time was 2 A/Dm2. Example 2 250 parts of 2-methyl-5-vinylpyridine, purity approximately 50
To 80 parts of divinylbenzene, 30 parts of polyisobrene was added to form a polymer solution, and then 3 parts of benzoyl peroxide was added and dissolved to prepare a paste mixture. 10 parts of carbon fiber chips were added and uniformly dispersed by stirring with a homogenizer.

次いでこれを120デニールの糸で、打ち込み本数が縦
・横ともに36本の炭素繊維製の布に均一に脱気しなが
ら塗布し両面をポリピニルァルコール製のシートでおお
い、90℃で8時間加熱重合し高分子膜状物を得た。炭
素繊維の織布の目の間に均一に炭素繊維のチヨツプが分
散し、電気伝導性をもつていた。次いで、膜状高分子物
をヨウ化メチルとメタノールの1:1溶液中に25゜C
で16時間浸漬して強塩基性陰イオン交換膜を得た。
Next, this was applied with a 120 denier thread to a carbon fiber cloth with 36 threads in both length and width, while degassing it evenly, and both sides were covered with a polypynyl alcohol sheet and heated at 90°C for 8 hours. Polymerization was carried out by heating to obtain a polymer membrane. Carbon fiber chips were evenly distributed between the meshes of the carbon fiber woven fabric, and it had electrical conductivity. Next, the film-like polymer was placed in a 1:1 solution of methyl iodide and methanol at 25°C.
A strongly basic anion exchange membrane was obtained by immersing the membrane in water for 16 hours.

この膜の電気抵抗は3.8Ω−Cdであつた。また0.
5NNaC1と2.5NNaC1の間で発生した膜電位
から求めた輪率は0.94であつた。他方、上記ペース
ト状混合物をそのままポリ塩化ビニル製の織布(120
デニール、打込み本数、縦・横ともに35本)に塗布し
両面をポリビニルアルコール製のシートでおおい、同じ
く90℃で、8時間加熱重合したのちに、沃化メチルと
メタノールの1:1溶液中に25℃で16時間浸漬して
強塩基性陰イオン交換膜とした。
The electrical resistance of this film was 3.8Ω-Cd. Also 0.
The ring ratio determined from the membrane potential generated between 5NNaC1 and 2.5NNaC1 was 0.94. On the other hand, the above paste-like mixture was directly transferred to a polyvinyl chloride woven fabric (120
(denier, number of shots, 35 pieces both vertically and horizontally), covered both sides with a polyvinyl alcohol sheet, heated and polymerized at 90°C for 8 hours, and then soaked in a 1:1 solution of methyl iodide and methanol. The membrane was immersed at 25° C. for 16 hours to obtain a strongly basic anion exchange membrane.

この膜の電気抵抗は3.9Ω−Cdで、0.5NNaC
1と2.5NNaC1の間で発生した膜電位から求めた
輪率は0.94であつた。さて、この補強材の異なる二
枚の陰イオン交換膜を用いて、次の実験を行つた。
The electrical resistance of this film is 3.9Ω-Cd and 0.5NNaC
The ring ratio determined from the membrane potential generated between 1 and 2.5N NaC1 was 0.94. The following experiment was conducted using two anion exchange membranes with different reinforcing materials.

すなわち、銀・塩化銀電極を備えたアクリル製の二室用
のセルに膜をはさみ両室に0.1NNaC1溶液を満た
し、5A/Dm2の電流密度で3時間電気透析をした。
なお、膜の両側の液は激しく攪拌し、膜の有効通電面積
は20cdであつた。電気透析当初は、溶液の温度は2
8℃であつたが、3時間電気透析をしたところ、炭素繊
維補強の本発明の膜を用いたときは液溜は両室とも75
℃になつていた。また、ポリ塩化ビニルの織布で補強し
たものを用いたときは液溜は76℃であつた。電流効率
はそれぞれ99%と97%であつた。次いで同じ膜を用
いてくり返し同じ条件で電気透析を6時間行い電流効率
を求めたところ、炭素繊維補強のものは99%で変らな
かつたが、ポリ塩化ビニル織布で補強したものは94%
に下つていた。また電気透析して使用したそれぞれの膜
の4級化率を求めた。
That is, the membrane was sandwiched between a two-chamber acrylic cell equipped with silver/silver chloride electrodes, both chambers were filled with 0.1 N NaCl solution, and electrodialysis was performed for 3 hours at a current density of 5 A/Dm2.
The liquid on both sides of the membrane was vigorously stirred, and the effective current-carrying area of the membrane was 20 cd. At the beginning of electrodialysis, the temperature of the solution was 2
Although the temperature was 8°C, when electrodialysis was performed for 3 hours, the liquid reservoir was 75°C in both chambers when using the carbon fiber reinforced membrane of the present invention.
It was getting to ℃. Further, when a polyvinyl chloride woven fabric reinforced material was used, the temperature of the liquid reservoir was 76°C. The current efficiency was 99% and 97%, respectively. Next, electrodialysis was repeated for 6 hours using the same membrane under the same conditions to determine the current efficiency.The current efficiency remained unchanged at 99% for the membrane reinforced with carbon fiber, but 94% for the membrane reinforced with polyvinyl chloride woven fabric.
It was down to Furthermore, the quaternization rate of each membrane used by electrodialysis was determined.

