JPS5939504B2 - Electroless plating bath for rhodium or rhodium alloys - Google Patents

Electroless plating bath for rhodium or rhodium alloys

Info

Publication number
JPS5939504B2
JPS5939504B2 JP8553582A JP8553582A JPS5939504B2 JP S5939504 B2 JPS5939504 B2 JP S5939504B2 JP 8553582 A JP8553582 A JP 8553582A JP 8553582 A JP8553582 A JP 8553582A JP S5939504 B2 JPS5939504 B2 JP S5939504B2
Authority
JP
Japan
Prior art keywords
rhodium
plating
bath
solution
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8553582A
Other languages
Japanese (ja)
Other versions
JPS58204168A (en
Inventor
栄一 鳥養
洋二 川見
啓恭 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP8553582A priority Critical patent/JPS5939504B2/en
Publication of JPS58204168A publication Critical patent/JPS58204168A/en
Publication of JPS5939504B2 publication Critical patent/JPS5939504B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents

Description

【発明の詳細な説明】 本発明は金属または非金属表面にロジウムまたはロジウ
ム合金を無電解メッキするためのヒドラジン型メッキ浴
に関し、特に浴液の安定性が優れ、ロジウムまたはロジ
ウム合金の利用率が高く且つメッキ速度が速い新規なメ
ッキ浴に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hydrazine-type plating bath for electroless plating of rhodium or rhodium alloys onto metal or non-metallic surfaces, and in particular has excellent stability of the bath liquid and a high utilization rate of rhodium or rhodium alloys. This invention relates to a new plating bath with high plating speed and high plating speed.

一般に、ロジウムまたはロジウム合金の化学メッキは、
それらの金属塩とエチレンジアミン(アミン錯塩を形成
する)、アンモニア等の混合溶液に還元剤としてヒドラ
ジン、水素化ホウ素ナトリウムあるいはアルキルアミン
ボラン等を加えたものが使用される。しかし、上記の組
成のままでは浴液中のアミン錯塩の安定性が悪く、ロジ
ウム又はロジウム合金の還元が進みすぎて浴中に析出(
即ち自己分解)してしまうので、反応抑制のための安定
化剤を加えるのが普通であるが、現在のところ安定化剤
を加えた場合にも、なお充分な安定性を有する浴液は得
られていない。一方、実用的見地から見ると、ロジウム
自体が高価なため、浴液中での自己分解が少ないことの
他に金属塩からの析出率の高いことが望ましい。
Generally, chemical plating of rhodium or rhodium alloys is
A mixed solution of these metal salts, ethylenediamine (which forms an amine complex salt), ammonia, etc., to which hydrazine, sodium borohydride, or alkylamine borane is added as a reducing agent is used. However, if the above composition remains unchanged, the stability of the amine complex in the bath liquid is poor, and the reduction of rhodium or rhodium alloy proceeds too much, resulting in precipitation (
Therefore, it is common to add a stabilizer to suppress the reaction, but at present it is not possible to obtain a bath solution with sufficient stability even when a stabilizer is added. It has not been done. On the other hand, from a practical standpoint, since rhodium itself is expensive, it is desirable that it not only undergoes little self-decomposition in the bath solution but also has a high rate of precipitation from metal salts.

すなわち、1バッチ毎のメッキ操作で、含有ロジウムが
ほとんど完全に利用されるのが理想である。さらに操業
性の立場から見ると、析出時間が速いことが望ましい。
本発明者らは、上記の要求、すなわち、1浴液の安定性
、20ジウム利用率、及び3メッキ速度を考慮して公知
のメッキ法を追試したところ、満足し得る浴液は全く見
出せなかつた。
That is, it is ideal that the rhodium contained is almost completely utilized in each batch of plating operation. Furthermore, from the standpoint of operability, it is desirable that the precipitation time be fast.
The present inventors tried the known plating method in consideration of the above-mentioned requirements, namely, the stability of the 1st bath solution, the utilization rate of 20Dium, and the 3rd plating speed, but they were unable to find any bath solution that could satisfy the requirements. Ta.

