JP2656107B2 - Dialysis electrode device - Google Patents

Dialysis electrode device

Info

Publication number
JP2656107B2
JP2656107B2 JP1076841A JP7684189A JP2656107B2 JP 2656107 B2 JP2656107 B2 JP 2656107B2 JP 1076841 A JP1076841 A JP 1076841A JP 7684189 A JP7684189 A JP 7684189A JP 2656107 B2 JP2656107 B2 JP 2656107B2
Authority
JP
Japan
Prior art keywords
ion exchanger
tubular
electrode
tubular ion
electrode device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1076841A
Other languages
Japanese (ja)
Other versions
JPH02259000A (en
Inventor
隆志 出尾
誠司 立野
政明 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP1076841A priority Critical patent/JP2656107B2/en
Priority to US07/450,522 priority patent/US5049253A/en
Priority to DE68915520T priority patent/DE68915520T2/en
Priority to EP89313130A priority patent/EP0375290B1/en
Priority to KR1019890018849A priority patent/KR0138265B1/en
Publication of JPH02259000A publication Critical patent/JPH02259000A/en
Application granted granted Critical
Publication of JP2656107B2 publication Critical patent/JP2656107B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/22Servicing or operating apparatus or multistep processes
    • C25D13/24Regeneration of process liquids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/16Regeneration of process solutions
    • C25D21/22Regeneration of process solutions by ion-exchange

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば電着塗装,電気メッキなどにおい
て、溶液から不要のイオン性物質を除去するに簡便な透
析用電極装置に関する。特に被塗物の電極に対する他の
電極として、溶液から管状イオン交換体により隔離,構
成された電着塗装において有用な透析用電極装置に関す
る。
Description: TECHNICAL FIELD The present invention relates to a simple dialysis electrode device for removing unnecessary ionic substances from a solution, for example, in electrodeposition coating and electroplating. In particular, the present invention relates to a dialysis electrode device useful as an electrode other than an electrode of an object to be coated, which is separated from a solution by a tubular ion exchanger and is useful in electrodeposition coating.

〔従来技術および発明が解決しようとする課題〕[Problems to be solved by the prior art and the invention]

電着塗装は、アニオン型とカチオン型とに大別され、
一般に樹脂を主成分とするアニオン型塗料とカチオン型
塗料が水溶液として用いられ、同時にそれぞれ酸とアル
カリとが中和剤として添加されて、溶液における電導度
の調節が図られている。しかして、電着塗装の実施にお
いては、塗料成分の減少に応じて塗料溶液が補給される
ため、そのままでは溶液中の酸またはアルカリが次第に
蓄積して、電導度などの条件に変化を生ずる結果、塗膜
の均一かつ良好な生成に悪影響を及ぼすことになる。し
たがって、一般に被塗物の電極に対する他方の電極を溶
液からイオン交換膜によって隔離し、該隔膜を介して溶
液中の酸またはアルカリを透析,除去する管理方法が採
用されている。
Electrodeposition coating is roughly divided into anionic type and cationic type.
Generally, an anionic paint and a cationic paint containing a resin as a main component are used as an aqueous solution, and at the same time, an acid and an alkali are respectively added as a neutralizing agent to adjust the electric conductivity of the solution. However, in the implementation of electrodeposition coating, since the paint solution is replenished in accordance with the decrease in paint components, the acid or alkali in the solution gradually accumulates as it is, resulting in changes in conditions such as conductivity. This has a negative effect on the uniform and good formation of the coating. Therefore, in general, a control method is employed in which the other electrode with respect to the electrode to be coated is isolated from the solution by an ion exchange membrane, and the acid or alkali in the solution is dialyzed and removed through the membrane.

従来、上記したような電着塗装において、イオン交換
膜により隔離された電極としては、特公昭45−2231号公
報にも記載されているように、イオン交換膜を隔膜とし
て電極自体が設置された箱形の中空容器などからなり、
溶液から取外しが可能な電極単位の装置である。しかし
ながら、このようなイオン交換膜を用いた箱形の隔膜電
極装置では、該膜が非電導性金網または有孔構造体によ
って保持されていても、溶液における被塗物の搬入,搬
出などに伴う水圧変動によって、該膜の変形が避けられ
ないため、長期間の耐久性を有さず破損し、定期的な交
換が必要であり、また重量増もあり交換作業が容易でな
く、電着塗装の能率が悪く且つコスト高という問題があ
った。
Conventionally, in the electrodeposition coating as described above, as an electrode separated by an ion exchange membrane, as described in Japanese Patent Publication No. 45-2231, the electrode itself was installed using an ion exchange membrane as a diaphragm. It consists of a box-shaped hollow container,
It is an electrode unit that can be removed from the solution. However, in such a box-shaped diaphragm electrode device using an ion exchange membrane, even if the membrane is held by a non-conductive wire mesh or a perforated structure, it is accompanied by the loading and unloading of an object to be coated in a solution. Due to water pressure fluctuations, deformation of the membrane is unavoidable, so it does not have long-term durability and breaks, and requires periodic replacement. However, there is a problem that the efficiency is low and the cost is high.

これに対して、イオン交換膜の耐久性および電着塗装
の能率向上とともに小形化,軽量化を図った電着塗装用
隔膜電極装置として、特公昭57−27955号などが提案さ
れている。即ち、特公昭57−27955号公報に記載の電着
塗装用隔膜装置は、液体流通構造を有する支持材を介し
て、イオン交換膜が電極の表面に積層されるため耐久性
よく保持され、かつ該支持材を介して外部から水を強制
的に流通せしめて、電極に付着する気泡および分極され
た不純物分子を排除するように構成されている。具体的
には、管状電極の外周に網状スペーサーなどを介してイ
オン交換膜が巻回,積層された筒型の電着塗装用隔膜電
極装置などが示されている。しかしながら、特公昭57−
27955号などに提案された電着塗装用隔膜電極装置で
は、イオン交換膜を電極の表面に支持材を介して積層さ
せることが必須であるため、該イオン交換膜を巻回,積
層して接合するなど構成製作に手間を要する。また、イ
オン交換膜の寸法は、一般に電着塗装液中で伸び、液中
から出せば縮むが、上記の電着塗装用隔膜電極装置で
は、イオン交換膜は隔膜支持体と共に電極に固定されて
いるためにイオン交換膜の伸縮が吸収されず、しわなど
が発生し破れ易くなるという問題があった。
On the other hand, Japanese Patent Publication No. 57-27955 has been proposed as a diaphragm electrode device for electrodeposition coating which aims to improve the durability of the ion exchange membrane and the efficiency of the electrodeposition coating, as well as to reduce the size and weight. That is, the membrane device for electrodeposition coating described in Japanese Patent Publication No. 57-27955 is held with good durability because the ion exchange membrane is laminated on the surface of the electrode via a support having a liquid flow structure, and Water is forcibly circulated from the outside through the support material to eliminate bubbles adhering to the electrodes and polarized impurity molecules. Specifically, a tubular electrode device for electrodeposition coating is shown in which an ion exchange membrane is wound and laminated around the outer periphery of a tubular electrode via a mesh spacer or the like. However, Japanese Patent Publication No. 57-
In the membrane electrode device for electrodeposition coating proposed in 27955 and the like, it is essential to laminate the ion exchange membrane on the surface of the electrode via a support material, so the ion exchange membrane is wound, laminated and joined. It takes time and effort to produce the configuration. In addition, the dimensions of the ion exchange membrane generally extend in the electrodeposition coating solution and shrink when it comes out of the solution, but in the above electrodeposition membrane electrode device for electrodeposition coating, the ion exchange membrane is fixed to the electrode together with the membrane support. Therefore, there is a problem that expansion and contraction of the ion exchange membrane is not absorbed, and wrinkles and the like are generated and easily broken.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者らは、上記した問題点に鑑み、製作が容易で
且つイオン交換膜のしわなどが発生しない電極装置を開
発することを目的として鋭意研究を行なった。その結
果、上記の目的を達成することに成功し、本発明を提供
するに至った。
In view of the above problems, the present inventors have conducted intensive studies with the aim of developing an electrode device which is easy to manufacture and does not cause wrinkles or the like of an ion exchange membrane. As a result, the above object was successfully achieved, and the present invention was provided.

