LT6548B - The solution of chemical platinum-rhodium alloy deposition and the method of continuous platinum-rhodium alloy coating formation - Google Patents
The solution of chemical platinum-rhodium alloy deposition and the method of continuous platinum-rhodium alloy coating formation Download PDFInfo
- Publication number
- LT6548B LT6548B LT2016536A LT2016536A LT6548B LT 6548 B LT6548 B LT 6548B LT 2016536 A LT2016536 A LT 2016536A LT 2016536 A LT2016536 A LT 2016536A LT 6548 B LT6548 B LT 6548B
- Authority
- LT
- Lithuania
- Prior art keywords
- platinum
- solution
- rhodium
- chemical
- deposition
- Prior art date
Links
- PXXKQOPKNFECSZ-UHFFFAOYSA-N platinum rhodium Chemical compound [Rh].[Pt] PXXKQOPKNFECSZ-UHFFFAOYSA-N 0.000 title claims abstract description 39
- 238000000576 coating method Methods 0.000 title claims abstract description 30
- 229910000629 Rh alloy Inorganic materials 0.000 title claims abstract description 24
- 239000011248 coating agent Substances 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 title claims abstract description 11
- 230000008021 deposition Effects 0.000 title abstract description 11
- 239000000126 substance Substances 0.000 title abstract description 7
- 230000015572 biosynthetic process Effects 0.000 title abstract description 4
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 claims abstract description 19
- 101100059320 Mus musculus Ccdc85b gene Proteins 0.000 claims abstract description 12
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims abstract description 11
- LVTYICIALWPMFW-UHFFFAOYSA-N diisopropanolamine Chemical compound CC(O)CNCC(C)O LVTYICIALWPMFW-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229940043276 diisopropanolamine Drugs 0.000 claims abstract description 6
- 230000008569 process Effects 0.000 claims abstract description 6
- 206010070834 Sensitisation Diseases 0.000 claims abstract description 4
- 230000004913 activation Effects 0.000 claims abstract description 4
- 238000005234 chemical deposition Methods 0.000 claims abstract description 4
- 239000000203 mixture Substances 0.000 claims abstract description 4
- 239000003002 pH adjusting agent Substances 0.000 claims abstract description 3
- NDBYXKQCPYUOMI-UHFFFAOYSA-N platinum(4+) Chemical compound [Pt+4] NDBYXKQCPYUOMI-UHFFFAOYSA-N 0.000 claims abstract description 3
- PZSJYEAHAINDJI-UHFFFAOYSA-N rhodium(3+) Chemical compound [Rh+3] PZSJYEAHAINDJI-UHFFFAOYSA-N 0.000 claims abstract description 3
- 238000009388 chemical precipitation Methods 0.000 claims description 23
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 23
- 239000003638 chemical reducing agent Substances 0.000 claims description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- 125000000896 monocarboxylic acid group Chemical group 0.000 claims description 8
- 239000003446 ligand Substances 0.000 claims description 7
- 229910052697 platinum Inorganic materials 0.000 claims description 7
- -1 platinum (IV) ions Chemical class 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 238000003756 stirring Methods 0.000 claims description 4
- 230000008313 sensitization Effects 0.000 claims description 3
- 230000003213 activating effect Effects 0.000 claims description 2
- 230000006870 function Effects 0.000 claims description 2
- 101150003085 Pdcl gene Proteins 0.000 claims 1
- 230000001235 sensitizing effect Effects 0.000 claims 1
- 238000000151 deposition Methods 0.000 abstract description 12
- 239000004020 conductor Substances 0.000 abstract description 2
- 239000003989 dielectric material Substances 0.000 abstract description 2
- 239000004065 semiconductor Substances 0.000 abstract description 2
- 231100000419 toxicity Toxicity 0.000 abstract description 2
- 230000001988 toxicity Effects 0.000 abstract description 2
- 229910002666 PdCl2 Inorganic materials 0.000 abstract 1
- 229910021604 Rhodium(III) chloride Inorganic materials 0.000 abstract 1
- 229910021626 Tin(II) chloride Inorganic materials 0.000 abstract 1
- 238000007654 immersion Methods 0.000 abstract 1
