JPS5939897B2 - 多結晶シリコン半導体の製造方法 - Google Patents
多結晶シリコン半導体の製造方法Info
- Publication number
- JPS5939897B2 JPS5939897B2 JP55031678A JP3167880A JPS5939897B2 JP S5939897 B2 JPS5939897 B2 JP S5939897B2 JP 55031678 A JP55031678 A JP 55031678A JP 3167880 A JP3167880 A JP 3167880A JP S5939897 B2 JPS5939897 B2 JP S5939897B2
- Authority
- JP
- Japan
- Prior art keywords
- silicon
- polycrystalline silicon
- mold
- polycrystalline
- melting point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910021420 polycrystalline silicon Inorganic materials 0.000 title claims description 26
- 238000000034 method Methods 0.000 title claims description 11
- 239000004065 semiconductor Substances 0.000 title claims description 8
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 229910052710 silicon Inorganic materials 0.000 claims description 21
- 239000010703 silicon Substances 0.000 claims description 21
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 15
- 238000002844 melting Methods 0.000 claims description 14
- 230000008018 melting Effects 0.000 claims description 12
- 239000000843 powder Substances 0.000 claims description 12
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 10
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 10
- 238000001816 cooling Methods 0.000 claims description 8
- 229910052582 BN Inorganic materials 0.000 claims description 4
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 19
- 239000010453 quartz Substances 0.000 description 18
- 239000013078 crystal Substances 0.000 description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 5
- 230000035882 stress Effects 0.000 description 5
- 238000009736 wetting Methods 0.000 description 3
- 238000005266 casting Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/036—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
- H01L31/0368—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
- H01L31/03682—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/546—Polycrystalline silicon PV cells
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
- Photovoltaic Devices (AREA)
Description
【発明の詳細な説明】
本発明は、多結晶シリコン半導体の製造方法に関するも