すなわち、安定化剤を使用しているにもかかわらず還元
剤に水素化ホウ素塩を使用する浴では1、2が悪く、ア
ルキルアミンボランを用いる浴液では2及び3が悪い。
That is, despite the use of a stabilizer, 1 and 2 are bad in baths that use borohydride salts as reducing agents, and 2 and 3 are bad in bath solutions that use alkylamine borane.

ヒドラジン浴は1が不安定であつた。しかし、前二者は
、浴液組成を種々に変えて試みた場合にも改良の余地は
ないのに対し、ヒドラジン浴は、浴液の改良で1の改善
が期待できることが見出された。ロジウムの化学メッキ
にヒドラジンを還元剤に使用する方法は、いずれもロジ
ウム塩化物または硫酸塩、エチレンジアミン、水酸化ナ
トリウムからなる溶液を用い、還元剤としてヒドラジン
塩を単独または水素化ホウ素塩と併用し、さらに安定化
剤としてフェロシアン化カリウム(ケミカルアブストラ
クト86巻、94262n)、ジメチルグリオキシム(
ケミカルアブストラクト86巻、46520y)同87
巻、27154m)等が使用されている。
1 was unstable in the hydrazine bath. However, it has been found that while the former two baths have no room for improvement even when various bath liquid compositions are tried, an improvement of 1 degree can be expected in the hydrazine bath by improving the bath liquid. All methods of using hydrazine as a reducing agent for chemical plating of rhodium use a solution consisting of rhodium chloride or sulfate, ethylenediamine, and sodium hydroxide, and use a hydrazine salt alone or in combination with a borohydride salt as the reducing agent. In addition, potassium ferrocyanide (Chemical Abstracts Vol. 86, 94262n) and dimethylglyoxime (
Chemical Abstracts Volume 86, 46520y) Same 87
Volume, 27154m) etc. are used.

しかし、実際に、これら公知の浴液およびメッキ条件で
金属、プラスチックあるいはイオン交換膜等の表面にロ
ジウムを成長させた場合、前記1、2及ひ3の何れかが
不充分であり満足し得るものはなかつた。
However, when rhodium is actually grown on the surface of metals, plastics, ion exchange membranes, etc. using these known bath solutions and plating conditions, any of the above 1, 2, and 3 is insufficient and cannot be satisfied. There was nothing.

また、基本浴に存在するエチレンジアミンそのものも、
イオン交換膜に触媒電極を接合させる目的で行うロジウ
ムメツキの場合には、膜の汚染をまねくために使用でき
ない。本発明者は、ヒドラジン型メツキ浴において、前
記1,2及び3のいずれにも優れたメツキ浴を得るため
試薬及び共存安定化剤を精力的に検討した結果、口ジャ
ムまたは接合せんとする合金組成の金属類をアンミン錯
塩溶液として用い、かつ安定化剤としてヒドロキシルア
ミン塩を使用した場合には、所期の目的を満足し得るこ
とを見出し本発明を完成した。
In addition, ethylenediamine itself, which is present in the basic bath,
Rhodium plating, which is performed for the purpose of bonding a catalyst electrode to an ion exchange membrane, cannot be used because it may contaminate the membrane. In order to obtain a plating bath that is excellent in all of 1, 2, and 3 above, the present inventor has energetically studied reagents and coexisting stabilizers in a hydrazine type plating bath, and found that the The present invention was completed based on the discovery that the desired object can be achieved when the metals of the composition are used as an ammine complex salt solution and a hydroxylamine salt is used as a stabilizer.

即ち本発明は、(a)ロジウムのアンミン錯塩又はこれ
と他の金属のアンミン錯塩との混合物、(b)ヒドロキ
シルアミン塩、及び(c)ヒドラジンを含有し、PHl
O〜13であることを特徴とするロジウム又はロジウム
合金の無電解メツキ浴に係る。
That is, the present invention contains (a) an ammine complex salt of rhodium or a mixture thereof with an ammine complex salt of another metal, (b) a hydroxylamine salt, and (c) hydrazine, and contains PHL
The present invention relates to an electroless plating bath for rhodium or a rhodium alloy, characterized in that the plating bath is O~13.

