JPS5939911B2 - Manufacturing method of PN junction element - Google Patents

Manufacturing method of PN junction element

Info

Publication number
JPS5939911B2
JPS5939911B2 JP1320281A JP1320281A JPS5939911B2 JP S5939911 B2 JPS5939911 B2 JP S5939911B2 JP 1320281 A JP1320281 A JP 1320281A JP 1320281 A JP1320281 A JP 1320281A JP S5939911 B2 JPS5939911 B2 JP S5939911B2
Authority
JP
Japan
Prior art keywords
junction
crystal silicon
silicon substrate
shaped groove
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1320281A
Other languages
Japanese (ja)
Other versions
JPS57128079A (en
Inventor
倬暢 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EASTERN STEEL
Original Assignee
EASTERN STEEL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EASTERN STEEL filed Critical EASTERN STEEL
Priority to JP1320281A priority Critical patent/JPS5939911B2/en
Publication of JPS57128079A publication Critical patent/JPS57128079A/en
Publication of JPS5939911B2 publication Critical patent/JPS5939911B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)
  • Element Separation (AREA)

Description

【発明の詳細な説明】 本発明はPN接合素子の製造方法に係るもので、特に、
単結晶シリコン層と多結晶シリコン層とにわたつて高耐
圧のPN接合を形成する方法に関すものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a PN junction element, and in particular,
The present invention relates to a method for forming a high breakdown voltage PN junction between a single crystal silicon layer and a polycrystalline silicon layer.

PN接合は、半導体装置において重要な役割を果してお
り、これによつてその装置または素子の特性が左右され
ると言つても良い。
The PN junction plays an important role in semiconductor devices, and it can be said that the characteristics of the device or element are influenced by the PN junction.

このPN接合に逆方向の電圧を印加すると、飽和電流が
わずかに流れるだけであるが、ある電圧を越えると急に
電流が流れ出す。
When a voltage in the opposite direction is applied to this PN junction, only a small amount of saturation current flows, but when a certain voltage is exceeded, the current suddenly begins to flow.

この現象が降伏またはブレークダウンといい、この電圧
を降伏電圧またはブレークダウン電圧という。降伏電圧
を越えて高い電圧を印加すると、PN接合が機械的に破
壊されてしまう。したがつて、半導体装置の特性はこの
降伏電圧によつて決定されてしまう。上記の降伏(ブレ
ークダウン)の原因には、電流密度が過大となることに
起因するもの、接合の局部に電流集中が生じることに起
因するものなどがある。したがつて、このような降伏の
生じる原因を除去すれば、半導体装置の降伏電圧を高く
することができ、特に大電流を用いる装置には有利にな
る。従来からPN接合部の導電率を調整したり、PN接
合部の形状を改良することなどによつて降伏電圧を高く
することが考えられている。本発明は、上記のようなP
N接合の降伏電圧を高くして、高耐圧のPN接合を得る
ことを目的とする。本発明によるPN接合素子の製造方
法においては、PN接合の形状を改良して、接合の面積
を大きくし、電流が一部に集中することを防止すること
によつて、上記の目的を達成するものである。
This phenomenon is called breakdown or breakdown, and this voltage is called breakdown voltage or breakdown voltage. If a voltage higher than the breakdown voltage is applied, the PN junction will be mechanically destroyed. Therefore, the characteristics of a semiconductor device are determined by this breakdown voltage. The causes of the above-mentioned breakdown include those caused by excessive current density and those caused by current concentration occurring locally in the junction. Therefore, if such causes of breakdown are eliminated, the breakdown voltage of the semiconductor device can be increased, which is especially advantageous for devices that use large currents. Conventionally, it has been considered to increase the breakdown voltage by adjusting the conductivity of the PN junction or improving the shape of the PN junction. The present invention provides P as described above.
The purpose is to increase the breakdown voltage of the N junction and obtain a PN junction with high breakdown voltage. In the method for manufacturing a PN junction element according to the present invention, the above object is achieved by improving the shape of the PN junction, increasing the area of the junction, and preventing current from being concentrated in one part. It is something.