のである。
のである。
最近太陽電池による太陽光発電がエネルギー源として見
直され低価格太陽電池の開発が盛んである。
直され低価格太陽電池の開発が盛んである。
従来の太陽電池は単結晶シリコンを使用して高い光電変
換効率を得ている。しかし高い効率を 。得るためには
単結晶シリコンは欠陥の少ないものでできるだけ完全な
ものを用いなければならない。このため太陽電池の価格
は高いものとなり地上での使用は現在まで限られたもの
であつた。そこで単結晶シリコンに代る低価格太陽電池
用材料として多結晶の開発が始められるようになつた。
多結晶シリコンは鋳造法によつて作ることが行なわれて
いる。このような鋳造法は、単結晶シリコンを得る場合
のチョクラルスキー引き上げ法と比較して結晶の成長速
度が大きいこと、任意の形状のインゴットが得られるこ
と、熟練を必要とせず操作が容易なこと等低価格化の可
能性が大きい。例えば黒鉛のブロックを鋳型として用い
て多結晶インゴットを形成し10c7n×10(IV7
lの多結晶板を切り出し10%以上の光電変換効率を有
する太陽電池セルを得ている報告がある。(12thI
EEEPhotovoltaicSpeoclalis
tsConfereneP861976)Oしかし鋳型
として黒鉛を用いるためシリコン融液と鋳型とが濡れな
いように工夫することが重要であるが、この点について
は鋳型の温度をシリコンの融点よりもかなり低温度に保
つことで濡れの問題を解決しようとする提案がある(特
開昭51−101466)。このように低温度に保つた
めの温度制御がむずかしく、なによりもこの方法の欠点
とするところは低温度で急速固化させるために多結晶粒
径が数mm以上と大きくならないことである。一般に多
結晶粒径が大きいものほど太陽電池とした場合高い光電
変換効率が得られる。そこで鋳型として石英ルツボを用
い石英ルツボ中のシリコンを溶融し、しかる後石英ルツ
ボの底に置いた種子結晶から適当な速度で成長させるこ
とが提案されており、この方法ではほとんど単結晶に近
い大きな結晶粒径を有する重さ3.3に9ものシリコン
塊を得ていると云う報告もある。このシリコン結晶を用
いた太陽電池セルの光電変換効率は14%に近い。し力
化石英ルツボとシリコン融液とははげしく反応し、冷却
固化させると強く固着する。このため冷却時に石英とシ
リコン結晶の熱膨張係数の差によリストレスが生じ、石
英ルツボが割れ、それと同時にシリコン多結晶塊にクラ
ックが入り使いものにならなくなることがしばしはある
。この問題を解決するためにグレーデツドクルシブル(
gradedcrucible)という特殊な石英ルツ
ボを用いている。グレーデツドクルシブル(Grade
dcrucible)はルツボ内面の密度を大きくし外
側の密度を粗にした構造であつて冷却時に石英ルツボの
みがこまかく割れるようになつている。このためシリコ
ン多結晶塊にクラツクが入ることはない(13thPh
0t0v01taicSpecia1istsC0nf
er一Encepl37l978)。
換効率を得ている。しかし高い効率を 。得るためには
単結晶シリコンは欠陥の少ないものでできるだけ完全な
ものを用いなければならない。このため太陽電池の価格
は高いものとなり地上での使用は現在まで限られたもの
であつた。そこで単結晶シリコンに代る低価格太陽電池
用材料として多結晶の開発が始められるようになつた。
多結晶シリコンは鋳造法によつて作ることが行なわれて
いる。このような鋳造法は、単結晶シリコンを得る場合
のチョクラルスキー引き上げ法と比較して結晶の成長速
度が大きいこと、任意の形状のインゴットが得られるこ
と、熟練を必要とせず操作が容易なこと等低価格化の可
能性が大きい。例えば黒鉛のブロックを鋳型として用い
て多結晶インゴットを形成し10c7n×10(IV7
lの多結晶板を切り出し10%以上の光電変換効率を有
する太陽電池セルを得ている報告がある。(12thI
EEEPhotovoltaicSpeoclalis
tsConfereneP861976)Oしかし鋳型
として黒鉛を用いるためシリコン融液と鋳型とが濡れな
いように工夫することが重要であるが、この点について
は鋳型の温度をシリコンの融点よりもかなり低温度に保
つことで濡れの問題を解決しようとする提案がある(特
開昭51−101466)。このように低温度に保つた
めの温度制御がむずかしく、なによりもこの方法の欠点
とするところは低温度で急速固化させるために多結晶粒
径が数mm以上と大きくならないことである。一般に多
結晶粒径が大きいものほど太陽電池とした場合高い光電
変換効率が得られる。そこで鋳型として石英ルツボを用
い石英ルツボ中のシリコンを溶融し、しかる後石英ルツ
ボの底に置いた種子結晶から適当な速度で成長させるこ
とが提案されており、この方法ではほとんど単結晶に近
い大きな結晶粒径を有する重さ3.3に9ものシリコン