即ち、本発明は、一端又は両端が開口した管状イオン
交換体、その管内に挿入された電極、及び管状イオン交
換体の開口端に嵌合された蓋よりなり、該管状イオン交
換体の一端に嵌合された蓋には電極の一端が支持されて
なり、該管状イオン交換体の他端は該管状イオン交換体
の伸縮に応じて軸方向に移動可能であり、該管状イオン
交換体の管内を一端から他端へ極液を流通させるための
極液の供給口及び排出口が夫々設けられてなる透析用電
極装置である。
That is, the present invention comprises a tubular ion exchanger having one or both ends opened, an electrode inserted in the tube, and a lid fitted to the open end of the tubular ion exchanger, and one end of the tubular ion exchanger. One end of an electrode is supported on the fitted lid, and the other end of the tubular ion exchanger is movable in the axial direction according to expansion and contraction of the tubular ion exchanger. This is a dialysis electrode device provided with a supply port and a discharge port of the polar solution for flowing the polar solution from one end to the other end.

第1図は、本発明の透析用電極装置を鉛直方向に平行
な平面で切断した断面図である。第1図において、両端
が開口した管状イオン交換体1の管内には円筒状の電極
2が挿入されている。管状イオン交換体1の上端及び下
端には、それぞれ接合部材8を介して上蓋4及び下蓋3
が嵌合されている。管状イオン交換体1の下端は下蓋3
によって密閉さているが、上端は、管状イオン交換体1
内への電極2の挿入のために上蓋4が開口している。電
極2は、その下端が管状イオン交換体1の下端に嵌合さ
れた下蓋3を下方に押すことによる管状イオン交換体1
の破損を防止するために、電極2の上端近傍に設けられ
たつば7を上蓋4で支持することによって電極2を懸垂
させている。そして、管状イオン交換体1自身も上蓋4
から懸垂され、管状イオン交換体1の下端は電極2には
固定されておらずに自由端を形成しており、管状イオン
交換体1の伸縮に応じて軸方向(上下方向)に移動可能
となっている。さらに、下蓋3及び上蓋4には、管状イ
オン交換体1の管内を一端から他端へ極液を流通させる
ための極液の供給口6及び排出口5が夫々設けられてい
る。
FIG. 1 is a sectional view of the dialysis electrode device of the present invention cut along a plane parallel to a vertical direction. In FIG. 1, a cylindrical electrode 2 is inserted into a tube of a tubular ion exchanger 1 whose both ends are open. At the upper and lower ends of the tubular ion exchanger 1, upper and lower lids 4 and 3
Are fitted. The lower end of the tubular ion exchanger 1 is a lower lid 3
, But the upper end is a tubular ion exchanger 1
The upper lid 4 is open for inserting the electrode 2 therein. The lower end of the electrode 2 is pushed down by the lower lid 3 fitted to the lower end of the tubular ion exchanger 1.
In order to prevent breakage of the electrode 2, the electrode 2 is suspended by supporting a flange 7 provided near the upper end of the electrode 2 with the upper lid 4. And the tubular ion exchanger 1 itself also has an upper lid 4.
The lower end of the tubular ion exchanger 1 is not fixed to the electrode 2 but forms a free end, and can move in the axial direction (vertical direction) according to the expansion and contraction of the tubular ion exchanger 1. Has become. Further, the lower lid 3 and the upper lid 4 are respectively provided with a supply port 6 and a discharge port 5 for the polar liquid for flowing the polar liquid from one end to the other end in the tube of the tubular ion exchanger 1.

第2図は、本発明の透析用電極装置の他の態様を示す
断面図である。第2図では、3本の両端が開口した管状
イオン交換体の両端に夫々接合部材8が接着剤による接
着又は融着等の任意の手段によって固定されている。接
合部材8にはネジが切られており、管状イオン交換体1
同士をパッキン9を介して容易に接続することができ
る。また、電極2は、3本がネジによって接続されてお
り、各管状イオン交換体1の流さに合わせて分割が可能
となっている。このようにすることによって、透析用電
極装置の組立てが容易になると共に、管状イオン交換体
が破損した場合にも破損部位のみを交換することによっ
て容易に修復が可能となる。
FIG. 2 is a sectional view showing another embodiment of the dialysis electrode device of the present invention. In FIG. 2, joining members 8 are fixed to both ends of a tubular ion exchanger having three open ends by any means such as adhesion or fusion with an adhesive. The joining member 8 is threaded, and the tubular ion exchanger 1
They can be easily connected via the packing 9. In addition, three electrodes 2 are connected by screws, and can be divided according to the flow of each tubular ion exchanger 1. By doing so, the dialysis electrode device can be easily assembled, and when the tubular ion exchanger is damaged, it can be easily repaired by replacing only the damaged portion.

また、第2図においては、管状イオン交換体1の下端
の下蓋3に設けられた極液の供給口6に、剛性の材質で
形成された極液の供給管10が管状イオン交換体1の軸方
向に該管状イオン交換体1の外面に沿って設けられてい
る。極液の供給管10は、下端において下蓋3に固定され
ており、上端において上蓋4に固定された案内管11を通
ってその上方でナット12により固定されている。ナット
12を極液の供給管10の軸方向に移動させることによって
上蓋4と下蓋3との間の距離、即ち、管状イオン交換体
1の長さの調節が可能である。このため、本発明の透析
用電極装置を電着塗装液中に浸漬した時に、管状イオン
交換体の伸び分だけナット12を極液の供給管10の軸方向
に移動させ、管状イオン交換体の長さを長くすることに
よって管状イオン交換体のしわを防止することができ
る。また、透析用電極装置の運搬には、極液の供給管10
を持って行なうことができるため、管状イオン交換体の
破損を防止することもできる。
In FIG. 2, an anolyte supply pipe 10 made of a rigid material is connected to the anolyte supply port 6 provided in the lower lid 3 at the lower end of the tubular ion exchanger 1. Is provided along the outer surface of the tubular ion exchanger 1 in the axial direction. The polar liquid supply pipe 10 is fixed to the lower lid 3 at the lower end, passes through a guide pipe 11 fixed to the upper lid 4 at the upper end, and is fixed by a nut 12 above it. nut
The distance between the upper lid 4 and the lower lid 3, that is, the length of the tubular ion exchanger 1 can be adjusted by moving the electrode 12 in the axial direction of the supply pipe 10 for the polar liquid. For this reason, when the electrode device for dialysis of the present invention is immersed in the electrodeposition coating solution, the nut 12 is moved in the axial direction of the supply pipe 10 for the polar solution by the extension of the tubular ion exchanger, thereby forming the tubular ion exchanger. By increasing the length, wrinkles of the tubular ion exchanger can be prevented. For transport of the dialysis electrode device, the supply line
Therefore, it is possible to prevent the tubular ion exchanger from being damaged.

上記の極液の供給管は、極液の供給、上蓋と下蓋との
距離の調節及び曲げに対する補強という3つの機能を併
せ有しているが、これら3つの機能を別々の部品で発揮
させても良い。例えば、下蓋の極液の供給口には可撓性
の極液供給のためのホースを接続し、これとは別に上蓋
と下蓋とを剛性の棒体或いは筒体等で接続することもで
きる。
The above-mentioned polar liquid supply pipe has three functions of supplying the polar liquid, adjusting the distance between the upper lid and the lower lid, and reinforcing the bending. These three functions are performed by separate parts. May be. For example, a hose for supplying a flexible polar liquid may be connected to the polar liquid supply port of the lower lid, and separately from this, the upper lid and the lower lid may be connected by a rigid rod or a cylinder. it can.