- 229910001092 metal group alloy Inorganic materials 0.000 abstract 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 abstract 1
- SONJTKJMTWTJCT-UHFFFAOYSA-K rhodium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Rh+3] SONJTKJMTWTJCT-UHFFFAOYSA-K 0.000 abstract 1
- 235000011150 stannous chloride Nutrition 0.000 abstract 1
- AXZWODMDQAVCJE-UHFFFAOYSA-L tin(II) chloride (anhydrous) Chemical compound [Cl-].[Cl-].[Sn+2] AXZWODMDQAVCJE-UHFFFAOYSA-L 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 37
- 239000010948 rhodium Substances 0.000 description 13
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 6
- 229910052703 rhodium Inorganic materials 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 5
- 229910018967 Pt—Rh Inorganic materials 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 2
- 229910001260 Pt alloy Inorganic materials 0.000 description 2
- 230000000711 cancerogenic effect Effects 0.000 description 2
- 231100000315 carcinogenic Toxicity 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 231100001223 noncarcinogenic Toxicity 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 239000012279 sodium borohydride Substances 0.000 description 2
- 229910000033 sodium borohydride Inorganic materials 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- WFFKWCLNINKTSH-UHFFFAOYSA-N [Pb].NN Chemical compound [Pb].NN WFFKWCLNINKTSH-UHFFFAOYSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- CAMXVZOXBADHNJ-UHFFFAOYSA-N ammonium nitrite Chemical class [NH4+].[O-]N=O CAMXVZOXBADHNJ-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 150000001639 boron compounds Chemical class 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
Landscapes
- Chemically Coating (AREA)
Abstract
Description
Technikos sritisTechnical field
Išradimas siejamas su platinos-rodžio lydinio dangos formavimo procesu naudojant cheminio (besrovio) nusodinimo metodą, paremtą autokatalizinės metalų jonų redukcijos reakcijomis, kai reduktoriaus anodinės oksidacijos metu susidarę elektronai redukuoja Pt4+ jonus iki metalinės Pt, o Rh3+ - iki metalinio Rh, bei platinosrodžio lydinio cheminio nusodinimo tirpalu, skirtu šiam metodui. Išradimas gali būti panaudotas nusodinant platinos-rodžio lydinio dangas ant dielektrikų, puslaidininkių arba sudėtingos konfigūracijos laidininkų, pvz., gaminant elektronikos prietaisus ir jų komponentus, mikroelektronikoje chemiškai padengiant platinos-rodžio lydinį ant natūralaus arba jau padengto kitų medžiagų sluoksniais silicio kaip barjerinis sluoksnis, panaudojant platinos-rodžio lydinio dangas efektyviai apsaugai nuo korozijos, o taip pat nusodinant platinos-rodžio lydinio sluoksnį, kaip raketinio kuro degimo katalizatorių, ant sudėtingos konfigūracijos ir prigimties nešėjų aerokosminių variklių gamyboje.The present invention relates to a platinum-rhodium alloy coating process using a chemical (direct current) deposition method based on autocatalytic metal ion reduction reactions whereby electrons formed during the anodic oxidation of the reducing agent reduce Pt 4+ to metal Pt and Rh 3+ to metal Rh, and a chemical precipitation solution of platinum ring alloy for this method. The invention can be applied to the deposition of platinum-rhodium alloy coatings on dielectrics, semiconductors or conductors of complex configuration, e.g., in the manufacture of electronic devices and components, by chemically coating platinum-rhodium alloy on natural or already coated layers of other materials as a barrier layer. platinum-rhodium alloy coatings for effective corrosion protection, as well as the deposition of platinum-rhodium alloy as a catalyst for the combustion of propellants on complex configurations and natures in the manufacture of aerospace engines.
Technikos lygisState of the art
Šiuo metu yra žinomi trys platinos-rodžio lydinių cheminio nusodinimo tirpalai. Visi jie yra šarminiai, o Pt4+ ir Rh3+ reduktoriumi naudojamas hidrazinas arba natrio tetrahidroboratas.Three chemical precipitation solutions of platinum-rhodium alloys are currently known. They are all alkaline and the Pt 4+ and Rh 3+ reducing agent uses hydrazine or sodium tetrahydroborate.
