JPH0653313A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0653313A
JPH0653313A JP31588191A JP31588191A JPH0653313A JP H0653313 A JPH0653313 A JP H0653313A JP 31588191 A JP31588191 A JP 31588191A JP 31588191 A JP31588191 A JP 31588191A JP H0653313 A JPH0653313 A JP H0653313A
Authority
JP
Japan
Prior art keywords
film
oxide film
single crystal
type
crystal silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31588191A
Other languages
Japanese (ja)
Inventor
Koji Hamada
耕治 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP31588191A priority Critical patent/JPH0653313A/en
Publication of JPH0653313A publication Critical patent/JPH0653313A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent facetting and crystal defects by selectively growing a silicon single-crystal film inside a slit in an insulating film pattern on a silicon substrate within a specified temperature range and thereafter flattening the single-crystal film. CONSTITUTION:An N<+> buried layer 4 as well as a 1.5mum thickness isolation insulating oxide film pattern 2 having a slit are formed on a p-type silicon substrate 1. Inside the slit is then cleaned, and an n type silicon single-crystal film 3 is selectively grown there to, for example, 3mum in thickness so that its surface is higher than that of the oxide film 2. The substrate 1 is polished under a pressure of 100g/cm<2> by a polyurethane polishing pad soaked with solution containing ethylenediamenepyrocatechol and fine powder of silica, and the single-crystal silicon film 3, including a facet, above the isolation oxide film 2 is shaved. Subsequently, a p type base region 6, n type emitter region 7 and polycrystalline silicon electrode are formed to obtain an n-p-n transistor of so-called walled base structure wherein the base region 6 having a very small cb junction leakage current is in contact with the oxide film 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法に
関し、特に単結晶シリコン膜の選択エピタキシャル成長
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for selective epitaxial growth of a single crystal silicon film.

【0002】[0002]

【従来の技術】従来、誘電体分離領域を有する半導体装
置を選択エピタキシャル成長法を用いて製造方法するに
は、例えば学術誌「アン・インタナショナル・ジャーナ
ル・オブ・セミコンダクー・マニュファクチュアリング
・テクノロジイ(An International
Journal of SemiconductorM
anufacturing Technology,V
olume 4,No.1 May1986,PP3〜
33)」が記載するように、単結晶シリコン膜は温度9
50℃以上の条件で、選択成長される。
2. Description of the Related Art Conventionally, for manufacturing a semiconductor device having a dielectric isolation region by using a selective epitaxial growth method, for example, an academic journal "An International Journal of Semiconducer Manufacturing Technology (An. International
Journal of SemiconductorM
anufacturing Technology, V
olume 4, No. 1 May 1986, PP3 ~
33) ”, the single crystal silicon film has a temperature of 9
Selective growth is performed under the condition of 50 ° C. or higher.

【0003】図5は従来の選択エピタキシャル法によっ
て製造されたN型単結晶シリコン膜の断面図を示す。す
なわち、N型単結晶シリコン膜3はP型シリコン基板1
上に形成された絶縁膜パターン2の開口部を埋めるよう
に絶縁膜の高さと等しい膜厚に堆積される。
FIG. 5 shows a cross-sectional view of an N-type single crystal silicon film manufactured by a conventional selective epitaxial method. That is, the N-type single crystal silicon film 3 is the P-type silicon substrate 1
A film having the same thickness as the insulating film is deposited so as to fill the opening of the insulating film pattern 2 formed above.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
た従来の半導体装置の製造方法では、選択エピタキシャ
ル成長された単結晶シリコン膜の分離絶縁酸化膜の近傍
に多くの結晶欠陥が発生したり、或いは成長膜のコーナ
部に異なる結晶面、すなわち、ファセット5が形成され
段差を生じるので、分離絶縁酸化膜に接するようにPN
接合を形成すると、この接合のリーク電流は大きくな
る。ここで、この様子を図面を用いて具体的に説明す
る。
However, in the above-described conventional method for manufacturing a semiconductor device, many crystal defects are generated in the vicinity of the isolation insulating oxide film of the single crystal silicon film selectively epitaxially grown, or the growth film is grown. Since different crystal planes, that is, facets 5 are formed at the corners of the pits, a step is formed, so that the PN is contacted with the isolation insulating oxide film.
When a junction is formed, the leak current of this junction increases. Here, this state will be specifically described with reference to the drawings.