本発明の透析用電極装置においては、その用途に応じ
て管状イオン交換体が選択され、例えばアニオン型の電
着塗装用にはカチオン交換体、カチオン型の電着塗装用
にはアニオン交換体が用いられる。このような本発明に
用いる管状イオン交換体は、自重を支持するのに十分な
引張強度を有することが必要であり、例えば、内径44mm
厚さ3mm長さ1000mmの管状イオン交換体の引張強度は0.1
Kg/cm2以上であることが好ましい。また、電着塗装など
実施する溶液における水圧変動に対して耐久性を有し、
例えば、内径44mm厚さ3mm長さ1000mmの管状イオン交換
体の内側から0.1Kg/cm2の圧力を加えた場合に殆んど変
形しない程度の機械的強度を有することが好ましい。こ
のような管状イオン交換体の製造方法は特に制限されな
いが、本発明者らが既に特願昭63−238913号において提
案しているように、管状のポリエチレン製多孔体に、少
なくとも(A)イオン交換基の導入に適した官能基を有
する重合可能なモノマー,(B)架橋剤および(C)ラ
ジカル重合開始剤を含むモノマー混合液を含浸させて重
合した後、イオン交換基を導入する方法によって、良好
な機械的高度を有する一体の管状イオン交換体を得るこ
とができる。この製法において用いられる管状ポリエチ
レン製多孔体は、一般に直径5〜300mm,厚さ0.5〜5mm,
長さ20mm〜5mの形状から適宜選択される。また該多孔体
の平均孔径は1〜500μm,特に10〜200μm,気孔率は10〜
80%,特に30〜60%であることが、モノマー混合液の含
浸,重合が充分に達成され、所望の管状イオン交換体を
得ることができるために好ましい。また、モノマー混合
液は、従来公知のイオン交換樹脂膜と同様の組成成分、
例えばスチレン,クロルメチルスチレンなどの(A)成
分、ジビニルベンゼンなどの(B)成分、ベンゾイルパ
ーオキサイドなどの(C)成分が用いられ、必要により
他の共重合可能なモノマー、可溶性の線状高分子,可塑
剤,溶媒などを用いて調製される。
In the electrode device for dialysis of the present invention, a tubular ion exchanger is selected according to its use.For example, a cation exchanger for anionic electrodeposition coating and an anion exchanger for cation electrodeposition coating. Used. Such a tubular ion exchanger used in the present invention is required to have a tensile strength sufficient to support its own weight, for example, an inner diameter of 44 mm
The tensile strength of a tubular ion exchanger with a thickness of 3 mm and a length of 1000 mm is 0.1
It is preferably at least Kg / cm 2 . In addition, it has durability against water pressure fluctuation in the solution to be performed such as electrodeposition coating,
For example, it is preferable to have a mechanical strength that hardly deforms when a pressure of 0.1 kg / cm 2 is applied from the inside of a tubular ion exchanger having an inner diameter of 44 mm, a thickness of 3 mm, and a length of 1000 mm. The method for producing such a tubular ion exchanger is not particularly limited, but as already proposed by the present inventors in Japanese Patent Application No. 63-238913, at least (A) ion is added to a tubular polyethylene porous body. A method of impregnating a monomer mixture containing a polymerizable monomer having a functional group suitable for introducing an exchange group, (B) a cross-linking agent and (C) a radical polymerization initiator, and then polymerizing, followed by introducing an ion-exchange group Thus, an integral tubular ion exchanger having a good mechanical height can be obtained. The tubular polyethylene porous body used in this manufacturing method is generally 5 to 300 mm in diameter, 0.5 to 5 mm in thickness,
It is appropriately selected from shapes having a length of 20 mm to 5 m. The average pore diameter of the porous body is 1 to 500 μm, particularly 10 to 200 μm, and the porosity is 10 to
It is preferably 80%, especially 30 to 60%, since the impregnation and polymerization of the monomer mixture can be sufficiently achieved and a desired tubular ion exchanger can be obtained. Further, the monomer mixture is the same composition as the conventionally known ion exchange resin membrane,
For example, the component (A) such as styrene and chloromethylstyrene, the component (B) such as divinylbenzene, and the component (C) such as benzoyl peroxide are used. It is prepared using molecules, plasticizers, solvents and the like.

また、本発明において好適に用い得る管状イオン交換
体は、次の方法によっても製造し得る。即ち、イオン交
換樹脂粉末とポリエチレン樹脂との混合物を押出成形に
より管状に成形する方法である。ここで、イオン交換樹
脂粉末としては、公知のものが何ら制限なく採用される
が、通常は、平均粒径が100μmよりも細かい粉末を用
いることが好ましい。ポリエチレン樹脂としては、高密
度,低密度のいずれも使用し得るが、メルトインデック
スが2g/10分以下であるものが押出成形によるイオン交
換容量の減少を防止できるために好ましい。上記のイオ
ン交換樹脂粉末とポリエチレン樹脂との混合比率は、得
られる管状イオン交換体の機械的強度及びイオン交換容
量の点から、一般にイオン交換樹脂粉末:ポリエチレン
樹脂=7:3〜5:5(重量比)の範囲であることが好まし
い。これらの混合物を押出成形により管状に成形する方
法は、通常の押出成形方法が何ら制限されず採用され
る。ただし、成形温度は、イオン交換基の分解しない値
が採用され、しかも成形時間は短時間であることが好ま
しい。このようにして、前記した方法で製造したのと同
様の大きさの管状イオン交換体が得られる。
Further, the tubular ion exchanger that can be suitably used in the present invention can also be produced by the following method. That is, this is a method in which a mixture of an ion exchange resin powder and a polyethylene resin is formed into a tube by extrusion. Here, as the ion-exchange resin powder, known ones are used without any limitation, but usually, it is preferable to use a powder having an average particle diameter smaller than 100 μm. As the polyethylene resin, any of a high density and a low density can be used, but a resin having a melt index of 2 g / 10 minutes or less is preferable because a reduction in ion exchange capacity due to extrusion can be prevented. The mixing ratio of the above-mentioned ion exchange resin powder and polyethylene resin is generally from ion exchange resin powder: polyethylene resin = 7: 3 to 5: 5 from the viewpoint of mechanical strength and ion exchange capacity of the obtained tubular ion exchanger. (Weight ratio). As a method of forming the mixture into a tube by extrusion, a normal extrusion method is employed without any limitation. However, as the molding temperature, a value that does not decompose the ion exchange group is adopted, and the molding time is preferably short. In this way, a tubular ion exchanger having the same size as that produced by the above-described method is obtained.

尚、第1図及び第2図に示した管状イオン交換体は、
両端が開口しているが、製造方法によっては第3図に示
したように一端が閉じた管状イオン交換体を得ることが
でき、このようなものも本発明において使用し得る。
The tubular ion exchanger shown in FIG. 1 and FIG.
Although both ends are open, a tubular ion exchanger having one end closed as shown in FIG. 3 can be obtained depending on the manufacturing method, and such a tubular ion exchanger can also be used in the present invention.