塊を得ていると云う報告もある。このシリコン結晶を用
いた太陽電池セルの光電変換効率は14%に近い。し力
化石英ルツボとシリコン融液とははげしく反応し、冷却
固化させると強く固着する。このため冷却時に石英とシ
リコン結晶の熱膨張係数の差によリストレスが生じ、石
英ルツボが割れ、それと同時にシリコン多結晶塊にクラ
ックが入り使いものにならなくなることがしばしはある
。この問題を解決するためにグレーデツドクルシブル(
gradedcrucible)という特殊な石英ルツ
ボを用いている。グレーデツドクルシブル(Grade
dcrucible)はルツボ内面の密度を大きくし外
側の密度を粗にした構造であつて冷却時に石英ルツボの
みがこまかく割れるようになつている。このためシリコ
ン多結晶塊にクラツクが入ることはない(13thPh
0t0v01taicSpecia1istsC0nf
er一Encepl37l978)。
しかしこの方法の欠点は冷却時に生じたストレスにより
シリコン結晶内部に結晶欠陥が発生してしまうことであ
り、またグレーデツドクルシブル(Gradedcru
cible)という高価な特殊石英ルツボが1回の使用
でこまかく割れてしまうことである。
シリコン結晶内部に結晶欠陥が発生してしまうことであ
り、またグレーデツドクルシブル(Gradedcru
cible)という高価な特殊石英ルツボが1回の使用
でこまかく割れてしまうことである。
これは低価格化をさまたげる大きな要因となつている。
本発明の目的は前記従来の欠点を解決せしめた多結晶シ
リコン半導体の製造方法を提供することにある。
本発明の目的は前記従来の欠点を解決せしめた多結晶シ
リコン半導体の製造方法を提供することにある。
上記の目的を達成するために冷却時に多結晶シリコン塊
にストレスが加わらないようにして、結晶欠陥の発生を
おさえ、鋳型を何回も連続して使用できるようにして低
価格化を図ることが必要である。そのため本発明におい
て多結晶シリコン塊とこれを保有する鋳型との間に高融
点材料からなる粉末層を設けストレスおよび濡れの問題
を解決するものである。すなわち高融点材料粉末を内壁
に塗布した鋳型を用い、その中にシリコン原料を入れシ
リコン融点(142『C)以上に加熱、溶融しこれを冷
却させると、シリコンは固化し、多結晶シリコンと鋳型
との間の高融点材料粉末層は最初に塗布したままの状態
を保つている。このような高融点材料粉末層の存在は冷
却時における多結晶シリコンと鋳型との熱膨張係数の差
によつて生ずるストレスを緩和ししたがつて結晶欠陥の
発生をおさえる。また多結晶シリコンを鋳型から容易に
分離することができるから、石英ルツボとの固着が原因
である多結晶シリコン塊のクラツク発生を防ぐことが可
能である。さらに高融点材料粉末層を設けることで多結
晶シリコンと鋳型との濡れの問題は改善されることから
シリコン融液の固化に際して鋳型を充分高温に保つこと
が可能であり、また冷却速度を任意に選ぶことができる
。
にストレスが加わらないようにして、結晶欠陥の発生を
おさえ、鋳型を何回も連続して使用できるようにして低
価格化を図ることが必要である。そのため本発明におい
て多結晶シリコン塊とこれを保有する鋳型との間に高融
点材料からなる粉末層を設けストレスおよび濡れの問題
を解決するものである。すなわち高融点材料粉末を内壁
に塗布した鋳型を用い、その中にシリコン原料を入れシ
リコン融点(142『C)以上に加熱、溶融しこれを冷
却させると、シリコンは固化し、多結晶シリコンと鋳型
との間の高融点材料粉末層は最初に塗布したままの状態
を保つている。このような高融点材料粉末層の存在は冷
却時における多結晶シリコンと鋳型との熱膨張係数の差
によつて生ずるストレスを緩和ししたがつて結晶欠陥の
発生をおさえる。また多結晶シリコンを鋳型から容易に
分離することができるから、石英ルツボとの固着が原因
である多結晶シリコン塊のクラツク発生を防ぐことが可
能である。さらに高融点材料粉末層を設けることで多結
晶シリコンと鋳型との濡れの問題は改善されることから
シリコン融液の固化に際して鋳型を充分高温に保つこと
が可能であり、また冷却速度を任意に選ぶことができる
。
したがつて得られる多結晶の粒径も大きいものが出来や
すい。このような高融点材料として要求される性質はシ
リコンが溶融するような高温度で、シリコンおよび鋳型
材料と激しく反応するようなものであつてはならない。
あるいはまた反応することはないが得られる多結晶シリ
コン半導体としての特性を低下させるものであつてはな
らない。このような高融点材料として窒化シリコン、窒
化ボロンを用いることができる。また鋳型材料としては
、黒鉛、石英ガラス、窒化シリコン、窒化ボロン等を用
いることができる。次に本発明の実施例について図面を
用いて説明する。実施例 1 図のように内壁に平均粒径0.3μmの窒化シリコ粉末