【0005】図6の分図(a)(b)はそれぞれ上記N
型単結晶シリコン膜上にNPNトランジスタのベース領
域を形成した場合の平面図およびそのA−A′断面図を
示す。すなわち、P型シリコン基板1の表面に砒素(A
s)を注入してN+ 埋込層4を形成し、この表面を選択
酸化して1.5μmの絶縁膜パターン2を形成する。つ
ぎに適当な前処理を行なった後、絶縁膜上にはシリコン
を析出せず、露出しているシリコン基板表面のみにシリ
コンを析出させる所謂選択エピタキシャル成長をこの面
上に行なう。
The diagrams (a) and (b) of FIG.
A plan view and a cross-sectional view taken along line AA ′ of the base region of the NPN transistor formed on the type single crystal silicon film are shown. That is, on the surface of the P-type silicon substrate 1, arsenic (A
s) is implanted to form an N + buried layer 4, and this surface is selectively oxidized to form an insulating film pattern 2 of 1.5 μm. Next, after performing an appropriate pretreatment, so-called selective epitaxial growth is performed on this surface, in which silicon is not deposited on the insulating film but silicon is deposited only on the exposed surface of the silicon substrate.

【0006】従来の代表的な成長条件は以下の通りであ
る。
The typical conventional growth conditions are as follows.

【0007】[0007]

【表1】 [Table 1]

【0008】上記の条件でフォスフィン・ガス(P
3 )を適当に添加しながら成長させると、抵抗率0.
8ΩcmのN型単結晶シリコン膜3がエピタキシャル成
長する。ついで、ボロン(B)をイオン注入でエピタキ
シャル層表面に打ち込み活性化熱処理を行ない面積15
μm×19μm,深さ0.4μmのP型ベース領域6を
形成した。ついで、このP型ベース領域6とコレクタと
なるべきN型単結晶シリコン膜3とからそれぞれ電極を
引出し、これに10Vの逆バイアス電圧をかけてコレク
タ/ベース接合(以下CB接合という)の逆方向特性を
調べると、接合のリーク電流は接合と絶縁膜との離間距
離×(μm)が1.5μmより小さくなると急激に増大
することが確かめられた。すなわち、接合が絶縁膜の近
傍に形成されるに従いリーク電流は10-14 台から10
-12 台にまで2桁以上も増加することが実験上明らかと
なった。また、実験結果を更に分析すると、温度100
0℃で成長した単結晶シリコン膜にはファセットの成長
はきわめて低く抑えられているが、分離絶縁酸化膜2の
近傍に多くの結晶欠陥が発生しており、CB接合がこの
結晶欠陥の多い分離絶縁酸化膜2の近傍に近づくと、リ
ーク電流が急激に増加することが明らかとなり、また、
成長温度を例えば900℃まで低くすると、結晶欠陥が
少なくなる代わりに逆にファセットの成長度合が増加す
ることが認められた。すなわち、結晶欠陥とファセット
成長とは単結晶シリコン膜の選択成長温度にそれぞれ深
く依存しており、1000℃以上の高温では結晶欠陥
が、また、900℃近傍の低温度ではファセット成長が
より多く発生し、接合のリーク電流の増大にそれぞれ深
く関わり合っていることが確められた。
Under the above conditions, phosphine gas (P
H 3 ) is grown with appropriate addition, the resistivity of 0.
The 8 Ωcm N-type single crystal silicon film 3 is epitaxially grown. Then, boron (B) is ion-implanted into the surface of the epitaxial layer to perform activation heat treatment, and an area of 15
A P-type base region 6 having a size of μm × 19 μm and a depth of 0.4 μm was formed. Then, electrodes are drawn out from the P-type base region 6 and the N-type single crystal silicon film 3 to serve as a collector, and a reverse bias voltage of 10 V is applied to the electrodes to reverse the collector / base junction (hereinafter referred to as CB junction). When the characteristics were examined, it was confirmed that the leak current of the junction sharply increased when the distance x (μm) between the junction and the insulating film was smaller than 1.5 μm. That is, as the junction is formed in the vicinity of the insulating film, the leak current is from 10 −14 to 10
-Experimental results have revealed that the number will increase by more than two digits to 12 units. Further analysis of the experimental results shows that the temperature of 100
Although the growth of facets is suppressed to a very low level in the single crystal silicon film grown at 0 ° C., many crystal defects are generated in the vicinity of the isolation insulating oxide film 2, and the CB junction is separated with many crystal defects. It became clear that the leak current drastically increases when the vicinity of the insulating oxide film 2 is approached.
It has been found that when the growth temperature is lowered to 900 ° C., for example, the degree of facet growth is increased instead of the reduction of crystal defects. That is, the crystal defects and the facet growth are deeply dependent on the selective growth temperature of the single crystal silicon film, respectively, and crystal defects occur at a high temperature of 1000 ° C. or higher, and facet growth occurs more at a low temperature near 900 ° C. However, it was confirmed that they are deeply related to the increase of the leak current of the junction.