本発明によるPN接合素子の製造方法においては、単結
晶シリコンだけでなく多結晶シリコンの層をも利用し、
その中にPN接合を形成することを特徴とする。高耐圧
の素子を得るために利用される誘電体分離技術による半
導体集積回路装置において利用するのに適した方法を提
供するものである。単結晶シリコンと多結晶シリコンの
拡散係数は大きく異なり、約一桁多結晶シリコンの方が
大きくなつている。
In the method of manufacturing a PN junction device according to the present invention, not only a layer of single crystal silicon but also a layer of polycrystalline silicon is used,
It is characterized by forming a PN junction therein. The present invention provides a method suitable for use in a semiconductor integrated circuit device using dielectric isolation technology used to obtain a high breakdown voltage element. The diffusion coefficients of single crystal silicon and polycrystalline silicon are significantly different, with polycrystalline silicon being about an order of magnitude larger.

これを表に表すと次のようになる。単位はc7il/
secこの拡散係数の差と、単結晶シリコン及び多結晶
シリコンの境界の構造を利用することによつて、大きな
面積のPN接合を得るものである。
This can be expressed in a table as follows. The unit is c7il/
sec By utilizing this difference in diffusion coefficient and the structure of the boundary between single crystal silicon and polycrystalline silicon, a PN junction with a large area can be obtained.

以下、図面に従つて、本発明の実施例につき説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明の実施例の工程を示す正面断面図であ
る。
FIG. 1 is a front sectional view showing the steps of an embodiment of the present invention.

単結晶シリコン基板10の表面に二酸化シリコン膜11
を形成する(A)。この場合、単結晶シリコン基板10
はN型の導電性を有している。二酸化シリコン膜11の
一部を、V字形の溝を形成するパターンに従つて除去す
る(B)。これによつて、字形の溝を形成する部分の単
結晶シリコン基板10の表面が露出する。この表面は例
えば(100)面となるように結晶軸を選択しておく。
これを二酸化シリコン膜11をマスクとしてエツチング
すると、エツチングの異方性によつて単結晶シリコン基
板10の表面にはV字形の溝12が形成される(CL(
100)面を用いた場合、字形の溝12の角度は721
となる。次に、このV字形の溝12を含みこの表面に、
この場合はN型の導電性を有する多結晶シリコン層13
を形成するa))。このとき、V字形の溝12の部分の
単結晶シリコン基板10の表面には二酸化シリコン膜を
形成せず、直接多結晶シリコン層13が接触するように
なる。そのためには、低温で結晶を成長させることが必
要となる。基層に多結晶シリコンが形成されれば、その
後は高温で成長させても多結晶シリコン層が形成される
ようになる。多結晶シリコン層13が単結晶シリコン基
板10を支持するのに十分な厚みで形成された後、単結
晶シリコン基板10を研磨する(ト)地この研磨量は、
V字形の溝12の底部が現われるか、あるいは、それに
近い状態となるまでとする。単結晶シリコン基板10の
表面に二酸化シリコン膜14を形成し、V字形の溝12
の部分をエツチングして露出される([l′Lこれを拡
散の窓として、P型の不純物、例えばボロン、を単結晶
シリコン基板10及び多結晶シリコン層13の内部に拡
散する(QOこれによつて、単結晶シリコン基板10及
び多結晶シリコン層13にPN接合15が形成される。
前記の通り、単結晶シリコンと多結晶シリコンは拡散の
速度が大きく異なつている。
Silicon dioxide film 11 on the surface of single crystal silicon substrate 10
(A). In this case, the single crystal silicon substrate 10
has N-type conductivity. A portion of the silicon dioxide film 11 is removed according to a pattern to form a V-shaped groove (B). As a result, the surface of the single-crystal silicon substrate 10 in the portion where the letter-shaped groove is to be formed is exposed. The crystal axis is selected so that this surface is, for example, a (100) plane.
When this is etched using the silicon dioxide film 11 as a mask, a V-shaped groove 12 is formed on the surface of the single crystal silicon substrate 10 due to the anisotropy of the etching (CL(
100), the angle of the groove 12 of the letter is 721
becomes. Next, on this surface including this V-shaped groove 12,
In this case, a polycrystalline silicon layer 13 having N-type conductivity
form a)). At this time, no silicon dioxide film is formed on the surface of the single crystal silicon substrate 10 in the V-shaped groove 12, and the polycrystalline silicon layer 13 comes into direct contact with the surface. For this purpose, it is necessary to grow crystals at low temperatures. Once polycrystalline silicon is formed in the base layer, a polycrystalline silicon layer can be formed even if it is grown at a high temperature thereafter. After the polycrystalline silicon layer 13 is formed to a thickness sufficient to support the single-crystal silicon substrate 10, the amount of polishing (g) for polishing the single-crystal silicon substrate 10 is as follows:
This is done until the bottom of the V-shaped groove 12 appears or is close to it. A silicon dioxide film 14 is formed on the surface of a single crystal silicon substrate 10, and a V-shaped groove 12 is formed.
Using this as a diffusion window, a P-type impurity, such as boron, is diffused into the single crystal silicon substrate 10 and the polycrystalline silicon layer 13 (QO). Thus, a PN junction 15 is formed between the single crystal silicon substrate 10 and the polycrystalline silicon layer 13.
As mentioned above, single crystal silicon and polycrystalline silicon have significantly different diffusion rates.