本発明におけるロジウムアンミン錯塩としては、例えば
ロジウム塩をアンモニア水と共にオートクレーブに入れ
、10〜301<g/dの圧力、110℃〜160℃の
温度で3〜12時間反応させて得られるヘキサアンミン
塩〔Rh(NH3)6〕X3、またはペンタアンミン塩
〔Rh(NH3)5X〕X2(Xはハロゲン、NO2等
)を使用するのが好ましいが、ロジウム塩をアンモニア
水と共に溶液が淡黄色になるまでアンモニア水を追加し
ながら煮沸して得られる溶液を使用することも出来る。
The rhodium ammine complex salt in the present invention is, for example, a hexaammine salt obtained by putting a rhodium salt together with aqueous ammonia in an autoclave and reacting at a pressure of 10 to 301<g/d and a temperature of 110 to 160°C for 3 to 12 hours. It is preferable to use [Rh(NH3)6]X3 or pentaammine salt [Rh(NH3)5X]X2 (X is halogen, NO2, etc.), but rhodium salt is mixed with aqueous ammonia until the solution becomes light yellow. A solution obtained by boiling while adding aqueous ammonia can also be used.

ロジウム合金をメツキする場合には、ロジウムと白金、
ルテニウム、イリジウム、ニツケル、コバルト等の塩類
との混合塩類を同様に加圧下の熱アンモニア水で処理し
、安定な混合アンミン塩錯体溶液として使用するのが好
ましい。その際、ロジウムに対して添加される金属のモ
ル比は、ロジウム1モルに対して0.1乃至1.0モル
の割合であり、三元素以上の場合も、ロジウム1モルに
対して添加金属の合計モル数が1モル以下で行なわれる
のが好ましい。二元素の場合の例を示せぱ、例えばロジ
ウム1モルに対して白金又はイリジウムの場合には0.
1〜0.5モル、ルテニウム、ニツケル又はコバルトの
場合0.1〜1モルであるのが好ましい。本発明におい
て使用するヒドロキシルアミン塩としては、水溶性の塩
例えば塩酸塩、硫酸塩、硝酸塩等が好ましい。
When plating rhodium alloy, rhodium and platinum,
It is preferred that mixed salts with salts of ruthenium, iridium, nickel, cobalt, etc. are similarly treated with hot ammonia water under pressure and used as a stable mixed ammine salt complex solution. At that time, the molar ratio of the metal added to rhodium is 0.1 to 1.0 mol to 1 mol of rhodium, and even in the case of three or more elements, the added metal to 1 mol of rhodium. It is preferable that the total number of moles is 1 mole or less. For example, if two elements are used, for example, if platinum or iridium is used for 1 mole of rhodium, 0.
It is preferably 1 to 0.5 mol, and in the case of ruthenium, nickel or cobalt, 0.1 to 1 mol. As the hydroxylamine salt used in the present invention, water-soluble salts such as hydrochloride, sulfate, nitrate, etc. are preferable.

本発明におけるヒドラジンとしては、水溶液の状態でヒ
ドラジンとなるもの、例えばヒドラジンの水和物、塩酸
塩、硫酸塩等が好適に使用できる。
As the hydrazine in the present invention, hydrazine that becomes hydrazine in an aqueous solution state, such as hydrazine hydrate, hydrochloride, sulfate, etc., can be suitably used.