【0009】本発明の目的は、上記の情況に鑑み、分離
絶縁酸化膜との近傍領域における結晶欠陥およびファセ
ットの生成をきわめて有効に抑止することのできる単結
晶シリコン膜の選択エピタキシャル成長工程を備えた半
導体装置の製造方法を提供することである。
In view of the above situation, an object of the present invention is to provide a selective epitaxial growth step of a single crystal silicon film capable of extremely effectively suppressing the production of crystal defects and facets in the region near the isolation insulating oxide film. A method of manufacturing a semiconductor device is provided.

【0010】[0010]

【課題を解決するための手段】本発明による半導体装置
の製造方法は、シリコン基板上に絶縁膜のパターンを形
成し、選択エピタキシャル成長法を用いて前記絶縁膜パ
ターンの開孔部内に選択的に単結晶シリコン膜を堆積す
る半導体装置の製造方法において、前記単結晶シリコン
膜を880℃以上980℃以下の温度で、前記開口部内
に絶縁膜パターンの表面を越える膜厚にまで選択成長せ
しめる工程と、前記単結晶シリコン膜の選択成長膜を前
記絶縁膜パターンの高さに平坦化する単結晶シリコン膜
の研磨工程とを含むことを特徴としている。
According to the method of manufacturing a semiconductor device of the present invention, a pattern of an insulating film is formed on a silicon substrate, and a selective epitaxial growth method is used to selectively and selectively form the insulating film pattern in the opening. In a method of manufacturing a semiconductor device for depositing a crystalline silicon film, a step of selectively growing the single crystalline silicon film at a temperature of 880 ° C. or higher and 980 ° C. or lower to a thickness exceeding the surface of an insulating film pattern in the opening, And a step of polishing the single crystal silicon film for flattening the selectively grown film of the single crystal silicon film to the height of the insulating film pattern.

【0011】本発明では単結晶シリコン膜の成長温度を
880℃以上980℃以下の範囲に設定するのが好まし
い。980℃を越える成長温度では、単結晶シリコン膜
3の速い成長速度のためにその内部に結晶欠陥が生じや
すくその表面も荒れたものになってしまう。また880
℃未満の成長温度では、結晶欠陥は少ないが分離絶縁酸
化膜2の内壁の近くにもファセットが生じやすくなり、
ここにPN接合を形成し逆バイアスを印加すると、リー
ク電流の増加を招いてしまう。
In the present invention, the growth temperature of the single crystal silicon film is preferably set in the range of 880 ° C. or higher and 980 ° C. or lower. At a growth temperature exceeding 980 ° C., crystal defects are likely to occur inside the single crystal silicon film 3 due to the high growth rate of the single crystal silicon film 3, and the surface thereof becomes rough. Again 880
At a growth temperature of less than ℃, crystal defects are few, but facets are likely to occur near the inner wall of the isolation insulating oxide film 2,
If a PN junction is formed here and a reverse bias is applied, the leak current will increase.