US 3486928 (1969 12 30) aprašoma šarminė cheminio platinos-rodžio lydinio nusodinimo vonia, kurioje Pt(IV) jonų šaltiniu naudojamas heksahidroksi platinos(IV) kompleksas, o rodžio(lll) jonų šaltiniu panaudotas (NH)3RhCI6 kompleksas bei hidrazinas kaip reduktorius. Šio tirpalo trūkumai: tirpalai nestabilūs aukštesnėje nei 35 °C temperatūroje, tirpalo stabilizavimo priedu naudojamas kancerogeniškas etilendiaminas, hidrazino kiekis tirpale turi būti pastoviai papildomas, nes, esant didesnėms hidrazino koncentracijoms, vyksta Pt(IV) ir Rh(lll) redukcija visame tirpalo tūryje. Verta paminėti, kad autoriams nepavyko gauti lydinių, kuriuose rodžio būtų daugiau nei 20 masės procentų.US 3486928 (1969 12 30) describes an alkaline chemical platinum-rhodium alloy plating bath which Pt (IV) ion source is used heksahidroksi platinum (IV) complex, and rhodium (III) ion source, a (NH) 3 RhCI 6 complex and hydrazine as reducer. Disadvantages of this solution: solutions are unstable at temperatures above 35 ° C, carcinogenic ethylenediamine is used as a stabilizer in the solution, and the hydrazine content in the solution must be continuously added, since higher concentrations of hydrazine lead to Pt (IV) and Rh (III) reduction throughout the solution. It is worth noting that the authors failed to obtain alloys containing more than 20% by weight of rhodium.
Cheminio platinos-rodžio lydinio nusodinimo tirpalas trumpai aprašytas JPS5939504 (1984 09 25). Skirtingai nuo aukščiau paminėto patento, čia reduktoriumi naudojamas natrio tetrahidroboratas, Pt(IV) ir Rh(lll) jonų šaltiniais buvo chloridiniai kompleksai, o stabilizatoriumi naudotas hidroksilaminas arba etilendiaminas. Lydinio nusodinimas buvo atliekamas ne aukštesnėje nei 40 °C temperatūroje, šio tirpalo trūkumai: tirpalo stabilizavimo priedu naudojami kancerogeniški etilendiaminas ar hidroksilaminas, tirpalai nestabilūs aukštesnėje nei 40 °C temperatūroje. Kitas trūkumas yra tame, kad gautose dangose šalia redukuotos platinos-rodžio, būtinai susidaro elementinis boras ar į jas sorbuojami boro junginiai, o tai įtakoja platinos-rodžio dangos grynumą.The platinum-rhodium alloy chemical precipitation solution is briefly described in JPS5939504 (September 25, 1984). In contrast to the above patent, sodium tetrahydroborate is used as the reducing agent, the Pt (IV) and Rh (III) ion sources were chloride complexes and the stabilizer used was hydroxylamine or ethylenediamine. The alloy was precipitated at temperatures not exceeding 40 ° C, the disadvantages of this solution being the use of carcinogenic ethylenediamine or hydroxylamine as a stabilizer in the solution, the solutions being unstable at temperatures above 40 ° C. Another disadvantage is that the resulting coatings, in addition to the reduced platinum-rhodium, necessarily contain elemental boron or boron compounds sorbed into them, which affects the purity of the platinum-rhodium coating.
Dar viena platinos-rodžio lydinio cheminio nusodinimo vonia yra žinoma iš US 6706420 (2004 03 16) patento aprašymo, kur Pt(IV) ir Rh(lll) jonų šaltiniais buvo amoniakiniai-nitritiniai minėtų metalų kompleksai, tirpalo pH 8-13. Gautuose platinosrodžio lydiniuose rodžio kiekis svyravo nuo 1 iki 13 masės %. Šios platinos-rodžio cheminio nusodinimo vonios trūkumai: pH palaikymui naudojamas stipriai garuojantis koncentruotas amoniakas, kurio koncentracija tirpale nurodyta nuo 150 iki 200 ml/l.Another bath of chemical precipitation of platinum-rhodium alloy is known from the specification of US 6706420 (16.03.2004), where the Pt (IV) and Rh (III) ion sources were ammonia-nitrite complexes of said metals, pH 8-13. The rhodium content of the resulting platinum alloys ranged from 1 to 13% by weight. Disadvantages of this platinum-rhodium chemical precipitation bath: Strong evaporated concentrated ammonia at a concentration of 150 to 200 ml / l is used to maintain pH.