本発明の浴液組成としては、アンミン錯塩をロジウム又
はロジウム合金として0.001〜0.1M/l(ロジ
ウムの場合0.1〜109/l)好ましくは0.001
〜0.05M/l(ロジウムの場合0.1〜59/l)
、ヒドロキシルアミンを0.003〜1.5M/l(0
.1〜50g/l)好ましくは0.003〜0.15M
/l(0.1〜59)及びヒドラジンを0.003〜1
.5M/l(ヒドラジン一水和物の場合0.15〜75
g/l)好ましくは0.003〜0.3M/l(ヒドラ
ジン一水和物の場合0.15〜159/l)である。本
発明においては上記組成の浴液を、アンモニア水又はア
ルカリ性…緩衝液により、PHlO〜13好ましくは1
1〜12の範囲に調製して使用する。PHが13以上に
なると還元速度が速くなり自己分解が増す、またPHが
10より低いと成長速度が小さくメツキ時間が長くなる
The bath solution composition of the present invention is 0.001 to 0.1 M/l (0.1 to 109/l in the case of rhodium) using ammine complex salt as rhodium or rhodium alloy, preferably 0.001
~0.05M/l (0.1-59/l for rhodium)
, hydroxylamine from 0.003 to 1.5 M/l (0
.. 1-50g/l) preferably 0.003-0.15M
/l (0.1-59) and hydrazine 0.003-1
.. 5M/l (0.15-75 for hydrazine monohydrate
g/l) is preferably 0.003 to 0.3 M/l (0.15 to 159/l in the case of hydrazine monohydrate). In the present invention, the bath solution having the above composition is mixed with aqueous ammonia or an alkaline...buffer solution to a pH of 13 to 13, preferably 1.
The number is adjusted to a range of 1 to 12 before use. When the pH is 13 or higher, the reduction rate becomes faster and self-decomposition increases, and when the pH is lower than 10, the growth rate is low and the plating time becomes long.

ヒドロキシルアミンが509/l以上になると成長を極
端に抑え、メツキは進みにくくなる。本発明のメツキ浴
は、浴液中のアンミン錯イオン〔Rh(NH3)6〕3
+,〔Rh(NH3)5C1〕2+〔Rh(NH3)5
H20〕等がRhCl3あるいはRh2(SO4)3の
水溶液あるいはアルカリ性溶液におけるロジウムイオン
(Rh3+,(RhCl6)3〔Rh(NH2C2H,
NH2)3〕3+等)に比べて著しく安定であり(ロジ
ウム合金の場合も同様)、ヒドロキシルアミン塩が加わ
るとさらに安定な錯体を形成し自己分解はほとんど抑え
られる。
When hydroxylamine exceeds 509/l, growth is extremely suppressed and plating becomes difficult to proceed. The plating bath of the present invention has an ammine complex ion [Rh(NH3)6]3 in the bath liquid.
+, [Rh(NH3)5C1]2+[Rh(NH3)5
H20], etc. are rhodium ions (Rh3+, (RhCl6)3 [Rh(NH2C2H,
NH2)3]3+, etc.) (the same applies to rhodium alloys), and when a hydroxylamine salt is added, an even more stable complex is formed, and self-decomposition is almost suppressed.

このため本発明メツキ浴は、被メツキ体が浸漬されない
場合には長時間にわたつて自己分解することなく極めて
優れた安定性を有する。
Therefore, the plating bath of the present invention has extremely excellent stability without self-decomposition over a long period of time when the object to be plated is not immersed.

被メツキ体が浸漬された時点で、接触的に還元反応を開
始し選択的にメツキが進むが、浴液中のロジウム又はロ
ジウム合金として95%以上という高率に消費されるま
で継続する。
When the object to be plated is immersed, a catalytic reduction reaction starts and selective plating proceeds until rhodium or rhodium alloy in the bath liquid is consumed at a high rate of 95% or more.

メツキ時間は被メツキ体の形状にもよるので一定ではな
いが、3μのメツキ層を得る場合の例を述べれば1,5
〜2時間という短時間である。本発明メツキ浴の一例と
公知ヒドラジン型メツキ浴との安定性の比較を第1表に
示す。
The plating time is not constant because it depends on the shape of the object to be plated, but an example of obtaining a 3 μm plating layer is 1.5 μm.
It is a short time of ~2 hours. Table 1 shows a comparison of stability between an example of the plating bath of the present invention and a known hydrazine type plating bath.

第1表から明らかな様に、本発明メツキ浴は浴液の安定
性及び被メツキ体への選択性が極めて優れていることが
判る。
As is clear from Table 1, it can be seen that the plating bath of the present invention has extremely excellent stability of the bath solution and selectivity to the objects to be plated.