【0012】[0012]

【実施例】以下図面を参照して本発明を詳細に説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the drawings.

【0013】図1及び図2は本発明の一実施例を示す工
程順序図である。本実施例によれば、P型シリコン基板
1上にN+ 埋込層4がまず形成され、ついで膜厚1.5
μmの分離絶縁酸化膜パターン2がN+ 埋込層4上に開
口部を設けて形成される〔図1の分図(a)参照〕。つ
ぎに、この開口部内のシリコン表面を適当な前処理によ
り清浄化しN型シリコン単結晶膜3を選択成長せしめ
る。成長温度の一例として900℃のときの成長条件は
次の通りである。
1 and 2 are process sequence diagrams showing an embodiment of the present invention. According to this embodiment, the N + buried layer 4 is first formed on the P-type silicon substrate 1, and then the film thickness of 1.5 is formed.
A μm isolation insulating oxide film pattern 2 is formed by providing an opening on the N + buried layer 4 [see FIG. 1 (a)]. Next, the silicon surface in the opening is cleaned by an appropriate pretreatment to selectively grow the N-type silicon single crystal film 3. The growth conditions at 900 ° C. as an example of the growth temperature are as follows.

【0014】[0014]

【表2】 [Table 2]

【0015】この際、単結晶シリコン膜3はコーナー部
に発生するファセット5が図1の分図(b)に示すよう
に、膜厚1.5μmの分離絶縁酸化膜3の表面より上に
なるように、例えば3μmの厚さに成長される。またこ
のとき、抵抗率が0.8Ωcmになるようにフォスフィ
ン・ガス(PH3 )が添加される。ついでエチレン・ジ
アミン・ピロカテコール〔NH(CH2 4 NH〕とシ
リカの微粉末を含む水溶液を研磨液として、ポリウレタ
ン系の研磨パッドに圧力100g/cm2 でウェハー表
面を押しつけ、ウェハーを回転させながら研磨を行ない
分離絶縁酸化膜2より上に出ているファセット5を含む
単結晶シリコン膜3の部分をけずり落とす〔図2の分図
(a)参照〕。以上の工程を経た単結晶シリコン膜3に
は既に述べた理由により結晶欠陥とファセットとが何れ
も生成されていないので、この領域内にP型ベース領域
6,N型エミッタ領域7をそれぞれ形成し、更に多結晶
シリコン電極をそれぞれ形成すれば、CB接合リーク電
流の極めて小さな図2の分図(b)の如きベース領域6
が分離絶縁酸化膜2に接する所謂ウォールド・ベース
(Walled Base)構造のNPNトランジスタ
を得ることができる。
At this time, in the single crystal silicon film 3, the facets 5 generated at the corners are located above the surface of the isolation insulating oxide film 3 having a film thickness of 1.5 μm as shown in FIG. 1B. So that it is grown to a thickness of, for example, 3 μm. At this time, phosphine gas (PH 3 ) is added so that the resistivity becomes 0.8 Ωcm. Then, using an aqueous solution containing ethylene / diamine / pyrocatechol [NH (CH 2 ) 4 NH] and fine silica powder as a polishing liquid, the wafer surface is pressed against a polyurethane-based polishing pad at a pressure of 100 g / cm 2 , and the wafer is rotated. Meanwhile, polishing is performed to scrape off the portion of the single crystal silicon film 3 including the facet 5 which is located above the isolation insulating oxide film 2 (see the partial diagram (a) of FIG. 2). No crystal defects and facets are generated in the single crystal silicon film 3 which has undergone the above steps for the reasons already described. Therefore, the P type base region 6 and the N type emitter region 7 are formed in this region, respectively. By further forming polycrystalline silicon electrodes, the base region 6 as shown in FIG.
It is possible to obtain an NPN transistor having a so-called walled base structure in which the element is in contact with the isolation insulating oxide film 2.