電気透析に使用前のものは、4級化率は、炭素繊維補強
のものが95%で、ポリ塩化ビニル織布補強のものが9
6%であつたのが1時間ずつ2回電気透析した結果、炭
素繊維補強のものは95%と変らないのに、ポリ塩化ビ
ニル織布補強のものは85%に低下していた。これは一
般に第四級アンモニウム塩基は温度に対する耐性が弱く
、電気透析中に陰イオン交換膜によつて発熱するため、
膜内温度がポリ塩化ビニル織布を基材とした膜では高騰
し、第四級アンモニウム塩基が分解したものと思われる
。実施例 3 クロルメチルスチレン300部、純度55%のジビニル
ベンゼン20部、スチレン20部、スチレンープタジエ
ン共重合ゴム30部およびベンゾイルパーオキサイド4
部からなるペースト状混合物をニツケル製の100メツ
シユ厚み0.3mmの金網の上に均一に金網が完全にお
おわれるように、かつ、脱気しながら塗布した。
Before being used for electrodialysis, the quaternization rate is 95% for those reinforced with carbon fiber and 9% for those reinforced with polyvinyl chloride woven fabric.
As a result of electrodialysis twice for 1 hour each, which was 6%, the carbon fiber-reinforced product remained unchanged at 95%, but the polyvinyl chloride woven fabric reinforced product had decreased to 85%. This is because quaternary ammonium bases generally have low resistance to temperature, and heat is generated by the anion exchange membrane during electrodialysis.
It is thought that the temperature inside the membrane rose in the membrane based on polyvinyl chloride woven fabric, and the quaternary ammonium base decomposed. Example 3 300 parts of chloromethylstyrene, 20 parts of divinylbenzene with a purity of 55%, 20 parts of styrene, 30 parts of styrene-ptadiene copolymer rubber, and 4 parts of benzoyl peroxide
The paste-like mixture consisting of 100% of the total weight was uniformly applied onto a nickel 100 mesh wire mesh having a thickness of 0.3 mm so that the wire mesh was completely covered, and while deaerating the wire.

これの両面をポリビニルアルコール製のシートでおお〜
・、80′Cで24時間加熱重合して高分子膜状物とし
た。これを30%のトリメチルアミン水溶液中に浸漬し
て、第四級アンモニウム塩基をイオン交換基とする陰イ
オン交換膜とした。この膜の電気抵抗は、0.5NNa
C1中で、3.2Ω−Cri!Lで、2.0NNaC1
を2.0A/Drrlの電流密度で電気透析したときの
電流効率は92%であつた。さて、この陰イオン交換膜
と、下記の方法で製造したチタンの金網を補強材とした
スルホン酸型の陽イオン交換膜を組み合わせて3室の電
気透析装置を作つた。
Cover both sides of this with polyvinyl alcohol sheets.
・The polymer film was polymerized by heating at 80'C for 24 hours. This was immersed in a 30% trimethylamine aqueous solution to prepare an anion exchange membrane having a quaternary ammonium base as an ion exchange group. The electrical resistance of this film is 0.5NNa
In C1, 3.2Ω-Cri! L, 2.0NNaC1
When electrodialyzed at a current density of 2.0 A/Drrl, the current efficiency was 92%. Now, a three-chamber electrodialysis device was made by combining this anion exchange membrane with a sulfonic acid type cation exchange membrane using a titanium wire mesh as a reinforcing material manufactured by the method described below.