本発明において用いる電極は、管状イオン交換体の種
類に応じて選択され、管状カチオン交換体には陰極、管
状アニオン交換体には陽極である。このような電極は、
従来公知の陰極または陽極が採用され、管状イオン交換
体の管内に設置できる所定の形状であれば特に制限され
ず、一般に棒状,平板状,円筒状などで、例えばステン
レススチールなどの陰極、また例えば白金族金属系の耐
酸性を有する金属陽極が用いられる。このような電極
は、管状イオン交換体の管内に管状イオン交換体との距
離を一般に0.5〜50mmに保持して設置される。特に縦型
の電極装置を用いる場合には、管状イオン交換体の上部
にガスが多くなり、下部の方が電流が流れ易くなるなど
電流分布の不均一を生じるため、通電面側から裏側へガ
スを除去するラス状あるいはパンチングした多孔性の電
極が好適に採用される。さらに、管状イオン交換体の管
内における電極を上部で電極の通電面側が対極に近く、
下部で遠くなるように設置することが、生成ガスを通電
面の裏側に集積し易くするために好ましい。
The electrode used in the present invention is selected according to the type of the tubular ion exchanger. The tubular cation exchanger is a cathode, and the tubular anion exchanger is an anode. Such electrodes are
Conventionally known cathodes or anodes are employed, and are not particularly limited as long as they have a predetermined shape that can be installed in the tube of the tubular ion exchanger, and are generally rod-shaped, flat, cylindrical, and the like. An acid-resistant metal anode of a platinum group metal is used. Such an electrode is installed in the tube of the tubular ion exchanger while maintaining the distance from the tubular ion exchanger generally at 0.5 to 50 mm. In particular, when a vertical electrode device is used, the gas increases in the upper part of the tubular ion exchanger and the current distribution in the lower part becomes non-uniform. A lath-like or punched porous electrode for removing slag is preferably used. Furthermore, the current-carrying surface side of the electrode in the upper part of the electrode in the tube of the tubular ion exchanger is closer to the counter electrode,
It is preferable to dispose the gas at a lower part in order to facilitate the accumulation of the generated gas on the back side of the current-carrying surface.

本発明において、電極2の一端は管状イオン交換体1
の一端に嵌合された蓋に支持されている。支持する方法
としては、第1図及び第2図に示したように電極2の一
端に設けたつば7を上蓋4で支える方法、第3図に示す
ように管状イオン交換体1の一端を接着剤でポッテイン
グして蓋を形成する場合には、電極2が管状イオン交換
体の管外から管内へ接着剤で形成された蓋を貫通するよ
うにして電極2を固定する方法等が挙げられる。
In the present invention, one end of the electrode 2 is connected to the tubular ion exchanger 1.
Is supported by a lid fitted to one end of the. As a supporting method, a method of supporting the collar 7 provided at one end of the electrode 2 with the upper lid 4 as shown in FIGS. 1 and 2, and bonding one end of the tubular ion exchanger 1 as shown in FIG. When the lid is formed by potting with an agent, a method of fixing the electrode 2 so that the electrode 2 penetrates the lid made of an adhesive from outside the tube of the tubular ion exchanger to the inside of the tube may be used.

本発明の透析用電極装置は、一般には、管状イオン交
換体の軸がほぼ鉛直方向となるように縦型の状態で管状
イオン交換体の上端より下部が電着塗装液中に浸漬され
て使用される。この場合には管状イオン交換体の管内の
極液と電着塗装液との混合が生じないように管状イオン
交換体の下端の開口端は下蓋3で密閉されるが、上端は
開口されていて良い。また、本発明の透析用電極装置全
体を電着塗装液中に浸漬して使用する場合には、管状イ
オン交換体の開口端を蓋で密閉する必要がある。
In general, the dialysis electrode device of the present invention is used by immersing the lower part from the upper end of the tubular ion exchanger in the electrodeposition coating liquid in a vertical state so that the axis of the tubular ion exchanger is substantially vertical. Is done. In this case, the open end of the lower end of the tubular ion exchanger is closed by the lower lid 3 so as not to mix the polar solution in the tube of the tubular ion exchanger with the electrodeposition coating solution, but the upper end is open. Good. When the entire dialysis electrode device of the present invention is used by immersing it in an electrodeposition coating solution, it is necessary to seal the open end of the tubular ion exchanger with a lid.

上記の上蓋及び下蓋は、管状イオン交換体の端部に直
接接着剤による接着やOリング等を用いた機械的締付け
手段によって取付けられてもよく、また、管状イオン交
換体の端部に接合部材8を上記手段によって固定し、接
合部材8と上蓋及び下蓋とを接続しても良い。接合部材
8と上蓋及び下蓋との接続は、第2図に示すようなネジ
等の着脱可能な方法にすることが、管状イオン交換体の
取替えが容易に行なえるために好ましい。
The upper and lower lids may be attached directly to the ends of the tubular ion exchanger by mechanical bonding using an adhesive or an O-ring, or may be joined to the ends of the tubular ion exchanger. The member 8 may be fixed by the above means, and the joining member 8 may be connected to the upper lid and the lower lid. The connection between the joining member 8 and the upper and lower lids is preferably a detachable method such as a screw as shown in FIG. 2 in order to easily replace the tubular ion exchanger.

上蓋及び下蓋は、電気絶縁性の材料であれば特に制限
されないが、一般に硬質塩ビ,ポリプロピレン,ポリエ
チレンなどのプラスチック材料が好適である。また、第
3図に示すように接着剤によるポッテイングで蓋を形成
しても良い。なお、管状イオン交換体は、乾燥状態と湿
潤状態とでは潤滑収縮を生じて寸法変化をするため、上
蓋及び下蓋と接合する場合には比較的軟かい接着剤ゴム
系接着剤を用いることが好ましく、また管状イオン交換
体の接合面におけるイオン交換基を酸化剤などにより分
解して、予め不活性化して接合する方法も望ましい。
The upper lid and the lower lid are not particularly limited as long as they are electrically insulating materials, but generally, plastic materials such as hard PVC, polypropylene, and polyethylene are preferable. Further, as shown in FIG. 3, the lid may be formed by potting with an adhesive. In addition, since the tubular ion exchanger undergoes dimensional change due to lubrication shrinkage between the dry state and the wet state, a relatively soft adhesive rubber-based adhesive may be used when joining the upper and lower lids. Preferably, a method of decomposing ion exchange groups on the bonding surface of the tubular ion exchanger with an oxidizing agent or the like and inactivating them in advance to perform bonding is also desirable.

本発明の透析用電極装置に設ける極液の供給口および
排出口は、管状イオン交換体の管内を一端から他端へ極
液を流通させうるように設けられれば良い。例えば、第
1図及び第2図に示すように、下蓋3に極液の供給口6
が上蓋4に極液の排出口5が夫々設けられ、極液は、排
出口5よりオーバーフローにより排出させる態様が好適
である。また、第3図に示すように電極として管状のも
のを使用し、電極の上端からその管内へ極液を供給し、
電極の下端に設けられた極液の供給口6から極液を管状
イオン交換体の管内へ供給し、管状イオン交換体の下端
から上端へ極液を流通させた後、上蓋に設けられた極液
の排出口5から排出する態様も採用し得る。
The supply and discharge ports of the polar solution provided in the dialysis electrode device of the present invention may be provided so that the polar solution can flow from one end to the other end in the tube of the tubular ion exchanger. For example, as shown in FIG. 1 and FIG.
It is preferable that each of the upper lids 4 is provided with a discharge port 5 for the polar liquid, and the polar liquid is discharged from the discharge port 5 by overflow. Further, as shown in FIG. 3, a tubular electrode is used as the electrode, and the polar liquid is supplied from the upper end of the electrode into the tube.
The polar solution is supplied from the polar solution supply port 6 provided at the lower end of the electrode into the tube of the tubular ion exchanger, and is passed from the lower end to the upper end of the tubular ion exchanger. A mode in which the liquid is discharged from the discharge port 5 can also be adopted.