【0016】図3は本発明の効果を示す上記実施例にお
けるNPNトランジスタのCB接合リーク電流の実測図
である。図3には上記実施例の測定データAが従来法に
よる測定データB,Cとの比較において示されている。
ここで、データBは成長温度1000℃の従来法による
もの、また、データCは成長温度900℃の同じく従来
法による測定値である。これから分るように、従来法に
よって選択成長された単結晶シリコン膜が結晶欠陥(デ
ータB)またはファセット(データC)の影響を受け、
接合が分離絶縁酸化膜の近傍に形成された場合、接合の
リーク電流をそれぞれ急激に増大させている。反対に、
本発明によるものは分離絶縁酸化膜との離間距離に全く
依存しないことがわかる。すなわち、接合面が絶縁酸化
膜と密着した場合でも接合のリーク電流はデータAが示
すように常に一定できわめて小さい。
FIG. 3 is an actual measurement diagram of the CB junction leakage current of the NPN transistor in the above embodiment showing the effect of the present invention. FIG. 3 shows the measurement data A of the above embodiment in comparison with the measurement data B and C of the conventional method.
Here, the data B is the measured value by the conventional method at the growth temperature of 1000 ° C., and the data C is the measured value by the conventional method at the growth temperature of 900 ° C. As can be seen, the single crystal silicon film selectively grown by the conventional method is affected by crystal defects (data B) or facets (data C),
When the junction is formed in the vicinity of the isolation insulating oxide film, the leak current of the junction is rapidly increased. Conversely,
It can be seen that the device according to the present invention does not depend on the separation distance from the isolation insulating oxide film at all. That is, even when the bonding surface is in close contact with the insulating oxide film, the leakage current of the bonding is always constant and extremely small as shown by the data A.

【0017】図4は本発明によって製造されたN−ch
MOSトランジスタの断面図を示す。N型シリコン基
板1′上に分離絶縁酸化膜2が膜厚1.5μm成長さ
れ、窓開けされた後、この開口部にP型単結晶シリコン
膜8が900℃の成長温度で膜厚3μmに選択エピタキ
シャル成長される。ついでP型単結晶シリコン膜8を研
磨して平坦化すれば、開口部内には結晶欠陥とファセッ
トがない平坦なP型単結晶シリコン膜を形成することが
できる。従って、通常の技術に従いゲート酸化膜上に多
結晶シリコンゲート電極9およびソース,ドレイン1
0,11のN+ 拡散領域をそれぞれ形成すれば、リーク
電流のきわめて小さいN−ch MOSトランジスタを
得ることができる。
FIG. 4 shows an N-ch manufactured according to the present invention.
A sectional view of a MOS transistor is shown. The isolation insulating oxide film 2 is grown to a thickness of 1.5 μm on the N-type silicon substrate 1 ′, and after opening a window, the P-type single crystal silicon film 8 is grown to a thickness of 3 μm at the growth temperature of 900 ° C. in this opening. Selectively epitaxially grown. Then, the P-type single crystal silicon film 8 is polished and flattened to form a flat P-type single crystal silicon film having no crystal defects and facets in the opening. Therefore, the polycrystalline silicon gate electrode 9 and the source / drain 1 are formed on the gate oxide film according to the usual technique.
By forming the N + diffusion regions of 0 and 11, respectively, an N-ch MOS transistor with an extremely small leak current can be obtained.

【0018】なお、上述の実施例では単結晶シリコン膜
3を分離絶縁膜2の厚みの2倍だけ成長させたが、1.
5倍から2.5倍までの間の厚みまで成長させたのち、
絶縁膜2上にとび出た部分を削り取っても、リーク電流
の増大を抑制することができる。
In the above embodiment, the single crystal silicon film 3 was grown by twice the thickness of the isolation insulating film 2.
After growing to a thickness between 5 and 2.5 times,
Even if the portion protruding over the insulating film 2 is scraped off, an increase in leak current can be suppressed.

