JPH06280031A - Electroless palladium plating method and electroless plating bath for the same - Google Patents

Electroless palladium plating method and electroless plating bath for the same

Info

Publication number
JPH06280031A
JPH06280031A JP9396693A JP9396693A JPH06280031A JP H06280031 A JPH06280031 A JP H06280031A JP 9396693 A JP9396693 A JP 9396693A JP 9396693 A JP9396693 A JP 9396693A JP H06280031 A JPH06280031 A JP H06280031A
Authority
JP
Japan
Prior art keywords
palladium
plating
electroless
laser
plating bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9396693A
Other languages
Japanese (ja)
Other versions
JP3237098B2 (en
Inventor
Yuichi Sato
祐一 佐藤
Katsuya Amahi
勝也 天日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EEJA Ltd
Original Assignee
Electroplating Engineers of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electroplating Engineers of Japan Ltd filed Critical Electroplating Engineers of Japan Ltd
Priority to JP09396693A priority Critical patent/JP3237098B2/en
Publication of JPH06280031A publication Critical patent/JPH06280031A/en
Application granted granted Critical
Publication of JP3237098B2 publication Critical patent/JP3237098B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • H05K3/182Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method

Landscapes

  • Chemically Coating (AREA)

Abstract

PURPOSE:To provide a electroless palladium plating bath and the electroless plating method partially and selectively plating without necessitating activating a surface or forming a mask. CONSTITUTION:The palladium high speed partial plating is directly executed by using the plating bath containing palladium acetate or palladium chloride as a palladium compound and furthermore sodium hypophosphite and ethylene diamine and irradiating a material to be plated dipped in the plating bath with laser. In the case of using palladium chloride, a thallium compound is preferably added.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、無電解パラジウムめっ
き浴及びその無電解めっき方法に関し、特に、レーザ照
射を利用する無電解パラジウムめっき浴及びその無電解
めっき方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electroless palladium plating bath and an electroless plating method thereof, and more particularly to an electroless palladium plating bath utilizing laser irradiation and an electroless plating method thereof.

【0002】[0002]

【従来の技術】パラジウムめっきは、貴金属めっきのな
かでも金を用いる場合に比べて安価であることから、主
に装飾用として利用され、また、その優れた電気的特性
のために導体パターンや電気接点等の素材として電子・
電気工業の分野でも広く用いられている。
2. Description of the Related Art Palladium plating is mainly used for decoration because it is cheaper than gold plating among precious metal plating, and because of its excellent electrical characteristics, it can be used as a conductor pattern or an electrical conductor. Electronic materials such as contacts
It is also widely used in the electric industry.

【0003】一般に、パラジウムを無電解めっきするに
際しては、脱脂・酸洗いの前処理工程及び塩化パラジウ
ムや塩化スズを用いた表面活性化工程が必要である。そ
してまた高価な貴金属材料の使用を最低限に抑える目的
から、所定部分に所定量だけ選択的に析出物を析出させ
るためのマスクが必要とされる。また、電子・電気工業
の分野で例えば、半導体チップ表面上に微細な金属層パ
ターンを形成するのに、表面処理と微細加工からなるプ
ロセスが重要であり、具体的には、成膜、フォトリソグ
ラフィーによるレジストパターン形成、エッチング、等
のプロセスの複雑な組み合わせにより金属層パターンが
形成されている。
Generally, in electroless plating of palladium, a pretreatment step of degreasing / pickling and a surface activation step using palladium chloride or tin chloride are required. Also, for the purpose of minimizing the use of expensive precious metal materials, a mask is required for selectively depositing a predetermined amount of a precipitate on a predetermined portion. Further, in the field of electronics and electrical industry, for example, in order to form a fine metal layer pattern on the surface of a semiconductor chip, a process consisting of surface treatment and fine processing is important, and specifically, film formation and photolithography. The metal layer pattern is formed by a complicated combination of processes such as resist pattern formation, etching, and the like.

【0004】ところで、微細で複雑な形状の無電解パラ
ジウムめっきとして、例えば、塩化パラジウム、エチレ
ンジアミン、チオグリコール酸、次亜リン酸ナトリウ
ム、からなるめっき浴をpH8、温度50℃の操作条件
で用いる無電解パラジウムめっき浴及びその無電解めっ
き方法が知られている(表面技術Vol.40,No3,P477 ,198
9「エチレンジアミン錯体浴からの無電解Pd-P合金めっ
き」参照)。
By the way, as the electroless palladium plating having a fine and complicated shape, for example, a plating bath containing palladium chloride, ethylenediamine, thioglycolic acid and sodium hypophosphite is used under operating conditions of pH 8 and temperature 50 ° C. An electrolytic palladium plating bath and its electroless plating method are known (Surface Technology Vol.40, No3, P477, 198).
9 "Refer to Electroless Pd-P Alloy Plating from Ethylenediamine Complex Bath").