電着塗装終了後に、管状イオン交換体内に供給された
極液を排出する方法としては、次のような方法が好適に
採用される。第4図に示すように極液の供給管10に、一
端が開口した極液の排出管13を接続し、極液の供給管10
には極液の排出管13の接続位置をはさんで2ケ所にバル
ブ14及び15を設け、また極液の排出管13にもバルブ16を
設ける。そして、透析用電極装置を電着塗装液から引上
げる際或いは電着塗装液を槽から抜く際にバルブ15を閉
にしてはバルブ14と16を開にして極液の排出管13内を極
液で満たし、次いでバルブ14を閉にしバルブ15を開にし
てサイホン原理により管状イオン交換体内の極液を容易
に排出することができる。
The following method is preferably employed as a method for discharging the polar solution supplied into the tubular ion exchanger after the completion of the electrodeposition coating. As shown in FIG. 4, a polar liquid supply pipe 10 is connected to a polar liquid discharge pipe 13 having one end opened.
, Valves 14 and 15 are provided at two locations with the connecting position of the discharge pipe 13 for the polar solution therebetween, and a valve 16 is also provided on the discharge pipe 13 for the polar solution. When the dialysis electrode device is pulled up from the electrodeposition coating liquid or when the electrodeposition coating liquid is removed from the bath, the valve 15 is closed, the valves 14 and 16 are opened, and the inside of the discharge pipe 13 for the electrode is discharged. The liquid is filled, then the valve 14 is closed and the valve 15 is opened so that the polar liquid in the tubular ion exchanger can be easily discharged by the siphon principle.

なお、極液としては、水を用いてもよいが、酸または
アルカリを効率的に一定に除去するために、外部にタン
クなどを設けて透析した酸またはアルカリの極液を水で
一定の低濃度にコントロールして循環する方法が好まし
い。
As the polar solution, water may be used. However, in order to efficiently and uniformly remove acid or alkali, an external tank or the like is provided and the dialyzed acid or alkali polar solution is reduced with water to a certain level. A method of circulating while controlling the concentration is preferred.

本発明の透析用電極装置は、その用途に応じて、例え
ば自動車ボデイーの電着塗装など大型の浴槽において
は、第2図に示すように2本以上の管状イオン交換体を
適当な接着剤,フランジ ネジ込み式などで接合して、
長尺の装置を構成することも可能である。
According to the dialysis electrode device of the present invention, as shown in FIG. 2, two or more tubular ion exchangers are coated with an appropriate adhesive in a large bathtub, for example, for electrodeposition coating of an automobile body. Flange Joined by screw-in type etc.
It is also possible to configure a long device.

また、第5図に示すように2本の管状イオン交換体を
可撓性の筒体17を介して接続することにより、可撓性の
筒体17の位置で透析用電極装置を折り曲げることが可能
である。第5図によれば、2本の管状イオン交換体1の
端部には管状イオン交換体に嵌合する接合部材8が接着
剤による接着、或いは融着により固定されている。そし
て接合部材8にはネジが切られている。一方、可撓性の
筒体17の両端にもネジが切られた接合部材8′が固定さ
れており、該接合部材8′は管状イオン交換体の接合部
材8と接続される。
Further, as shown in FIG. 5, by connecting two tubular ion exchangers via a flexible cylinder 17, the dialysis electrode device can be bent at the position of the flexible cylinder 17. It is possible. According to FIG. 5, a joining member 8 fitted to the tubular ion exchanger is fixed to the ends of the two tubular ion exchangers 1 by bonding with an adhesive or by fusion. The joining member 8 is threaded. On the other hand, a threaded joining member 8 'is also fixed to both ends of the flexible cylindrical body 17, and the joining member 8' is connected to the joining member 8 of the tubular ion exchanger.

尚、2本の管状イオン交換体中の電極2は、可撓性の
導電体18によって互いに接続されている。
The electrodes 2 in the two tubular ion exchangers are connected to each other by a flexible conductor 18.

さらに、本発明の透析用電極装置、特に管状イオン交
換体の取扱い時の破損を防止するために、電着塗装など
に用いる溶液の流れを妨げないように開口部を多数有す
るか又は第6図に示すようにメッシュ状の枠体19を管状
イオン交換体の外面にカバーとして取付けることが好ま
しい。この場合、枠体19の下端を下蓋3よりも下方に位
置するように透析用電極装置に固定することが好まし
い。このようにすることによって、透析用電極装置を電
槽底部や床上に置いても透析用電極装置の下蓋が電槽底
部や床上に接触することがないため、下蓋の圧縮による
管状イオン交換体の破損を防止することができる。ま
た、本発明の透析用電極装置を電着塗装液中へ浸漬した
ときの管状イオン交換体の伸びに伴なう下蓋の移動のた
めのガイドとしての機能も上記の枠体19は有する。
Further, in order to prevent breakage during handling of the dialysis electrode device of the present invention, in particular, the tubular ion exchanger, the device has many openings so as not to obstruct the flow of a solution used for electrodeposition coating or the like. It is preferable to attach the mesh frame 19 as a cover to the outer surface of the tubular ion exchanger as shown in FIG. In this case, it is preferable that the lower end of the frame 19 be fixed to the dialysis electrode device so as to be located below the lower lid 3. By doing so, even if the dialysis electrode device is placed on the bottom of the battery case or on the floor, the lower lid of the dialysis electrode device does not contact the bottom of the battery case or on the floor. Body damage can be prevented. The frame 19 also has a function as a guide for movement of the lower lid accompanying extension of the tubular ion exchanger when the dialysis electrode device of the present invention is immersed in the electrodeposition coating solution.

本発明の透析用電極装置は、前記のように管状イオン
交換体の軸がほぼ鉛直方向となるように電着塗装液中に
設置されるのが一般的であるが、第5図に示したような
屈曲部を持たせることによって管状イオン交換体の軸が
水平方向になるように設置することもできる。また、2
つの透析用電極装置をV字型に設置し、両者の下端部を
極液の供給管で接続することもできる。
The dialysis electrode device of the present invention is generally installed in the electrodeposition coating liquid such that the axis of the tubular ion exchanger is substantially vertical as described above, as shown in FIG. By providing such a bent portion, the tubular ion exchanger can be installed so that its axis is horizontal. Also, 2
Two dialysis electrode devices may be installed in a V-shape, and the lower ends of both may be connected by a polar liquid supply pipe.

〔効 果〕(Effect)

本発明の透析用電極装置は、電着塗装液中へ浸漬した
ときの管状イオン交換体の伸びに応じて管状イオン交換
体の下端が自由に上下移動が可能である。このため、交
換イオン交換体の伸びによって管状イオン交換体にしわ
が生じることはなく、それによる破損の惧れもほとんど
ない。
In the dialysis electrode device of the present invention, the lower end of the tubular ion exchanger can freely move up and down in accordance with the elongation of the tubular ion exchanger when immersed in the electrodeposition coating solution. For this reason, the tubular ion exchanger does not wrinkle due to the extension of the exchange ion exchanger, and there is almost no possibility of damage due to the wrinkle.