Sprendžiama techninė problemaResolving a technical issue
Išradimu siekiama sumažinti platinos-rodžio lydinio cheminio nusodinimo tirpalo toksiškumą, padidinti dangos formavimosi greitį bei supaprastinti ir atpiginti tolydžios platinos-rodžio dangos formavimo būdą, leidžiantį nusodinti tolydžias ir kompaktiškas platinos-rodžio lydinio dangas aukštesnėje temperatūroje ir be reduktoriaus papildymo proceso metu bei santykinai brangių priedų naudojimo, ir kuriose rodžio būtų daugiau nei 20 masės %.The object of the invention is to reduce the toxicity of the platinum-rhodium alloy chemical precipitation solution, to increase the rate of coating formation and to simplify and reduce the cost of platinum-rhodium plating continuous and compact platinum-rhodium alloy coatings at higher temperatures without additive reduction process and relatively expensive additives. and containing more than 20% by weight of rhodium.
Išradimo esmės atskleidimasDisclosure of Invention
Pagal pasiūlytą išradimą platinos-rodžio lydinio cheminio nusodinimo tirpalas apima 0,003-0,03 M koncentracijos K2PtCl6, kaip platinos(IV) jonų šaltinį, 0,0010,005 M koncentracijos RhCI3, kaip rodžio(lll) jonų šaltinį, 0,015-0,25 M koncentracijos diizopropanolaminą (Dipa), kaip Ugandą, 0,01-0,1 M koncentracijos hidraziną N2H4, kaip reduktorių, ir koncentruotą acto rūgštį CH3COOH, kaip pH reguliatorių iki pH 11,5.According to the present invention, the chemical precipitation solution of platinum-rhodium alloy comprises 0.003-0.03 M K 2 PtCl 6 as a source of platinum (IV) ions, 0.0010.005 M concentration of RhCl 3 as a source of rhodium (III), 0.015- 0.25 M diisopropanolamine (Dipa) as Uganda, 0.01-0.1 M hydrazine N 2 H 4 as reducing agent, and concentrated acetic acid in CH 3 COOH as pH adjuster to pH 11.5.
Platinos cheminio nusodinimo tirpalas yra sudarytas iš 0,0014 M K2PtCl6, 0,0014 M RhCI3, 0,03 M Dipa, 0,056 M N2H4, CH3COOH iki pH 11,5.The platinum chemical precipitation solution is composed of 0.0014 MK 2 PtCl6, 0.0014 M RhCl 3 , 0.03 M Dipa, 0.056 MN 2 H 4 , CH 3 COOH to pH 11.5.
Platinos-rodžio lydinio tolydžios dangos formavimo būde, apimančiame dengiamo paviršiaus sensibilizavimą SnCI2 tirpale ir aktyvavimą PdCI2 tirpale bei panardinimą į vonią su cheminio nusodinimo tirpalu, kur cheminio nusodinimo tirpalas yra pagal bet kurį išradimo apibrėžties 1-2 punktą.A platinum-rhodium alloy continuous coating process comprising sensing the coating surface in SnCI 2 solution and activating it in PdCI 2 solution and immersing in a bath with a chemical precipitation solution, wherein the chemical precipitation solution is according to any one of claims 1-2.
Sensibilizavimui naudojamo SnCI2 tirpalo koncentracija yra ribose 0,1-1,0 g/l, o aktyvavimui naudojamo PdCI2 tirpalo koncentracija yra ribose 0,05-1,0 g/l. Platinos cheminio nusodinimo metu minėto tirpalo temperatūra yra apie 60 °C. Platinos-rodžio cheminio nusodinimo procesas vyksta leidžiant per tirpalą azotą, kuris atlieka maišymo funkciją bei stabilizuoja tirpalą.The concentration of the SnCI 2 solution used for sensitization is in the range of 0.1-1.0 g / l, while the concentration of the PdCI 2 solution used for activation is in the range of 0.05-1.0 g / l. The temperature of said solution during platinum chemical deposition is about 60 ° C. The chemical precipitation of platinum-rhodium occurs by passing nitrogen through the solution, which serves as a stirring function and stabilizes the solution.
Išradimo naudingumasUtility of the invention
Pagal pasiūlytą išradimą platinos-rodžio lydinio cheminio nusodinimo tirpalas yra netoksiškas, kadangi naudojamas ekologiškas ir nekancerogeninis Pt(IV) ir Rh(lll) ligandas, taip pat tirpalas neturi papildomų priedų, galinčių sorbuotis į nusodinamas platinos-rodžio dangas.According to the present invention, the platinum-rhodium alloy chemical precipitation solution is non-toxic because of the use of organic and non-carcinogenic Pt (IV) and Rh (III) ligands, and the solution does not contain additional additives capable of sorption into platinum-rhodium coatings.