したがつて、上記の工程によつて、P型の不純物を拡散
した場合、単結晶シリコン基板の部分では遅く、多結晶
シリコン層においては速く拡散されることになる。V字
形の溝の底部の側から拡散されるので、V字形の溝の底
部上の多結晶シリコン層において、表面に垂直な方向の
拡散の深さが大きくなり、そこから離れるに従つて次第
に小さくなる。単結晶シリコンの拡散は、多結晶シリコ
ンに比較すると、はるかに小さな範囲となる。このよう
にして形成されるPN接合は、多結晶シリコン層内に丸
みを帯びた形状となる。
Therefore, when the P-type impurity is diffused through the above process, it will be diffused slowly in the single crystal silicon substrate and quickly in the polycrystalline silicon layer. Since the diffusion occurs from the bottom side of the V-shaped groove, the depth of diffusion in the direction perpendicular to the surface increases in the polycrystalline silicon layer on the bottom of the V-shaped groove, and gradually decreases as the distance from there increases. Become. Diffusion in single-crystal silicon is much smaller than in polycrystalline silicon. The PN junction thus formed has a rounded shape within the polycrystalline silicon layer.

したがつて、その面積が大きくなるとともに、形状の上
でも電流が集中する部分が存在しないようになる。第2
図は、本発明により製造されたPN接合素子を他の半導
体集積回路素子と同じ基板の中に形成した例の正面断面
図を示したものである。
Therefore, the area becomes larger and there is no part in the shape where the current is concentrated. Second
The figure shows a front sectional view of an example in which a PN junction element manufactured according to the present invention is formed in the same substrate as other semiconductor integrated circuit elements.

誘電体分離によつて形成された単結晶シリコンの島20
の中にNPNトランジスタを、他の島30と多結晶シリ
コン層23を利用してダイオードを形成したものである
。このように、誘電体分離技術を利用する場合には、本
発明は特に適しており、他の素子を形成する際に同時に
PN接合素子を形成することができる。また、第3図は
本発明により製造するPN接合素子の他の例の正面断面
図を示したものである。
Single crystal silicon island 20 formed by dielectric separation
An NPN transistor is formed therein, and a diode is formed using another island 30 and a polycrystalline silicon layer 23. As described above, the present invention is particularly suitable when using dielectric isolation technology, and the PN junction element can be formed simultaneously when other elements are formed. Moreover, FIG. 3 shows a front sectional view of another example of a PN junction element manufactured according to the present invention.

多結晶シリコン層33が露出した状態でP型の不純物を
拡散するものであり、PN接合の形状が前記の例と?な
つている。このように、単結晶シリコンの研磨の量を変
化させることによつて、PN接合の形状も変えることが
できる。本発明によれば、PN接合の形状を任意に得る
ことができるので、PN接合の耐圧を任意に制御するこ
とができる。
The P-type impurity is diffused while the polycrystalline silicon layer 33 is exposed, and the shape of the PN junction is similar to the above example. It's summery. In this way, by changing the amount of polishing of single crystal silicon, the shape of the PN junction can also be changed. According to the present invention, since the shape of the PN junction can be arbitrarily obtained, the breakdown voltage of the PN junction can be arbitrarily controlled.

特に、PN接合の面積が大きくとれるので、高耐圧の素
子に適したものである。また、ダイオードに限らず、そ
の他の能動素子あるいは抵抗などを形成する場合にも利
用できるし、誘電体分離における分離領域を利用してP
N接合素子を形成できる利点もある。
In particular, since the area of the PN junction can be large, it is suitable for high-voltage elements. In addition, it can be used not only for diodes but also for forming other active elements or resistors, and it can also be used to form P
There is also the advantage that an N-junction element can be formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の工程を示す正面断面図、第2図、第3
図は本発明により製造するPN接合素子の例の正面断面
図である。 10,20,30・・・・・・単結晶シリコン、13,
23,33・・・・・・多結晶シリコン、12・・・・
・・字形の溝、11,14・・・・・・二酸化シリコン
膜、15・・・・・・PN接合。
Figure 1 is a front sectional view showing the process of the present invention, Figures 2 and 3.
The figure is a front sectional view of an example of a PN junction element manufactured according to the present invention. 10,20,30... Single crystal silicon, 13,
23,33...polycrystalline silicon, 12...
. . . shaped groove, 11, 14 . . . silicon dioxide film, 15 . . . PN junction.