また、本発明の透析用電極装置は、隔膜として用いる
管状イオン交換体が従来技術におけるイオン交換膜に比
べて耐久性に優れ、何ら支持材(補強材)を要すること
なく簡単な構造で、製作も容易である。また、本発明の
装置では、管状イオン交換体と電極との間に支持材など
が全く存在しないために、透析する酸またはアルカリ、
例えば電着塗装液に含有される重金属などの不純物、電
極に発生するガスなどが滞留することなく、極液の流通
によって速かに排除される。したがって、本発明の装置
によれば、ガスの滞留、管状イオン交換体において重金
属などの沈積などが極めて少ないため、経時的な電気抵
抗の増大、電流分布の不均一などが解消される結果、消
費電力が軽減され、酸またはアルカリの透析が効率よく
達成され、ひいては例えば電着塗装において均一な塗膜
を得ることができる。なお、本発明においては、主に電
着塗装用の電極装置として説明したが、これに限らず他
の電気メッキなどにおける透析用電極装置としても用い
ることができる。
In addition, the dialysis electrode device of the present invention has a tubular ion exchanger used as a diaphragm, which has higher durability than the conventional ion exchange membrane, and has a simple structure without any support material (reinforcing material). Is also easy. Further, in the apparatus of the present invention, since there is no support material between the tubular ion exchanger and the electrode, the acid or alkali to be dialyzed,
For example, impurities such as heavy metals contained in the electrodeposition coating liquid, gas generated in the electrodes, and the like do not stay and are quickly eliminated by the flow of the polar liquid. Therefore, according to the apparatus of the present invention, since the retention of gas and the deposition of heavy metals and the like in the tubular ion exchanger are extremely small, the increase in electric resistance over time and the unevenness of current distribution are eliminated, resulting in consumption. The power consumption is reduced, and dialysis of acid or alkali is efficiently achieved, and thus a uniform coating film can be obtained, for example, in electrodeposition coating. In the present invention, the electrode device is mainly described as an electrode device for electrodeposition coating. However, the present invention is not limited to this, and may be used as an electrode device for dialysis in other electroplating and the like.

〔実施例〕〔Example〕

以下、本発明の実施例を示すが、本発明はこれに限定
されるものではない。
Hereinafter, although an example of the present invention is shown, the present invention is not limited to this.

実施例 1 〔管状イオン交換体の製造〕 平均空孔径が約100μmおよび気孔率が約50%のポリ
エチレン製多孔体よりなる外径50mm×内径44mm×長さ1m
の管状体に、ポリエチレン粉末(平均直径が約30μm以
下),クロルメチルスチレン;ジビニルベンゼン,スチ
レン−ブタジエンラバーおよび過酸化ベンゾイルより調
製したペースト状混合液を鋳型状金型において注入、含
浸させて、減圧,脱泡した後、加熱重合して管状の重合
成形体を得た。次いで、この管状成形体をアミノ溶液中
に浸漬してアミノ化し、管状アニオン交換体とした。
Example 1 [Production of Tubular Ion Exchanger] 50 mm outside diameter × 44 mm inside diameter × 1 m length made of a polyethylene porous body having an average pore diameter of about 100 μm and a porosity of about 50%
A tubular mixture of polyethylene powder (having an average diameter of about 30 μm or less), chloromethylstyrene, and a paste mixture prepared from divinylbenzene, styrene-butadiene rubber, and benzoyl peroxide is injected and impregnated in a mold. After depressurizing and defoaming, heat polymerization was performed to obtain a tubular polymer molded article. Next, this tubular molded body was immersed in an amino solution to be aminated to form a tubular anion exchanger.

この管状アニオン交換体は、電気抵抗が0.1N−NaCl溶
液中(25℃)で約25Ω−cm2,交換容量が2.5meq/gであっ
た。また管の両端部を密閉して、その内部に0.5Kg/cm2
の水圧を加えたが、殆んど変形も認められなかった。さ
らに引張強度は20Kg/cm2であった。
This tubular anion exchanger had an electrical resistance of about 25 Ω-cm 2 in a 0.1 N NaCl solution (25 ° C.) and an exchange capacity of 2.5 meq / g. Also, seal both ends of the tube and put 0.5 kg / cm 2
However, almost no deformation was observed. Further, the tensile strength was 20 kg / cm 2 .

〔電着塗装用電極装置の構成〕[Configuration of electrode device for electrodeposition coating]

上記した管状アニオン交換体(1m)の3本を第2図に
示したようにそれぞれ接続した管内に、SUS304製の外径
約38mm,内径33mm,長さ1mである円筒状の陽極を3本接続
して挿入し、管の下端部を下蓋により密閉し、上端部に
開放型の上蓋を設けた。また、管の下端部に設けた下蓋
の底部に極液の供給口を接続し、上端部に設けた上蓋の
側部に極液の排出口を付設し、管外にタンクを設けて、
比電導度により自動的に純水を加えて極液の濃度をコン
トロールして循環するように構成した。なお、管状アニ
オン交換体の接続、上下端部における上蓋,下蓋および
極液の供給口,排出口の設置は、いずれも硬質塩化ビニ
ル樹脂製のものを用いて、接着剤により固定した。
As shown in FIG. 2, three cylindrical anodes made of SUS304 having an outer diameter of about 38 mm, an inner diameter of 33 mm, and a length of 1 m were placed in a tube in which three of the above tubular anion exchangers (1 m) were connected as shown in FIG. The tube was connected and inserted, the lower end of the tube was sealed with a lower lid, and an open upper lid was provided at the upper end. In addition, the supply port of the polar liquid is connected to the bottom of the lower lid provided at the lower end of the pipe, the outlet of the polar liquid is provided on the side of the upper lid provided at the upper end, and a tank is provided outside the pipe,
Pure water was automatically added based on the specific conductivity to control the concentration of the polar solution and circulated. The connection of the tubular anion exchanger and the installation of the upper and lower lids at the upper and lower ends and the supply and discharge ports of the polar liquid were all made of hard vinyl chloride resin and fixed with an adhesive.

ビスフエノール型エポキシ樹脂系のカチオン塗料を主
成分とし、酢酸を中和剤とする電着塗装の溶液におい
て、脱脂した鉄製の被塗着物を陰極とし、該被塗着物を
挟むように上記で構成した隔膜陽極装置の2本を設置し
て、直流電流を通電した。その結果、通電開始時は電圧
が250V,電流が約25Aで経時的に低下するが、5分間の通
電により良好な塗膜状態の塗着物を得た。なお、溶液中
の塗料は、経時的に補給しながら一定濃度を保持し、ま
た陽極装置の極液は外部タンクにおいて水を添加して一
定濃度にコントロールして循環した。
A bisphenol-type epoxy resin-based cationic paint is used as a main component, and in a solution for electrodeposition coating using acetic acid as a neutralizing agent, a degreased iron-made article is used as a cathode, and the above-described composition is sandwiched between the articles. Two of the thus-obtained diaphragm anode devices were installed, and a direct current was supplied. As a result, at the start of energization, the voltage gradually decreased with time at a voltage of 250 V and a current of about 25 A. However, a coating having a good coating state was obtained by energizing for 5 minutes. The paint in the solution was maintained at a constant concentration while being replenished with time, and the anolyte of the anode device was circulated by adding water in an external tank to a controlled concentration.

次に、溶液に新しい被塗着物を入れて、上記と同様の
電着条件下に実施した結果、5分間の通電により電流も
同様の経時変化を示して、良好な塗膜の塗着物を得た。
このような電着塗装を20回繰返したが、殆んど同様の電
着条件で良好な塗着物を得ることができ、この間におけ
る中和剤(酸)の除去率は92%であった。管状イオン交
換体は5%伸びたがしわは発生しなかった。
Next, a new material to be coated was put into the solution, and the test was performed under the same electrodeposition conditions as described above. As a result, the current showed the same time-dependent change after 5 minutes of energization, and a good coated product was obtained. Was.
Such electrodeposition coating was repeated 20 times, and a good coated product could be obtained under almost the same electrodeposition conditions, and the neutralizing agent (acid) removal rate during this period was 92%. The tubular ion exchanger grew 5%, but no wrinkles occurred.

実施例 2 実施例1で製造した管状イオン交換体(1m)の1本を
用いて第1図に示したような電極装置を構成した。ま
た、比較のために、上記の管状アニオン交換体と電極と
の間隙に管状の多孔性プラスチック製網状物を充填し
て、同様の電極装置を構成した。
Example 2 An electrode device as shown in FIG. 1 was constructed using one of the tubular ion exchangers (1 m) produced in Example 1. For comparison, a similar electrode device was constructed by filling a gap between the tubular anion exchanger and the electrode with a tubular porous plastic mesh.