2を厚さ20Itm以上に塗布した直径100φの石英
ルツボ1の中に高純度シリコン原料11<9を入れこれ
を1500℃に加熱融解する。
すい。このような高融点材料として要求される性質はシ
リコンが溶融するような高温度で、シリコンおよび鋳型
材料と激しく反応するようなものであつてはならない。
あるいはまた反応することはないが得られる多結晶シリ
コン半導体としての特性を低下させるものであつてはな
らない。このような高融点材料として窒化シリコン、窒
化ボロンを用いることができる。また鋳型材料としては
、黒鉛、石英ガラス、窒化シリコン、窒化ボロン等を用
いることができる。次に本発明の実施例について図面を
用いて説明する。実施例 1 図のように内壁に平均粒径0.3μmの窒化シリコ粉末
2を厚さ20Itm以上に塗布した直径100φの石英
ルツボ1の中に高純度シリコン原料11<9を入れこれ
を1500℃に加熱融解する。
Siは石英ルツボ内で完全に融液となり、このような条
件のもとでルツボの底よりゆつくり固化して1時間後に
全部固化し多結晶シリコン3となる。石英ルツボの内壁
に塗布した窒化シリコン粉末層を設けているため石英と
Siの反応を防ぐことができ、窒化シリコンは離型剤と
して働くので石英ルツボ内から多結晶シリコン塊を取り
出すことができる。このようにして1200℃で取り出
れた多結晶シリコンを熱応力が生じないように徐々に冷
却して温度を室温まで下げた。この方法で製造した多結
晶シリコンの粒径は大きく数關以上のものが容易に得ら
れた。窒化シリコンの融点は1900℃と高く、シリコ
ン融液および鋳型材料としての石英ルツボと反応するこ
とはなかつた。また窒化シリコン粉末は多結晶シリコン
中に一部溶けこむが、これらが不純物として働くことは
なく、抵抗率として0.1〜10Ω−?程度の高純度多
結晶シリコンが得られた。実施例 2 高融点材料として窒化ボロン粉末、鋳型として黒鉛ルツ
ボを用いて、実施例1と同様にして多結晶シリコンを形
成した。
件のもとでルツボの底よりゆつくり固化して1時間後に
全部固化し多結晶シリコン3となる。石英ルツボの内壁
に塗布した窒化シリコン粉末層を設けているため石英と
Siの反応を防ぐことができ、窒化シリコンは離型剤と
して働くので石英ルツボ内から多結晶シリコン塊を取り
出すことができる。このようにして1200℃で取り出
れた多結晶シリコンを熱応力が生じないように徐々に冷
却して温度を室温まで下げた。この方法で製造した多結
晶シリコンの粒径は大きく数關以上のものが容易に得ら
れた。窒化シリコンの融点は1900℃と高く、シリコ
ン融液および鋳型材料としての石英ルツボと反応するこ
とはなかつた。また窒化シリコン粉末は多結晶シリコン
中に一部溶けこむが、これらが不純物として働くことは
なく、抵抗率として0.1〜10Ω−?程度の高純度多
結晶シリコンが得られた。実施例 2 高融点材料として窒化ボロン粉末、鋳型として黒鉛ルツ
ボを用いて、実施例1と同様にして多結晶シリコンを形
成した。
黒鉛ルツボ底部に単結晶シリコンの種子結晶を入れたと
ころ、結晶粒径は大きくほとんどルツボの直径と同程度
の単結晶に近いものが得られた。また電導型はp型で抵
抗率は0.001〜0.003Ω一?であつた。以上説
明したように多結晶シリコン形成に際して、高融点材料
の粉末層を鋳型の内壁に設けた本発明により多結晶シリ
コン塊にクラツクが入ることなく、結晶粒径が大きく欠
陥の少ない多結晶シリコンを容易に製造することが可能
となつた。またその際使用する石英ルツボも何回も再使
用することが可能となつた。
ころ、結晶粒径は大きくほとんどルツボの直径と同程度
の単結晶に近いものが得られた。また電導型はp型で抵
抗率は0.001〜0.003Ω一?であつた。以上説
明したように多結晶シリコン形成に際して、高融点材料
の粉末層を鋳型の内壁に設けた本発明により多結晶シリ
コン塊にクラツクが入ることなく、結晶粒径が大きく欠
陥の少ない多結晶シリコンを容易に製造することが可能
となつた。またその際使用する石英ルツボも何回も再使
用することが可能となつた。
図は本発明の一実施例を説明するための図で、同図にお
いて、1・・・・・・石英ルツボ、2・・・・・・窒化
シリコン粉末、3・・・・・・多結晶シリコンを示す。
いて、1・・・・・・石英ルツボ、2・・・・・・窒化
シリコン粉末、3・・・・・・多結晶シリコンを示す。
Claims (1)
- 【特許請求の範囲】 1 鋳型に入れたシリコン融液を冷却固化して、多結晶
半導体を製造する方法において、内壁表面を高融点材料
の粉末層で被覆してなる鋳型の中でシリコン融液を冷却
固化せしめることを特徴とする多結晶シリコン半導体の
製造方法。 2 高融点材料として、窒化シリコンまたは窒化ボロン
を用いる特許請求の範囲第1項記載の多結晶シリコン半