本発明メツキ浴が適用できる対象としては、金属、例え
ば銅、ニツケル、鉄、それらの合金、チタン、タンタル
等、電子部品あるいは電極等の工業材料等が挙げられる
The objects to which the plating bath of the present invention can be applied include metals such as copper, nickel, iron, alloys thereof, titanium, tantalum, etc., and industrial materials such as electronic parts and electrodes.

また、合成極脂、ガラス、セラミツクス等、通常の無電
解メツキが可能な材質に対して適用できる。さらに本発
明メツキ浴は、エチレンジアミン、ジメチルグリオキシ
ム等のイオン活性物質を含有しないため、イオン交換膜
にロジウムまたはロジウム合金を接合する浴液として特
に優れて居り、近年、水溶液電解に用いられる固体高分
子電解質(イオン交換膜)の膜面に電極を接合した接合
体を作成する技術として適用できる。いずれの場合も、
被メツキ体については予め活性化処理を行つておくのが
好ましい。
Furthermore, it can be applied to materials that can be conventionally electroless plated, such as synthetic polar resin, glass, and ceramics. Furthermore, since the plating bath of the present invention does not contain ion-active substances such as ethylenediamine and dimethylglyoxime, it is particularly excellent as a bath liquid for bonding rhodium or rhodium alloys to ion exchange membranes. It can be applied as a technology to create a composite in which electrodes are bonded to the membrane surface of a molecular electrolyte (ion exchange membrane). In either case,
It is preferable that the object to be plated be activated in advance.

金属の場合は、表面を、パラジウム、白金、ロジウム等
の塩溶液に浸漬し、必要ならば引続き水素化ホウ素塩水
溶液に引続き浸漬して活性化した後、本発明メツキ浴に
浸漬する。
In the case of metal, the surface is activated by immersing it in a salt solution of palladium, platinum, rhodium, etc., and if necessary, subsequently immersing it in an aqueous boron hydride salt solution, and then immersing it in the plating bath of the present invention.

高分子、ガラス、セラミツタスの場合にも、通常、これ
らの表面に銅、ニツケル等の化学メツキを行なう場合に
利用されている表面親水化、増感処理、活性化処理を行
つた後、本発明メツキ浴に浸漬する。
In the case of polymers, glass, and ceramitus, the present invention is performed after surface hydrophilization, sensitization treatment, and activation treatment, which are usually used when chemically plating copper, nickel, etc., on the surfaces of these materials. Immerse yourself in the bath.

また、イオン交換膜の場合は、表面粗化した後まず金属
塩(アンミン錯塩が好ましい)溶液を吸着させ、ついで
水素化ホウ素ナトリウム溶液で還元して1〜2μの第一
層を接合した後、本発明メツキ浴に浸漬して成長させる
In the case of an ion exchange membrane, after roughening the surface, a metal salt (preferably ammine complex salt) solution is first adsorbed, and then reduced with a sodium borohydride solution to bond the first layer of 1 to 2 μm. It is grown by immersing it in the plating bath of the present invention.

メツキ温度はいずれの場合も50〜90℃、好ましくは
60〜75℃で行われる。
The plating temperature is 50 to 90°C, preferably 60 to 75°C.

メツキ厚は、あらかじめ被メツキ体の表面積から必要な
ロジウムまたはロジウム合金の量を浴液中に存在させて
メツキする。
The plating thickness is determined by plating by pre-existing the amount of rhodium or rhodium alloy necessary for the surface area of the object to be plated in the bath liquid.