Pagal pasiūlytą išradimą platinos-rodžio dangos formavimo būdas leidžia nusodinti tolydžias ir kompaktiškas platinos-rodžio lydinio dangas be reduktoriaus papildymo proceso metu, t. y., vykdant platinos-rodžio cheminį nusodinimą iš pradinio tirpalo be reaguojančių tirpalo komponentų papildymo.According to the present invention, the platinum-rhodium plating method allows for the deposition of continuous and compact platinum-rhodium alloy coatings without a reducer during the addition process. i.e., platinum-rhodium chemical precipitation from stock solution without addition of reactive solution components.
Reduktoriumi naudojant hidraziną, kurio anodinės oksidacijos reakcijos metu susidaro tik dujiniai produktai ir neužteršią gautos suredukuotos metalinės platinosrodžio lydinio dangos, Pt(IV) ir Rh(lll) ligandu buvo panaudotas ekologiškai nekenksmingas ir nekancerogeniškas ligandas diizopropanolaminas (Dipa):When using hydrazine as a reducing agent, which produces only gaseous products in the anodic oxidation reaction and does not contaminate the resulting reductive metallic platinum alloy coatings, Pt (IV) and Rh (III) ligand used the diisopropanolamine (Dipa), an environmentally friendly and non-carcinogenic ligand:
(1)(1)
Formulė (1). Diizopropanolamino (Dipa) struktūrinė formulėFormula (1). Structural formula of diisopropanolamine (Dipa)
Pagal išradimą optimizuotos sudėties platinos-rodžio cheminio nusodinimo tirpalo, kuriame reduktoriumi naudojamas hidrazinas, o ligandu diizopropanolaminas, panaudojimas 60 °C temperatūroje, užtikrinančioje didesnį dangos formavimosi greitį, bei leidžiant per tirpalą azotą, kuris atlieka maišymo funkciją bei stabilizuoja tirpalą, padeda išvengti intensyviau vykstančio hidrazino skilimo, o tuo pačiu ir papildomo hidrazino pridėjimo į platinos cheminio nusodinimo tirpalą.The use of an optimized composition of the platinum-rhodium chemical precipitation solution using hydrazine as the reducing agent and diisopropanolamine as the ligand at 60 ° C, which provides a higher coating rate and allows nitrogen to be added to the solution, which acts as a stirring and stabilizes solution. hydrazine decomposition and addition of additional hydrazine to the platinum chemical precipitation solution.
Išradimas detaliau paaiškinamas brėžiniais, kurie neapriboja išradimo apimties ir kuriuose pavaizduota:The invention will be explained in more detail by the following drawings, which do not limit the scope of the invention, and which show:
Fig. 1 Ant šiurkštinto stiklo chemiškai nusodintos platinos-rodžio dangos SEM (skenuojančio elektronų mikroskopo) nuotrauka. Dangos nusodinimo sąlygos: 0,0014 M H2PtCI6, 0,0014 M RhCI3, 0,03 M Dipa, 0,056 M N2H4, CH3COOH iki pH 11,5; 60 °C; 60 min.FIG. 1 SEM (Scanning Electron Microscope) Photograph of a Platinum-Rhodium Coated Chemically Deposited Glass. Coating Deposition Conditions: 0.0014 MH 2 PtCl 6 , 0.0014 M RhCl 3 , 0.03 M Dipa, 0.056 MN 2 H 4 , CH 3 COOH to pH 11.5; 60 ° C; 60 min
Fig.2 Nusodintos Pt-Rh dangos cheminė sudėtis pagal SEM duomenis. Dangos nusodinimo sąlygos, kaip ir 1 pav.Fig.2 Chemical composition of the deposited Pt-Rh coating according to SEM data. Coating deposition conditions as in Fig. 1.