導体の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55031678A JPS5939897B2 (ja) | 1980-03-14 | 1980-03-14 | 多結晶シリコン半導体の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55031678A JPS5939897B2 (ja) | 1980-03-14 | 1980-03-14 | 多結晶シリコン半導体の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56129377A JPS56129377A (en) | 1981-10-09 |
JPS5939897B2 true JPS5939897B2 (ja) | 1984-09-27 |
Family
ID=12337761
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP55031678A Expired JPS5939897B2 (ja) | 1980-03-14 | 1980-03-14 | 多結晶シリコン半導体の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5939897B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58166716A (ja) * | 1982-03-29 | 1983-10-01 | Hoxan Corp | 多結晶シリコンウエハの製造方法 |
JPS58162029A (ja) * | 1982-03-23 | 1983-09-26 | Hoxan Corp | 多結晶シリコンウエハの製造方法 |
JPS6123313A (ja) * | 1984-07-11 | 1986-01-31 | Hoxan Corp | 多結晶シリコンウエハの製造皿用離型剤層形成方法 |
-
1980
- 1980-03-14 JP JP55031678A patent/JPS5939897B2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS56129377A (en) | 1981-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4203603B2 (ja) | 半導体バルク多結晶の作製方法 | |
CN104032368B (zh) | 一种高效多晶硅锭的制备方法 | |
Shi-Ji et al. | Bridgman growth of Li2B4O7 crystals | |
CN102337582A (zh) | 制造硅晶铸锭的方法 | |
CN102644108B (zh) | 一种铸造法生长硅晶体的装料方法以及生长硅晶体的工艺 | |
CN102383184A (zh) | 晶体及其铸造方法和装置 | |
CN102312279A (zh) | 籽晶诱导的晶体铸造方法 | |
CN104451870A (zh) | 一种多晶硅锭的铸造方法 | |
JP2006526751A (ja) | 結晶質塊生成装置用るつぼおよびその生成方法 | |
WO2014056157A1 (zh) | 多晶硅锭及其制造方法、坩埚 | |
JPH11236291A (ja) | 一方向凝固多結晶組織を有するシリコンインゴット製造用ルツボ | |
JPS63166711A (ja) | 多結晶シリコン鋳塊の製造法 | |
JPS5826019A (ja) | 多結晶シリコンインゴットの鋳造法 | |
JPS5913219Y2 (ja) | 多結晶シリコンインゴットの鋳造用鋳型 | |
JPS5939897B2 (ja) | 多結晶シリコン半導体の製造方法 | |
JP6401051B2 (ja) | 多結晶シリコンインゴットの製造方法 | |
US4561930A (en) | Process for the production of coarsely crystalline silicon | |
WO2005113436A1 (ja) | 溶融シリコンの冷却塊状物およびその製造方法 | |
JPS609656B2 (ja) | 多結晶シリコン半導体の製造方法 | |
JPS5953208B2 (ja) | 多結晶シリコン半導体の製造方法 | |
JPH1192284A (ja) | 一方向凝固多結晶組織を有するシリコンインゴットの製造方法 | |
JPH04342496A (ja) | 太陽電池用多結晶シリコン鋳塊の製造方法 | |
JPS5899115A (ja) | 多結晶シリコンインゴツトの鋳造方法 | |
JPS6243535B2 (ja) | ||
JPS61232295A (ja) | シリコン結晶半導体の製造法 |