【0019】[0019]

【発明の効果】以上詳細に説明したように本発明によれ
ば、PN接合のリーク電流の増大を招くことなく、分離
絶縁酸化膜の開口部内に単結晶シリコン膜をPN接合が
分離絶縁酸化膜に接するように選択エピタキシャル成長
できるので、信頼性高き半導体装置の生産に顕著なる効
果を奏し得る。
As described in detail above, according to the present invention, a single crystal silicon film is formed in the opening of the isolation insulating oxide film and the PN junction has the isolation insulating oxide film without increasing the leak current of the PN junction. Since the selective epitaxial growth can be performed so as to be in contact with, it is possible to exert a remarkable effect in the production of a highly reliable semiconductor device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す工程順序図である。FIG. 1 is a process sequence chart showing an embodiment of the present invention.

【図2】本発明の一実施例を示す工程順序図である。FIG. 2 is a process flow chart showing an embodiment of the present invention.

【図3】CB接合電流の実測図である。FIG. 3 is an actual measurement diagram of a CB junction current.

【図4】本発明を適用して製造されたN−ch MOS
トランジスタの断面図である。
FIG. 4 is an N-ch MOS manufactured by applying the present invention.
It is sectional drawing of a transistor.

【図5】従来の選択エピタキシャル法によって製造され
たN型単結晶シリコン膜の断面図である。
FIG. 5 is a cross-sectional view of an N-type single crystal silicon film manufactured by a conventional selective epitaxial method.

【図6】NPNトランジスタのベース領域が形成された
半導体装置の平面図及びA−A′断面図である。
FIG. 6 is a plan view and a cross-sectional view taken along the line AA ′ of the semiconductor device in which the base region of the NPN transistor is formed.

【符号の説明】[Explanation of symbols]

1 P型シリコン基板 1′ N型シリコン基板 2 分離絶縁酸化膜パターン 3 N型単結晶シリコン膜 4 N+ 埋込層 5 ファセット 6 P型ベース領域 7 エミッタ領域 8 P型単結晶シリコン膜 9 多結晶シリコン・ゲート電極 10 ソース領域 11 ドレイン領域1 P-type silicon substrate 1'N-type silicon substrate 2 Isolation insulating oxide film pattern 3 N-type single crystal silicon film 4 N + buried layer 5 Facet 6 P-type base region 7 Emitter region 8 P-type single-crystal silicon film 9 Polycrystal Silicon gate electrode 10 Source region 11 Drain region

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/331 29/73 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display area H01L 21/331 29/73

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 シリコン基板上に絶縁膜のパターンを形
成し、選択エピタキシャル成長法を用いて前記絶縁膜パ
ターンの開孔部内に選択的に単結晶シリコン膜を堆積す
る半導体装置の製造方法において、前記単結晶シリコン
膜を880℃以上980℃以下の温度で前記開口部内に
絶縁膜パターンの表面を越える膜厚にまで選択成長せし
める工程と、前記単結晶シリコン膜の選択成長膜を前記
絶縁膜パターンの高さに平坦化する単結晶シリコン膜の
研磨工程とを含むことを特徴とする半導体装置の製造方
法。
1. A method of manufacturing a semiconductor device, comprising forming a pattern of an insulating film on a silicon substrate and selectively depositing a single crystal silicon film in an opening of the insulating film pattern by using a selective epitaxial growth method. A step of selectively growing a single crystal silicon film at a temperature of 880 ° C. or more and 980 ° C. or less to a thickness exceeding the surface of the insulating film pattern in the opening; and a selective growth film of the single crystal silicon film of the insulating film pattern. And a step of polishing a single crystal silicon film to be flattened to a height, a method of manufacturing a semiconductor device.
JP31588191A 1990-11-30 1991-11-29 Manufacture of semiconductor device Pending JPH0653313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31588191A JPH0653313A (en) 1990-11-30 1991-11-29 Manufacture of semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP34090890 1990-11-30
JP2-340908 1990-11-30
JP31588191A JPH0653313A (en) 1990-11-30 1991-11-29 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0653313A true JPH0653313A (en) 1994-02-25