浴液中のロジウム又はロジウム合金としての利用率は9
5%以上という高率で、廃液中に残る少量のロジウムは
水素化ホウ素塩を加え沈殿させて回収することができる
。本発明によるメツキ層は電気メツキのものに比べて同
等の電気的特性、機械的強度をもつ、無電解メツキの特
徴である複雑形状のメツキ体に、あるいは小物の電子部
品、電気接点、非磁性あるいは磁性のロジウム合金のメ
ツキに適している。また、工業用材料として、水溶液電
解用、あるいは燃料電池用のイオン交換膜一電極接合体
を製作する場合のメツキ法として利用できる。以下、実
施例を挙げて本発明を更に具体的に説明する。
The utilization rate as rhodium or rhodium alloy in the bath liquid is 9
At a high rate of 5% or more, the small amount of rhodium remaining in the waste liquid can be recovered by adding a borohydride salt to precipitate it. The plating layer according to the present invention has electrical properties and mechanical strength equivalent to those of electroless plating, and can be used for plating objects with complex shapes that are characteristic of electroless plating, small electronic parts, electrical contacts, and non-magnetic materials. It is also suitable for plating magnetic rhodium alloys. Furthermore, as an industrial material, it can be used as a plating method when producing an ion exchange membrane-electrode assembly for aqueous electrolysis or fuel cells. Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例 1 RhC135gに28%NH4OH5Omlを加え、オ
ートクレーブ沖で、20k9/CTLll5O℃で12
時間処理した後、取り出し、熱時済過し、済液を濃縮し
てヘキサアンミンロジウム()塩化物を晶出させた。
Example 1 Add 50ml of 28% NH4OH to 135g of RhC and heat at 20k9/CTL1150°C for 12 hours in an autoclave.
After treatment for a period of time, the solution was taken out, subjected to heat aging, and the concentrated solution was concentrated to crystallize hexaammine rhodium () chloride.

これを使用して下記の組成の本発明メツキ浴を調製した
。上記浴液を用い銅板上にメツキを行つた。
Using this, a plating bath of the present invention having the following composition was prepared. A copper plate was plated using the above bath solution.

試料銅板(2×4c!RL)をアルカリ脱脂後、塩酸(
3%)に室温で10〜20秒浸漬し、ついで5(fl)
PdCl2の2H−HCI溶液に室温30秒浸漬して活
性化した。
After degreasing the sample copper plate (2×4c!RL) with alkali, hydrochloric acid (
3%) at room temperature for 10 to 20 seconds, then 5 (fl)
It was activated by immersing it in a 2H-HCI solution of PdCl2 at room temperature for 30 seconds.

水洗後、上記メツキ浴液に2時間浸漬して約2μ厚のロ
ジウムメツキを得た。浴液中または器壁への析出は見ら
れず、処理後の浴液中のロジウム残量は1Tr!9以下
でロジウム利用率は98(Ff)以上であつた。実施例
2 RhC13をNH4OHと3時間煮沸して得たアンミン
錯イオン〔Rh(NH3)5C1〕2+及ひ〔Rh(N
H3)0H20〕3+溶液を使用して下記組成浴液を調
製した。
After washing with water, it was immersed in the above plating bath solution for 2 hours to obtain rhodium plating with a thickness of about 2 μm. No precipitation was observed in the bath liquid or on the vessel wall, and the remaining amount of rhodium in the bath liquid after treatment was 1 Tr! 9 or less, the rhodium utilization rate was 98 (Ff) or more. Example 2 Ammine complex ions [Rh(NH3)5C1]2+ and [Rh(N
A bath solution having the following composition was prepared using the H3)0H20]3+ solution.

上記溶液を用いてABS樹脂(3×3(1試片)にロジ
ウムメツキを行つた。
Rhodium plating was performed on ABS resin (3×3 (1 sample)) using the above solution.

試料の前処理には、通常プラスチツクのメツキで行われ
る様に以下の浴液を利用した。
For sample pretreatment, the following bath solution was used, as is commonly done in plastic plating.

エツチング浴 ↓1ZV〜山出ノ エツチングは65℃、20分行い水洗した。etching bath ↓1ZV~Yamadeno Etching was performed at 65° C. for 20 minutes and washed with water.

キヤタリスト浴上記浴液に30℃、3分間浸漬した。Catalyst bath The sample was immersed in the above bath solution at 30°C for 3 minutes.

活性化浴 水素化ホウ素ナトリウム 0,59 活性化浴に室温2分間処理した。activation bath sodium borohydride 0,59 The activation bath was treated for 2 minutes at room temperature.

引続きロジウムメツキ浴に30分浸漬し約0.5μの光
沢あるロジウムメツキが得られた。
Subsequently, it was immersed in a rhodium plating bath for 30 minutes to obtain a shiny rhodium plating of about 0.5μ.