【0005】そしてまた、無電解パラジウムめっき技術
としては、他にも広範な分野においてその応用が研究さ
れつつある。例えば、最近の環境汚染問題に関し、CO
やNOx の発生を抑えるための触媒燃焼技術の分野にお
いて、触媒及び触媒担体等の耐焼結性向上のために微細
なセラミック粉末にパラジウムをコートする技術が研究
されており、そのコーティング方法として無電解パラジ
ウムめっきが注目されている〔表面技術Vol.42,No8 ,19
91、「酸化ジルコニウム粉体上へのパラジウムの無電解
めっきとめっき物の熱的挙動」参照〕。
Further, as the electroless palladium plating technique, its application is being studied in a wide range of fields. For example, regarding the recent environmental pollution problem, CO
In the field of catalytic combustion technology for suppressing the generation of NOx and NO x , a technology for coating fine ceramic powder with palladium has been studied in order to improve the sintering resistance of the catalyst and the catalyst carrier. Attention has been paid to electrolytic palladium plating [Surface Technology Vol.42, No8, 19
91, “Electroless plating of palladium on zirconium oxide powder and thermal behavior of the plated material”.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記し
たような従来の技術にあっては、めっき物のめっき前表
面処理作業やマスク形成作業等の複雑で面倒な作業が必
要であり、特に加工部が微細である場合や少量多品種生
産の場合には技術的な面やコストの面で問題が多かっ
た。また、これらの表面処理作業やマスク形成作業、及
びこれに用いる材料は浴を汚染することが多く、浴の安
定性と寿命に影響を与えるとともに、めっき製品のクラ
ックやかぶりの原因となるなど問題が多かった。
However, in the above-mentioned conventional techniques, complicated and troublesome work such as surface treatment work for plating of the plated object and mask forming work are required, and particularly, the working portion. However, there were many problems in terms of technology and cost in the case of small size and in the case of small lot production of many kinds. In addition, these surface treatment operations, mask formation operations, and the materials used therefor often contaminate the bath, which affects the stability and life of the bath and causes cracks and fogging of plated products. There were many

【0007】一方で、マスクなしで行なえる高速微小部
分めっき法としてレーザめっきが最近注目されている
〔表面技術Vol.43,No7,1992,P67〜71参照〕。
On the other hand, laser plating has recently attracted attention as a high-speed minute partial plating method that can be performed without a mask (see Surface Technology Vol. 43, No. 7, 1992, P67-71).

【0008】本発明はレーザめっきを利用することによ
って、表面活性化やマスク作成を要することなく部分選
択的なめっきが可能である無電解パラジウムめっき浴及
びその無電解めっき方法を提供することを目的とする。
It is an object of the present invention to provide an electroless palladium plating bath and a method for electroless plating thereof which can perform partial selective plating by utilizing laser plating without requiring surface activation or mask preparation. And

【0009】[0009]

【課題を解決するための手段】ところで、上記無電解パ
ラジウムめっき浴〔表面技術Vol.40,No3,1989〕に単に
レーザを照射ただけではパラジウムの無電解めっきは起
こらないことが判った。そこで、添加物の検討や原料と
なるパラジウムの塩の種類を変えることによって、以下
に述べるよう、レーザ照射によるパラジウムの無電解め
っきが可能となった。
[Means for Solving the Problems] By the way, it has been found that electroless plating of palladium does not occur simply by irradiating the electroless palladium plating bath [Surface Technology Vol. 40, No. 3, 1989] with a laser. Therefore, by studying additives and changing the type of palladium salt used as a raw material, it became possible to perform electroless plating of palladium by laser irradiation, as described below.

【0010】本発明は、パラジウム化合物と次亜リン酸
ナトリウムとエチレンジアミンとを含有するめっき浴を
用いる無電解パラジウムめっき方法において、パラジウ
ム化合物として酢酸パラジウムを用いるとともに、めっ
き浴に浸漬しためっき対象物(以下「めっき物」とい
う。)にレーザを照射することを特徴とする無電解パラ
ジウムめっき方法としている。
The present invention relates to an electroless palladium plating method using a plating bath containing a palladium compound, sodium hypophosphite and ethylenediamine, wherein palladium acetate is used as the palladium compound and the plating object ( Hereinafter, a "plated product") is irradiated with a laser to provide an electroless palladium plating method.