Family

ID=26568460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31588191A Pending JPH0653313A (en) 1990-11-30 1991-11-29 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0653313A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002057331A (en) * 2000-08-11 2002-02-22 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP2004266291A (en) * 2004-05-06 2004-09-24 Toshiba Corp Semiconductor device
JP2005150731A (en) * 2003-11-14 2005-06-09 Internatl Business Mach Corp <Ibm> Cmos well structure and forming method therefor
US6989316B2 (en) 1999-06-30 2006-01-24 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing
US8114178B2 (en) 2007-04-23 2012-02-14 Nippon Chemical Industrial Co., Ltd. Polishing composition for semiconductor wafer and polishing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6118148A (en) * 1984-07-04 1986-01-27 Hitachi Ltd Manufacture of semiconductor device
JPS6130047A (en) * 1984-07-23 1986-02-12 Nec Corp Manufacture of semiconductor device
JPS63124445A (en) * 1986-11-13 1988-05-27 Sony Corp Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6118148A (en) * 1984-07-04 1986-01-27 Hitachi Ltd Manufacture of semiconductor device
JPS6130047A (en) * 1984-07-23 1986-02-12 Nec Corp Manufacture of semiconductor device
JPS63124445A (en) * 1986-11-13 1988-05-27 Sony Corp Manufacture of semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6989316B2 (en) 1999-06-30 2006-01-24 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing
US7772671B2 (en) 1999-06-30 2010-08-10 Kabushiki Kaisha Toshiba Semiconductor device having an element isolating insulating film
JP2002057331A (en) * 2000-08-11 2002-02-22 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP2005150731A (en) * 2003-11-14 2005-06-09 Internatl Business Mach Corp <Ibm> Cmos well structure and forming method therefor
US7709365B2 (en) 2003-11-14 2010-05-04 International Business Machines Corporation CMOS well structure and method of forming the same
JP2004266291A (en) * 2004-05-06 2004-09-24 Toshiba Corp Semiconductor device
US8114178B2 (en) 2007-04-23 2012-02-14 Nippon Chemical Industrial Co., Ltd. Polishing composition for semiconductor wafer and polishing method

Similar Documents

Publication Publication Date Title
US4044452A (en) Process for making field effect and bipolar transistors on the same semiconductor chip
US4056413A (en) Etching method for flattening a silicon substrate utilizing an anisotropic alkali etchant
JPH0697666B2 (en) Semiconductor device structure using multi-level epitaxial structure and manufacturing method thereof
EP0072966A2 (en) Integrated circuit structure and method for forming a recessed isolation structure for integrated circuits
JPH07142502A (en) Manufacturing for bonded semiconductor substrate and dielectric separation bipolar transistor
US6580104B1 (en) Elimination of contaminants prior to epitaxy and related structure
US4408386A (en) Method of manufacturing semiconductor integrated circuit devices
KR930000229B1 (en) Manufacturing method of semiconductor device
US3956033A (en) Method of fabricating an integrated semiconductor transistor structure with epitaxial contact to the buried sub-collector
US4193836A (en) Method for making semiconductor structure
US5198692A (en) Semiconductor device including bipolar transistor with step impurity profile having low and high concentration emitter regions
US3911559A (en) Method of dielectric isolation to provide backside collector contact and scribing yield
JPH0653313A (en) Manufacture of semiconductor device
JPH0521448A (en) Manufacture of semiconductor device
JPH05326467A (en) Semiconductor substrate and its manufacturing method
JPS5984435A (en) Semiconductor integrated circuit and manufacture thereof
US3986904A (en) Process for fabricating planar scr structure
EP0042380B1 (en) Method for achieving ideal impurity base profile in a transistor
JPS61182242A (en) Manufacture of semiconductor device
JPS5828731B2 (en) All silicon materials available.
KR950009286B1 (en) Device isolating method of vlsi
US6703686B2 (en) Semiconductor device
JPS6244853B2 (en)
KR0128027B1 (en) Manufacturing method of bipolar transistor
JPH0421343B2 (en)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980127