ロジウムメツキ浴は、同種試料を用いて3回繰り返して
使用したが、各試料共同様なロジウムメツキが得られた
。この間浴液は安定しており、分解は起らなかつた。実
施例 3 過フツ素スルフオン酸系のイオン交換膜〔デユポン社製
、ナフイオン117膜、膜厚7ミル(約0.175mm
)〕を用い、直径80m77!の円形膜にロジウムを接
合した。
The rhodium plating bath was used repeatedly three times using the same type of sample, and the same rhodium plating was obtained for each sample. During this period, the bath liquid was stable and no decomposition occurred. Example 3 Perfluorinated sulfonic acid-based ion exchange membrane [manufactured by DuPont, Nafion 117 membrane, membrane thickness 7 mils (approximately 0.175 mm)
)] with a diameter of 80m77! rhodium was bonded to the circular membrane.

膜の前処理は、まず、サンドブラストで粗化した後、4
N−HCIで煮沸して脱イオンし、水洗した。
The pretreatment of the membrane is to first roughen it by sandblasting, and then to
It was deionized by boiling with N-HCI and washed with water.

ついで実施例1と同様に調製したロジウムアミン錯塩〔
Rh(NH3)6〕3+溶液に浸漬(室温、5時間)し
、水洗後、アンモニア性のNaBH4O.O5%溶液中
、40〜60℃で還元して1〜1.5μのロジウム層を
析出させた。このロジウム層の成長に下記組成の浴液を
使用した。メツキ処理は2時間行い、処理後のロジウム
層は約5μ厚に成長した。
Next, a rhodium amine complex salt prepared in the same manner as in Example 1 [
After immersing in Rh(NH3)6]3+ solution (room temperature, 5 hours) and washing with water, ammoniacal NaBH4O. A rhodium layer of 1 to 1.5 μm was deposited by reduction at 40 to 60° C. in an O 5% solution. A bath solution having the following composition was used to grow this rhodium layer. The plating process was carried out for 2 hours, and the rhodium layer after the process grew to a thickness of about 5 μm.

浴液中の分解は見られずロジウムの利用率は99%であ
つた。実施例 4 RhC13とPtcl4をPt/Rhのモル比で0.5
/1.0の割合で混合し、アンモニア水と共にオートタ
レーブに入れ20kg/〜、160℃、10hr処理し
てアンミン錯塩混合物を作成して使用した。
No decomposition was observed in the bath solution, and the utilization rate of rhodium was 99%. Example 4 RhC13 and Ptcl4 at a Pt/Rh molar ratio of 0.5
The ammine complex salt mixture was mixed at a ratio of /1.0 and put into an autotale with aqueous ammonia at 20 kg/~ and treated at 160°C for 10 hours to prepare an ammine complex salt mixture and use it.

ニツケル試料板(5×5cTn)をアルカリ脱脂し、R
hCl329、HCllOml,水全量11の溶液を用
いて活性化処理し、水洗後、上記メツキ浴に浸漬し70
℃、2hrメツキ処理を行つた。ニツケル表面に約3μ
厚のロジウム一白金合金が得られ、ロジウム及び白金の
利用率は95%以上であつた。
A nickel sample plate (5 x 5 cTn) was degreased with alkali and R
Activation treatment was performed using a solution of hCl329, HCl1Oml, and water total amount 11, and after washing with water, it was immersed in the above plating bath for 70 minutes.
Plating treatment was carried out at ℃ for 2 hours. Approximately 3μ on the nickel surface
A thick rhodium-platinum alloy was obtained, and the utilization rate of rhodium and platinum was 95% or more.