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型の単結晶シリコン基板の一表面にV字形の
溝を形成し、該V字形の溝の表面以外には二酸化シリコ
ン膜を形成し、該V字形の溝の表面及び該二酸化シリコ
ン膜の表面上に多結晶シリコン層を形成し、該単結晶シ
リコン基板を研磨した後該単結晶シリコン基板のV字形
の溝が形成された部分に該単結晶シリコン基板側から反
対導電型の不純物を該単結晶シリコン基板及び該多結晶
シリコン層に拡散することを特徴とするPN接合素子の
製造方法。
1 A V-shaped groove is formed on one surface of a single-crystal silicon substrate of one conductivity type, a silicon dioxide film is formed on a surface other than the surface of the V-shaped groove, and a silicon dioxide film is formed on the surface of the V-shaped groove and the silicon dioxide film. After forming a polycrystalline silicon layer on the surface of the single-crystal silicon substrate and polishing the single-crystal silicon substrate, impurities of the opposite conductivity type are added to the portion of the single-crystal silicon substrate where the V-shaped groove is formed from the single-crystal silicon substrate side. A method for manufacturing a PN junction element, comprising diffusing into the single crystal silicon substrate and the polycrystalline silicon layer.
JP1320281A 1981-01-30 1981-01-30 Manufacturing method of PN junction element Expired JPS5939911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1320281A JPS5939911B2 (en) 1981-01-30 1981-01-30 Manufacturing method of PN junction element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1320281A JPS5939911B2 (en) 1981-01-30 1981-01-30 Manufacturing method of PN junction element

Publications (2)

Publication Number Publication Date
JPS57128079A JPS57128079A (en) 1982-08-09
JPS5939911B2 true JPS5939911B2 (en) 1984-09-27

Family

ID=11826566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1320281A Expired JPS5939911B2 (en) 1981-01-30 1981-01-30 Manufacturing method of PN junction element

Country Status (1)

Country Link
JP (1) JPS5939911B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6346809U (en) * 1986-09-13 1988-03-30

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6346809U (en) * 1986-09-13 1988-03-30

Also Published As

Publication number Publication date
JPS57128079A (en) 1982-08-09

Similar Documents

Publication Publication Date Title
US3425879A (en) Method of making shaped epitaxial deposits
US5413679A (en) Method of producing a silicon membrane using a silicon alloy etch stop layer
KR840007315A (en) Semiconductor device having pressure sensing element and its manufacturing method
US4017341A (en) Method of manufacturing semiconductor integrated circuit with prevention of substrate warpage
US3764409A (en) Method for fabricating a semiconductor component for a semiconductor circuit
US4408386A (en) Method of manufacturing semiconductor integrated circuit devices
US5296047A (en) Epitaxial silicon starting material
US3997378A (en) Method of manufacturing a semiconductor device utilizing monocrystalline-polycrystalline growth
US3911559A (en) Method of dielectric isolation to provide backside collector contact and scribing yield
JPH0145224B2 (en)
US3471922A (en) Monolithic integrated circuitry with dielectric isolated functional regions
JPS5939911B2 (en) Manufacturing method of PN junction element
US4512074A (en) Method for manufacturing a semiconductor device utilizing selective oxidation and diffusion from a polycrystalline source
US4076559A (en) Temperature gradient zone melting through an oxide layer
JPS6334629B2 (en)
JPS5984435A (en) Semiconductor integrated circuit and manufacture thereof
US3988757A (en) Deep diode zeners
US3986904A (en) Process for fabricating planar scr structure
JPH0653313A (en) Manufacture of semiconductor device
JPS5834943A (en) Semiconductor device and manufacture thereof
JPS6244853B2 (en)
JPS5840337B2 (en) Manufacturing method of semiconductor integrated circuit
US3834958A (en) Method for isolation of circuit regions in monolithic integrated circuit structure
JP2585642B2 (en) Method for manufacturing semiconductor device
JPS60260162A (en) Manufacture of semiconductor device