被塗着物の自動者ボデイーを陰極として、実施例1と
同組成を有するカチオン電着塗装の溶液中に、上記の実
施例用および比較例用に構成した電極装置の各2本(計
4本)を用いてそれぞれ自動車ボデイーから等距離の付
近に組込み、稼働テストを行った。通電は、定電圧式直
流電源装置を設けて、電極装置の4本に対して並列に配
線し、それぞれ電流計を用意して、実施例1と同様に実
施した。
Using the body of the object to be coated as a cathode, two pieces of electrode devices (for a total of four pieces) of the above-described examples and the comparative example were placed in a cationic electrodeposition coating solution having the same composition as in Example 1. ) Were installed near the same distance from the car body, and operation tests were performed. The energization was performed in the same manner as in Example 1 by providing a constant-voltage DC power supply device, wiring the four electrode devices in parallel, and preparing ammeters for each.

その結果、運転当初は270Vの定電圧で、実施例用の電
極装置において約15A、比較例用の電極装置において約1
3Aの電流であったが、経時的に低下し、約3ケ月間の連
続運転により、実施例用では約14A、比較例用では約8A
まで低下した。また、各電極装置について、運転当初お
よび約3ケ月の連続運転後における中和剤(酸)の除去
率を測定した結果を第1表に示した。
As a result, at the beginning of operation, the voltage was constant at 270 V, about 15 A in the electrode device for the example, and about 1 A in the electrode device for the comparative example.
Although the current was 3 A, it decreased with time, and the continuous operation for about 3 months resulted in about 14 A for the example and about 8 A for the comparative example.
Down to Table 1 shows the results of measuring the removal rate of the neutralizing agent (acid) at the beginning of operation and after continuous operation for about three months for each electrode device.

さらに3ケ月運転後の各電極装置を解体して、その管
状アニオン交換体の交換容量を測定した結果を当初の交
換容量と併せて第2表に示す。
Further, after three months of operation, each electrode device was disassembled, and the exchange capacity of the tubular anion exchanger was measured. The results are shown in Table 2 together with the initial exchange capacity.

なお、約3ケ月運転後の管状アニオン交換体につい
て、管内面の螢光X線強度を測定した結果、実施例用お
よび比較例用のいずれも例えばFe,Cr,Pb,Ni,Snなどの重
金属類が検出されたが、特に比較例用の管状アニオン交
換体に強度が強く、内部の方まで強く観察された。
As a result of measuring the fluorescent X-ray intensity on the inner surface of the tubular anion exchanger after the operation for about three months, for both the examples and the comparative examples, heavy metals such as Fe, Cr, Pb, Ni, and Sn were used. However, the strength was particularly strong in the tubular anion exchanger for the comparative example, and was strongly observed up to the inside.

以上の測定から、管状アニオン交換体と電極との間に
網状物を介在させた比較例用の電極装置では、該網状物
の存在により液およびガスが滞留し易いためか、管状ア
ニオン交換体が酸化をより強く受けており、それが実施
例用に比べて交換容量の減少および中和剤(酸)除去効
率の低下に表われており、また管状アニオン交換体への
重金属類の沈着が、電気抵抗の上昇、ひいては電流の経
時的な低下を招いていると推測される。
From the above measurements, in the electrode device for the comparative example in which a mesh is interposed between the tubular anion exchanger and the electrode, the liquid and gas are likely to stay due to the presence of the mesh, It is more susceptible to oxidation, which is reflected in a decrease in exchange capacity and a decrease in neutralizing agent (acid) removal efficiency as compared with the examples, and the deposition of heavy metals on the tubular anion exchanger, It is presumed that this causes an increase in electric resistance and a decrease in current over time.

また、電着塗装液中で管状イオン交換体は約10cm伸び
たが、本実施例の電極装置では形状に変化はなかった。
一方、比較例の電極装置では管状イオン交換体は多孔性
プラスチック製網状物と共に両端が接着されているた
め、管状イオン交換体の伸びが吸収されず大きな が発生し、折れ傷の破れが生じたので接着剤で補修して
使用した。
Further, the tubular ion exchanger expanded about 10 cm in the electrodeposition coating solution, but the shape was not changed in the electrode device of this embodiment.
On the other hand, in the electrode device of the comparative example, since the tubular ion exchanger is bonded at both ends together with the porous plastic mesh, the elongation of the tubular ion exchanger is not absorbed and is large. Was generated, and breakage was broken, so it was repaired with an adhesive before use.

実施例 3 〔管状イオン交換体の製造〕 スチレン−ジビニルベンゼン共重合体を骨格とし、第
4級アンモニウム塩基を交換基とするアニオン交換樹脂
の粉砕物(平均粒径100μm以下)、メルトインデック
スが0.4g/10分の低密度ポリエチレン粉末およびステア
リン酸を混合し、パウダー式押出成形機により、外形50
mm×内径44mm×長さ1mのパイプ状の管状アニオン交換体
を成形した。
Example 3 [Production of Tubular Ion Exchanger] Pulverized anion exchange resin (average particle size of 100 μm or less) having a styrene-divinylbenzene copolymer as a skeleton and a quaternary ammonium base as an exchange group, having a melt index of 0.4 g / 10 minutes of low-density polyethylene powder and stearic acid are mixed, and the powder
A pipe-shaped tubular anion exchanger having a size of mm × 44 mm inner diameter × 1 m length was formed.

この管状アニオン交換体は、電気抵抗が0.1N−NaCl溶
液中(25℃)で約50Ω−cm2,交換容量が2.2meq/g,また
管の両端部を密閉して、その内部に0.5Kg/cm2の水圧を
加えたが、殆んど変形も認められなかった。さらに引張
強度は21Kg/cm2であった。
This tubular anion exchanger has an electric resistance of about 50 Ω-cm 2 in a 0.1N-NaCl solution (25 ° C.), an exchange capacity of 2.2 meq / g, and seals both ends of the tube to form 0.5 kg of gas inside the tube. A water pressure of / cm 2 was applied, but almost no deformation was observed. Further, the tensile strength was 21 kg / cm 2 .

〔電着塗装用電極装置の構成〕[Configuration of electrode device for electrodeposition coating]

上記した管状アニオン交換体(1m)の管内に、陽極と
してTi基材にPtの厚さ5μmのメッキを施した巾40mm×
長さ120cmのラス状の平板を挿入し、実施例2と同様に
下端部を下蓋で密閉し、上端部に開放型の上蓋を設け
た。また、管の下端部に設けた下蓋の底部に極液の供給
口を接続し、上端部に設けた上蓋の側部に極液の排出口
を付設し、管外にタンクを設けて、比電導度により自動
的に純粋を加えて極液の濃度をコントロールして循環す
るように構成した。なお、上蓋,下蓋および極液の供給
口,排出口は、硬質塩化ビニル樹脂を材質とし、接着剤
により接続した。
In a tube of the above-mentioned tubular anion exchanger (1 m), a Ti substrate was plated with a 5 μm-thick Pt layer as an anode.
A lath-like flat plate having a length of 120 cm was inserted, the lower end was closed with a lower lid as in Example 2, and an open upper lid was provided at the upper end. In addition, the supply port of the polar liquid is connected to the bottom of the lower lid provided at the lower end of the pipe, the outlet of the polar liquid is provided on the side of the upper lid provided at the upper end, and a tank is provided outside the pipe, The system was configured such that pure water was automatically added according to the specific conductivity to control the concentration of the polar solution and circulated. The upper lid, the lower lid, and the supply and discharge ports of the polar liquid were made of hard vinyl chloride resin, and were connected by an adhesive.