Fig.3 Ant šiurkštinto stiklo chemiškai nusodintos platinos-rodžio dangos SEM (skenuojančio elektronų mikroskopo) nuotrauka. Dangos nusodinimo sąlygos: 0,0014 M H2PtCI6, 0,0014 M RhCI3, 0,03 M etilendiamino, 0,056 M N2H4, CH3COOH iki pH 11,5; 60 °C; 60 min.Fig.3 Photograph of SEM (Scanning Electron Microscope) Chemically Deposited Platinum Rhodium on Coarse Glass. Coating Deposition Conditions: 0.0014 MH 2 PtCl 6 , 0.0014 M RhCl 3 , 0.03 M Ethylenediamine, 0.056 MN 2 H 4 , CH 3 COOH to pH 11.5; 60 ° C; 60 min
Fig.4 Ant šiurkštinto stiklo chemiškai nusodintos platinos-rodžio dangos SEM (skenuojančio elektronų mikroskopo) nuotrauka. Dangos nusodinimo sąlygos: 0,0014 M H2PtCI6, 0,0014 M RhCI3, 0,03 M Dipa, 0,056 M N2H4, CH3COOH iki pH 11,5; 60 °C; 60 min.Fig.4 SEM (scanning electron microscope) photograph of a platinum-rhodium plated chemically deposited on a coarse glass. Coating Deposition Conditions: 0.0014 MH 2 PtCl 6 , 0.0014 M RhCl 3 , 0.03 M Dipa, 0.056 MN 2 H 4 , CH 3 COOH to pH 11.5; 60 ° C; 60 min
Išradimo realizavimo pavyzdysExample of embodiment of the invention
Paruošiamas platinos cheminio nusodinimo tirpalas, kurio sudėtyje yra 0,015 M H2PtCI6, 0,0014 M RhCI3, 0,03 M Dipa, 0,056 M N2H4, CH3COOH iki pH 11,5; 60 °C. Po to paruošiama šiurkštinto stiklo plokštelė: plokštelė 1 min. įmerkiama j 0,5 g/l SnCI2 sensibilizavimo tirpalą, praplaunama dejonizuotu vandeniu, po to 1 min. pamerkiama į 0,5 g/l PdCI2 aktyvavimo tirpalą, praplaunama dejonizuotu vandeniu ir įmerkiama į platinos-rodžio lydinio cheminio nusodinimo tirpalą, kur dangos nusodinimas vyksta 60 min. 60 °C temperatūroje, leidžiant per tirpalą (barbotuojant) azotą, kuris atlieka maišymo funkciją, kartu stabilizuodamas tirpalą, kuriame nėra papildomų tam skirtų priedų. Po 60 min. dengiama plokštelė išimama iš tirpalo, praplaunama dejonizuotu vandeniu ir išdžiovinama. Gaunama tolydi platinos-rodžio lydinio danga (Fig.1), kurios storis yra apie 0,2 pm. Pt-Rh lydinio sudėtyje yra 28,95 masės % (arba 43,58 atominiai %) rodžio (Fig.2).Prepare a platinum chemical precipitation solution containing 0.015 MH 2 PtCl 6 , 0.0014 M RhCl 3 , 0.03 M Dipa, 0.056 MN 2 H 4 , CH 3 COOH to pH 11.5; 60 ° C. Subsequently, a coarse glass plate is prepared: plate for 1 min. immersed in 0.5 g / l SnCl 2 sensitization solution, rinsed with deionized water, followed by 1 min. dipped in 0.5 g / l PdCI 2 activation solution, washed with deionized water and immersed in platinum-rhodium alloy chemical precipitation solution for 60 minutes. At 60 ° C, nitrogen is bubbled through the solution (bubbling), which acts as a stirring agent, while stabilizing the solution without any additional additives. After 60 min. remove the coating plate from the solution, rinse with deionized water and dry. A continuous platinum-rhodium alloy coating (Fig. 1) with a thickness of about 0.2 µm is obtained. The Pt-Rh alloy contains 28.95 wt% (or 43.58 atomic%) of rhodium (Fig.2).
Palyginimui buvo nusodinta Pt-Rh lydinio danga, vietoje Dipa ligandu naudojant įprastinį Ugandą - etilendiaminą (Fig.3). Gautieji rezultatai rodo, kad Dipa atveju (Fig.4) formuojasi tolydžiai dengiamą paviršių padengiantis Pt-Rh sluoksnis, kai, tuo tarpu etilendiamino atveju dengiamasis paviršius yra nepilnai padengiamas danga (Fig.3).For comparison, a Pt-Rh alloy coating was deposited using conventional Ugandan ethylenediamine as the Dipa ligand (Fig. 3). The obtained results show that in the case of Dipa (Fig. 4), a continuous Pt-Rh coating is formed, whereas in the case of ethylenediamine, the coating is incompletely coated (Fig. 3).