【0011】そしてまた本発明は、パラジウム化合物と
して塩化パラジウムを用いてもよく、その場合は添加剤
として少なくとも塩化タリウム又は蟻酸タリウムのいず
れかのようなタリウム化合物を加えるようにしている。
And according to the present invention, palladium chloride may be used as the palladium compound, in which case at least a thallium compound such as thallium chloride or thallium formate is added as an additive.

【0012】その要因は明確ではないが、パラジウム塩
として塩化パラジウムを使用すると次亜リン酸ナトリウ
ム等の還元剤の共存下、レーザ照射してもめっきが起こ
らない。塩化物イオンがパラジウムめっきを妨害してい
るように見うけられる。そこで、貴金属の電解めっきの
際に触媒的に作用し、電流効率を向上させ水素吸蔵量を
減少させることが知られているタリウムイオンを塩化物
イオンを含む浴に添加したところめっきが可能であるこ
とを見いだした。その際、塩化タリウムの場合は1〜
1,000ppm、蟻酸タリウム添加の場合は数ppb
〜1ppmで良いことが判った。これ以上の高濃度の場
合はレーザ照射以外の基板全体にタリウム、パラジウム
が析出した。
Although the cause is not clear, when palladium chloride is used as the palladium salt, plating does not occur even when laser irradiation is performed in the presence of a reducing agent such as sodium hypophosphite. Chloride ions appear to interfere with palladium plating. Therefore, when thallium ions, which are known to act catalytically during electrolytic plating of noble metals to improve current efficiency and reduce hydrogen storage amount, are added to a bath containing chloride ions, plating is possible. I found a thing. At that time, in the case of thallium chloride,
1,000ppm, several ppb when thallium formate is added
It was found that ~ 1 ppm was sufficient. When the concentration was higher than this, thallium and palladium were deposited on the entire substrate except for laser irradiation.

【0013】なお、パラジウム塩として、塩化パラジウ
ムの代わりに酢酸パラジウムを用いるとタリウムイオン
の添加無しにレーザ照射によりパラジウムめっきが可能
であることが判った。
It has been found that when palladium acetate is used as the palladium salt instead of palladium chloride, palladium plating can be performed by laser irradiation without addition of thallium ions.

【0014】そして、本発明による無電解パラジウムめ
っき方法は、レーザとしてアルゴンレーザを用いてお
り、レーザ出力を1〜5W、レーザ照射時間を0.1〜
15秒としている。
In the electroless palladium plating method according to the present invention, an argon laser is used as a laser, the laser output is 1 to 5 W and the laser irradiation time is 0.1 to 5.
15 seconds.

【0015】また、本発明による無電解パラジウムめっ
き方法で使用するめっき浴の組成を、パラジウム化合物
0.005〜0.5mol/l、エチレンジアミン0.
04〜1.0mol/l、次亜リン酸ナトリウム0.0
2〜0.2mol/lとしている。そして操作条件を、
水素イオン濃度(pH)7.5〜12、温度5〜35℃
としている。
Further, the composition of the plating bath used in the electroless palladium plating method according to the present invention is such that the palladium compound is 0.005 to 0.5 mol / l, ethylenediamine 0.
04-1.0 mol / l, sodium hypophosphite 0.0
It is set to 2 to 0.2 mol / l. And the operation condition,
Hydrogen ion concentration (pH) 7.5-12, temperature 5-35 ° C
I am trying.

【0016】[0016]

【作用】パラジウム化合物に酢酸パラジウムを用いため
っき浴中に、めっき物を浸漬し、レーザを照射すると、
直径がレーザのビーム径にほぼ等しい析出物が安定して
得られる。つまり、従来のマスクを省略し、加えて手間
のかかる前処理やレジストでの微細加工等も不要とでき
る。また、塩化パラジウムを用いた場合は、塩化タリウ
ムもしくは蟻酸タリウムを共存させることによって後述
のようにパラジウムめっきが可能である。
[Function] When a plated product is immersed in a plating bath using palladium acetate as a palladium compound and irradiated with a laser,
A precipitate having a diameter approximately equal to the laser beam diameter can be stably obtained. That is, the conventional mask can be omitted, and in addition, troublesome pretreatment and fine processing with a resist can be dispensed with. When palladium chloride is used, it can be plated with palladium by coexisting thallium chloride or thallium formate as described later.