ビスフエノール型エポキシ樹脂系のカチオン塗料を主
成分とし、乳酸を中和剤とする電着塗装の溶液におい
て、脱脂した鉄製の被塗着物を陰極とし、該被塗着物を
挟むように陽極として上記の電極装置の2本を設置し
て、前実施例と同様に直流電流を通電した。
A bisphenol-based epoxy resin-based cationic paint as a main component, in a solution of electrodeposition coating using lactic acid as a neutralizing agent, a degreased iron-made article is used as a cathode, and the anode is used as an anode so as to sandwich the article. Were installed, and a direct current was applied in the same manner as in the previous example.

その結果、運転当初は300Vの定電圧で、電流が約27A
であるが、経時的に低下し、4分間で通電を停止し、良
好な塗面状態の塗着物を得た。新しい被塗着物を用いて
同様の通電処理を繰返し20回行ったが、電流の経時的な
変化は殆んど同じ傾向を示した。この間における中和剤
の除去率は90.5%であった。また、管状イオン交換体の
伸びは8%であったが、しわの発生はなかった。
As a result, at the start of operation, a constant voltage of 300 V and a current of about 27 A
However, it decreased with time, and after 4 minutes, the energization was stopped, and a coated product having a good coated surface state was obtained. The same energization treatment was repeated 20 times using a new article to be coated, and the change with time of the current showed almost the same tendency. During this time, the removal rate of the neutralizing agent was 90.5%. The elongation of the tubular ion exchanger was 8%, but no wrinkles occurred.

【図面の簡単な説明】[Brief description of the drawings]

第1図,第2図,第3図及び第5図は、本発明の透析用
電極装置を鉛直方向に平行な平面で切断した断面図であ
り、第4図は、極液の供排管の接続の一例を示す概略図
であり、第6図は本発明の透析用電極装置を示す概略図
である。図中、1は管状イオン交換体,2は電極,3は下
蓋,4は上蓋,5は極液の排出口,6は極液の供給口,7は電極
のつば,8及び8′は接合部材,9はOリング,10は極液の
供給管,11は案内管,12はナット,13は極液の排出管,14,1
5及び16はバルブ,17は可撓性の筒体,18は可撓性の導電
体,19は枠体を夫々示す。
FIGS. 1, 2, 3, and 5 are cross-sectional views of the dialysis electrode device of the present invention cut along a plane parallel to the vertical direction, and FIG. FIG. 6 is a schematic diagram showing an example of the connection of FIG. 6, and FIG. 6 is a schematic diagram showing the dialysis electrode device of the present invention. In the figure, 1 is a tubular ion exchanger, 2 is an electrode, 3 is a lower lid, 4 is an upper lid, 5 is an outlet for polar liquid, 6 is a supply port for polar liquid, 7 is a collar of the electrode, and 8 and 8 ′ are electrodes. Joining member, 9 is an O-ring, 10 is an anolyte supply pipe, 11 is a guide pipe, 12 is a nut, 13 is an anolyte discharge pipe, 14, 1
5 and 16 are valves, 17 is a flexible cylinder, 18 is a flexible conductor, and 19 is a frame.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一端又は両端が開口した管状イオン交換
体、その管内に挿入された電極、及び管状イオン交換体
の開口端に嵌合された蓋よりなり、該管状イオン交換体
の一端に嵌合された蓋には電極の一端が支持されてな
り、該管状イオン交換体の他端は該管状イオン交換体の
伸縮に応じて軸方向に移動可能であり、該管状イオン交
換体の管内を一端から他端へ極液を流通させるための極
液の供給口及び排出口が夫々設けられてなる透析用電極
装置。
1. A tubular ion exchanger having one end or both ends open, an electrode inserted into a tube thereof, and a lid fitted to an open end of the tubular ion exchanger, and fitted to one end of the tubular ion exchanger. One end of an electrode is supported on the combined lid, and the other end of the tubular ion exchanger is movable in the axial direction in accordance with expansion and contraction of the tubular ion exchanger. An electrode device for dialysis, comprising a supply port and a discharge port for the polar solution for flowing the polar solution from one end to the other end.
JP1076841A 1988-12-16 1989-03-30 Dialysis electrode device Expired - Lifetime JP2656107B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1076841A JP2656107B2 (en) 1989-03-30 1989-03-30 Dialysis electrode device
US07/450,522 US5049253A (en) 1988-12-16 1989-12-14 Electrode apparatus for dialysis
DE68915520T DE68915520T2 (en) 1988-12-16 1989-12-15 Electrode device for dialysis.
EP89313130A EP0375290B1 (en) 1988-12-16 1989-12-15 Electrode apparatus for dialysis
KR1019890018849A KR0138265B1 (en) 1988-12-16 1989-12-16 Electrode apparatus for dialysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1076841A JP2656107B2 (en) 1989-03-30 1989-03-30 Dialysis electrode device

Publications (2)

Publication Number Publication Date
JPH02259000A JPH02259000A (en) 1990-10-19
JP2656107B2 true JP2656107B2 (en) 1997-09-24

Family

ID=13616895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1076841A Expired - Lifetime JP2656107B2 (en) 1988-12-16 1989-03-30 Dialysis electrode device

Country Status (1)

Country Link
JP (1) JP2656107B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08371Y2 (en) * 1989-08-25 1996-01-10 トリニティ工業株式会社 Diaphragm electrode for electrodeposition coating
JP2007075712A (en) * 2005-09-13 2007-03-29 Masayoshi Iwahara Sterilized electrodialysis method
JP5138029B2 (en) * 2007-04-27 2013-02-06 アムブー アクティーゼルスカブ Method for manufacturing a coated needle electrode
JP5349106B2 (en) * 2009-03-25 2013-11-20 株式会社アストム Ion exchanger and method for producing the same
JP2020045531A (en) * 2018-09-19 2020-03-26 有限会社サンコーテクニカ Cylindrical parallel electrode for plating

Also Published As

Publication number Publication date
JPH02259000A (en) 1990-10-19

Similar Documents

Publication Publication Date Title
US5049253A (en) Electrode apparatus for dialysis
FI79353B (en) ELEKTROD FOER ELEKTROKEMISK CELL.
US4101395A (en) Cathode-structure for electrolysis
US4318785A (en) Method of bonding cation exchange membrane of fluorinated polymer
US20100059378A1 (en) Apparatus and method for removal of ions from a porous electrode that is part of a deionization system
JPH07103251B2 (en) Composite molded product, its application and manufacturing method
JP2656107B2 (en) Dialysis electrode device
JP2010533587A (en) Apparatus and method for separating ions from a porous electrode that is part of a deionization system
JP7073152B2 (en) How to manufacture an electrolytic cell
WO2006111051A1 (en) Production method of nanometer carbon dispersion and the device for producing the same
US4604323A (en) Multilayer cation exchange membrane
JP4778308B2 (en) Method for producing organic acid
JP2656096B2 (en) Dialysis electrode device
JP7058152B2 (en) Electrode for electrolysis
US4680355A (en) Process for preparation of fluorine containing polymer films
JPH10235158A (en) Apparatus for manufacture of deionized water
WO2020059623A1 (en) Method for manufacturing electrolytic cell, laminate, electrolytic cell, and method for operating electrolytic cell
JPS5834566A (en) Method of filling active substance in porous and flexible expansible metal storage battery plate
JPH04228591A (en) Bipolar membrane and its production
CN113897663A (en) Method and device for removing copper plated on conductive roller
JPS6317913B2 (en)
JP7075792B2 (en) Laminate
CN220767226U (en) Electroplating device for surface of special-shaped spherical shell workpiece
JPS5819750B2 (en) Electrolysis method
JPH1087853A (en) Production of bipolar membrane

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080530

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 12

EXPY Cancellation because of completion of term