Claims (1)

【特許請求の範囲】[Claims] 1(a)ロジウムのアンミン錯塩又はこれと他の金属の
アンミン錯塩との混合物、(b)ヒドロキシルアミン塩
、及び(c)ヒドラジンを含有し、pH10〜13であ
ることを特徴とするロジウム又はロジウム合金の無電解
メッキ浴。
1. Rhodium or rhodium containing (a) an ammine complex salt of rhodium or a mixture thereof with an ammine complex salt of another metal, (b) a hydroxylamine salt, and (c) hydrazine, and having a pH of 10 to 13. Electroless plating bath for alloys.
JP8553582A 1982-05-19 1982-05-19 Electroless plating bath for rhodium or rhodium alloys Expired JPS5939504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8553582A JPS5939504B2 (en) 1982-05-19 1982-05-19 Electroless plating bath for rhodium or rhodium alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8553582A JPS5939504B2 (en) 1982-05-19 1982-05-19 Electroless plating bath for rhodium or rhodium alloys

Publications (2)

Publication Number Publication Date
JPS58204168A JPS58204168A (en) 1983-11-28
JPS5939504B2 true JPS5939504B2 (en) 1984-09-25

Family

ID=13861570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8553582A Expired JPS5939504B2 (en) 1982-05-19 1982-05-19 Electroless plating bath for rhodium or rhodium alloys

Country Status (1)

Country Link
JP (1) JPS5939504B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0647884U (en) * 1992-12-09 1994-06-28 横河電子機器株式会社 Pseudo reflector
LT6548B (en) 2016-12-28 2018-08-10 Valstybinis mokslinių tyrimų institutas Fizinių ir technologijos mokslų centras The solution of chemical platinum-rhodium alloy deposition and the method of continuous platinum-rhodium alloy coating formation

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19909678C1 (en) * 1999-03-05 2000-07-27 Bosch Gmbh Robert Rhodium plating bath useful for electroless plating of ceramics and metals comprises water and a readily water-soluble rhodium compound
US6706420B1 (en) 2000-07-06 2004-03-16 Honeywell International Inc. Electroless platinum-rhodium alloy plating
CA2625777A1 (en) 2005-10-13 2007-04-26 Velocys, Inc. Electroless plating in microchannels
JP2007314876A (en) * 2006-04-28 2007-12-06 Nippon Kanizen Kk Electroless nickel plating liquid
US20100055422A1 (en) * 2008-08-28 2010-03-04 Bob Kong Electroless Deposition of Platinum on Copper

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0647884U (en) * 1992-12-09 1994-06-28 横河電子機器株式会社 Pseudo reflector
LT6548B (en) 2016-12-28 2018-08-10 Valstybinis mokslinių tyrimų institutas Fizinių ir technologijos mokslų centras The solution of chemical platinum-rhodium alloy deposition and the method of continuous platinum-rhodium alloy coating formation

Also Published As

Publication number Publication date
JPS58204168A (en) 1983-11-28

Similar Documents

Publication Publication Date Title
US5292361A (en) Electroless palladium plating composition
Barker Electroless deposition of metals
US3075856A (en) Copper plating process and solution
US3672938A (en) Novel precious metal sensitizing solutions
US3486928A (en) Bath and process for platinum and platinum alloys
US3597266A (en) Electroless nickel plating
KR20150024327A (en) Process for metallizing nonconductive plastic surfaces
JP2664231B2 (en) Method of manufacturing and using electroless nickel plating bath
JPS5939504B2 (en) Electroless plating bath for rhodium or rhodium alloys
US4339476A (en) Dispersions for activating non-conductors for electroless plating
JPS6220279B2 (en)
US4325991A (en) Electroless plating of polyesters
JP2004502872A (en) Electroless self-catalytic platinum plating
US4315045A (en) Conditioning of polyamides for electroless plating
JPS5933667B2 (en) Electroless plating bath for platinum or platinum-palladium alloy
EP0073236B1 (en) Palladium and palladium alloys electroplating procedure
US3754940A (en) Electroless plating solutions containing sulfamic acid and salts thereof
JP5517275B2 (en) Post-treatment agent for etching treatment with chromic acid-sulfuric acid mixture
JP3035763B2 (en) Electroless palladium plating solution
AU2001266502B2 (en) Activation of a cathode
JPS5934784B2 (en) Ruthenium electroless plating bath
CA1125630A (en) Conditioning of caprolactam polymers for electroless plating
US4132832A (en) Method of applying dispersions for activating non-conductors for electroless plating and article
KR20230056751A (en) Method for electroless nickel deposition on copper without activation by palladium
CA1143260A (en) Conditioning of polyamides for electroless plating