すなわち、陽極に銀板を用い、ついで陽イオン交換膜、
濃縮室、陰イオン交換膜、塩化銀からなる陰極の順に配
して、陽極室、陰極室には、2.5NNaC1を満たし
5A/DTrIで電気透析して濃縮室の濃度上昇から電
流効率を求めた。その結果電流効率は88%であつた。
なお、漏洩電流は0.5%以下であつた。次に、この電
気透析装置の陽イオン交換膜の基材に−2.3Vの電位
を、陰イオン交換膜の基材に+1.2Vの電位を外部の
別の直流電源から印加して、他は上記と同一の条件で電
気透析を実施した。
That is, a silver plate is used as the anode, then a cation exchange membrane,
A concentration chamber, an anion exchange membrane, and a cathode made of silver chloride are arranged in this order, and the anode and cathode chambers are filled with 2.5N NaCl and electrodialyzed at 5A/DTrI to determine the current efficiency from the concentration increase in the concentration chamber. Ta. As a result, the current efficiency was 88%.
Note that the leakage current was 0.5% or less. Next, a potential of -2.3V was applied to the base material of the cation exchange membrane of this electrodialysis device, and a potential of +1.2V was applied to the base material of the anion exchange membrane from another external DC power supply. Electrodialysis was performed under the same conditions as above.

その結果、電流効率は92%となつた。上記電気透析に
用いた陽イオン交換膜は次ぎの方法で得た。
As a result, the current efficiency was 92%. The cation exchange membrane used in the above electrodialysis was obtained by the following method.

Claims (1)

【特許請求の範囲】[Claims] 1 熱伝導性の基材を芯材に用いた陰イオン交換膜。1 Anion exchange membrane using a thermally conductive base material as the core material.
JP57153839A 1982-09-06 1982-09-06 anion exchange membrane Expired JPS5925813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57153839A JPS5925813B2 (en) 1982-09-06 1982-09-06 anion exchange membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57153839A JPS5925813B2 (en) 1982-09-06 1982-09-06 anion exchange membrane

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP50140241A Division JPS5819750B2 (en) 1975-11-25 1975-11-25 Electrolysis method

Publications (2)

Publication Number Publication Date
JPS5859226A JPS5859226A (en) 1983-04-08
JPS5925813B2 true JPS5925813B2 (en) 1984-06-21

Family

ID=15571221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57153839A Expired JPS5925813B2 (en) 1982-09-06 1982-09-06 anion exchange membrane

Country Status (1)

Country Link
JP (1) JPS5925813B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4675516B2 (en) * 2001-07-19 2011-04-27 Agcエンジニアリング株式会社 Method for producing anion exchange membrane

Also Published As

Publication number Publication date
JPS5859226A (en) 1983-04-08

Similar Documents

Publication Publication Date Title
US4090931A (en) Anode-structure for electrolysis
CN104703697B (en) High performance anion-exchange membrane and its manufacturing method
US4318785A (en) Method of bonding cation exchange membrane of fluorinated polymer
JPH06509208A (en) Method for manufacturing polymer sheets
JP3364224B2 (en) Single film membrane, its manufacturing method and its use
KR102092943B1 (en) Composition for electrode of capacitive deionization apparatus, and electrode including same
CN107408704A (en) Porous electrode and by its obtained electrochemical cell and liquid accumulator cell
JPS6134515B2 (en)
JP3947829B2 (en) Deionized water production equipment
Brown et al. Electrodeposition of Ni from a high internal phase emulsion (HIPE) template
EP3511348A1 (en) Ion-exchange membrane
JPS5925813B2 (en) anion exchange membrane
JPS6031862B2 (en) Manufacturing method of cation exchange membrane
FI80482C (en) FOERFARANDE FOER FRAMSTAELLNING AV EN FAST POLYMER ELEKTROLYTSTRUKTUR GENOM ANVAENDNING AV EN VAETSKA ELLER ETT LOESNINGSMEDEL.
RU2355471C1 (en) Method of nanocomposite preparation
US3367792A (en) Electroless plating on nonconducting surfaces
JP2656107B2 (en) Dialysis electrode device
JPS5819750B2 (en) Electrolysis method
JPS6353860A (en) Diaphragm fro redox flow cell
JP2021154277A (en) Anion exchange membrane and method for producing the same
JPS5940849B2 (en) Cation exchange membrane
JP2656096B2 (en) Dialysis electrode device
JP2008239909A (en) Ion exchange membrane using aqueous emulsion as resin raw material
JP2624424B2 (en) Bipolar membrane
JPS6339930A (en) Production of improved ion exchange membrane