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| LT2016536A LT6548B (en) | 2016-12-28 | 2016-12-28 | The solution of chemical platinum-rhodium alloy deposition and the method of continuous platinum-rhodium alloy coating formation |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| LT2016536A LT6548B (en) | 2016-12-28 | 2016-12-28 | The solution of chemical platinum-rhodium alloy deposition and the method of continuous platinum-rhodium alloy coating formation |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| LT2016536A LT2016536A (en) | 2018-07-10 |
| LT6548B true LT6548B (en) | 2018-08-10 |
Family
ID=62750687
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| LT2016536A LT6548B (en) | 2016-12-28 | 2016-12-28 | The solution of chemical platinum-rhodium alloy deposition and the method of continuous platinum-rhodium alloy coating formation |
Country Status (1)
| Country | Link |
|---|---|
| LT (1) | LT6548B (en) |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3486928A (en) | 1965-10-21 | 1969-12-30 | Int Nickel Co | Bath and process for platinum and platinum alloys |
| JPS5939504B2 (en) | 1982-05-19 | 1984-09-25 | 工業技術院長 | Electroless plating bath for rhodium or rhodium alloys |
| US6706420B1 (en) | 2000-07-06 | 2004-03-16 | Honeywell International Inc. | Electroless platinum-rhodium alloy plating |
-
2016
- 2016-12-28 LT LT2016536A patent/LT6548B/en not_active IP Right Cessation
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3486928A (en) | 1965-10-21 | 1969-12-30 | Int Nickel Co | Bath and process for platinum and platinum alloys |
| JPS5939504B2 (en) | 1982-05-19 | 1984-09-25 | 工業技術院長 | Electroless plating bath for rhodium or rhodium alloys |
| US6706420B1 (en) | 2000-07-06 | 2004-03-16 | Honeywell International Inc. | Electroless platinum-rhodium alloy plating |
Also Published As
| Publication number | Publication date |
|---|---|
| LT2016536A (en) | 2018-07-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Barker | Electroless deposition of metals | |
| JP2004502871A (en) | Electroless silver plating | |
| Rayée et al. | Underpotential deposition of silver on gold from deep eutectic electrolytes | |
| CN109415812B (en) | Electroless platinum plating solution | |
| US6391477B1 (en) | Electroless autocatalytic platinum plating | |
| WO2017050662A1 (en) | Plating bath composition for electroless plating of gold and a method for depositing a gold layer | |
| CA2893664C (en) | Process for metallizing nonconductive plastic surfaces | |
| DE60104007T2 (en) | ELASTIC PLATING OF PLATINUM RHODIUM ALLOY | |
| LT6548B (en) | The solution of chemical platinum-rhodium alloy deposition and the method of continuous platinum-rhodium alloy coating formation | |
| US9783891B2 (en) | Iron boron alloy coatings and a process for their preparation | |
| JPH06280031A (en) | Electroless palladium plating method and electroless plating bath for the same | |
| KR20200008113A (en) | Electroless Plating Plating Solution and Platinum Film Obtained Using the Same | |
| JPH0762549A (en) | Electroless palladium plating solution | |
| JP2005047752A (en) | Method for controlling film structure of zinc oxide film | |
| LT6547B (en) | The solution of chemical platinum deposition and the method of continuous platinum coating formation | |
| JPH08291389A (en) | Gold plating liquid not substituted with cyanide and gold plating method using this liquid | |
| Okinaka et al. | Electroless plating of platinum group metals | |
| RU2661644C1 (en) | Pyrophosphate-ammonium electrolyte of contact silvering | |
| JPH07166392A (en) | Gold plating solution and gold plating method | |
| JPH06240463A (en) | Method for electroless-plating fine metal powder with silver | |
| WO2025103608A1 (en) | Composition for electroless platinum plating and process for platinum plating | |
| TWI794751B (en) | Cyanide-free liquid composition for immersion gold plating | |
| JP2007217751A (en) | Electroless plating liquid and electroless plating method | |
| JPWO2009054420A1 (en) | Electroless plating method of alloy film and plating solution | |
| WO2018122989A1 (en) | Cyanide-free substitution gold plating solution composition |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| BB1A | Patent application published |
Effective date: 20180710 |
|
| FG9A | Patent granted |
Effective date: 20180810 |
|
| MM9A | Lapsed patents |
Effective date: 20191228 |