【0017】レーザとしてはアルゴンレーザが好まし
い。アルゴンレーザは、炭酸ガスレーザやYAGレーザ
等と比べ、電解液への吸収率及び金属表面反射率が比較
的小さく、金属表面吸収率が大きいという性質を有する
ためである。
The laser is preferably an argon laser. This is because the argon laser has properties such that the absorptivity to the electrolytic solution and the metal surface reflectance are relatively small and the metal surface absorptivity is large, as compared with the carbon dioxide laser, the YAG laser, and the like.

【0018】この無電解パラジウムめっき浴として、浴
中のパラジウム化合物は0.005〜0.5mol/
l、好ましくは0.01〜0.03mol/l存在させ
ることができる。エチレンジアミンは錯形成剤として使
用するため、0.04mol/lより少なくても1.0
mol/lより多くても光沢や析出効率に悪影響を及ぼ
す。なお、安定剤としてチオジグリコール酸を用いても
よい。チオジグリコール酸は10〜300mg/lであ
ればよく、存在しなくても、めっき物形状には大きな差
異は認められない。還元剤として用いる次亜リン酸ナト
リウムは、0.02mol/lより少ないと析出物表面
にクラックが発生し、0.2mol/lより多いとリン
の共析が極端に増大して良好な析出物を得ることができ
なくなる。
In this electroless palladium plating bath, the palladium compound in the bath is 0.005-0.5 mol /
1, preferably 0.01 to 0.03 mol / l can be present. Since ethylenediamine is used as a complexing agent, it is 1.0 at least less than 0.04 mol / l.
Even if it is more than mol / l, it adversely affects the gloss and the deposition efficiency. In addition, thiodiglycolic acid may be used as a stabilizer. Thiodiglycolic acid may be 10 to 300 mg / l, and even if it does not exist, no significant difference is observed in the shape of the plated product. When sodium hypophosphite used as a reducing agent is less than 0.02 mol / l, cracks occur on the surface of the precipitate, and when it is more than 0.2 mol / l, the eutectoid of phosphorus is extremely increased and a good precipitate is obtained. Will not be able to get.

【0019】レーザ出力が5Wより高いと、レーザによ
る加熱効果が飽和してめっき浴の沸騰が起こり、その結
果、浴の加熱領域も広がって析出物の直径がビーム径よ
りも大きくなってしまう。レーザ出力が1Wより低い
と、めっき速度が小さくなり実用的な析出効率を得るこ
とができない。また、レーザ照射時間が0.1秒より短
いと、外周形状及び直径において安定した析出物を得る
ことができず、15秒より長いと析出物の形状が円柱状
から不定型な柱状へと変化したり、めっき液の沸騰が起
こったりする。
When the laser output is higher than 5 W, the heating effect of the laser is saturated and boiling of the plating bath occurs, and as a result, the heating region of the bath also expands and the diameter of the precipitate becomes larger than the beam diameter. If the laser output is lower than 1 W, the plating rate will be low and a practical deposition efficiency cannot be obtained. Further, if the laser irradiation time is shorter than 0.1 seconds, it is not possible to obtain a stable precipitate in the outer peripheral shape and diameter, and if it is longer than 15 seconds, the shape of the precipitate changes from a cylindrical shape to an irregular shape. Or the boiling of the plating solution may occur.

【0020】そして水素イオン濃度(pH)7.5〜1
2、温度5〜35℃の操作条件で行なうが、pHが7.
5より小さいときはリンの含有量が極端に多い析出物と
なり、pHが12より大きいときは析出物にクラックが
多くなる。又、温度も5℃より低いと満足な析出効率や
めっき速度が得られず、35℃を越えると析出量が極端
に少なくなるとともにレーザ照射による局所加熱効果が
飽和しやすくなる。
The hydrogen ion concentration (pH) is 7.5-1.
2. The temperature is 5 to 35 ° C., but the pH is 7.
When the pH is less than 5, the precipitate has an extremely large phosphorus content, and when the pH is more than 12, the precipitate has many cracks. Further, if the temperature is lower than 5 ° C., a satisfactory deposition efficiency and plating rate cannot be obtained, and if it exceeds 35 ° C., the amount of deposition becomes extremely small and the local heating effect by laser irradiation is easily saturated.

【0021】[0021]

【実施例】次に実施例によってこの発明をさらに詳細に
説明する。 実施例1 酢酸パラジウム 0.01mol/l(1.77g/l) エチレンジアミン 5.3ml/l チオグリコール酸 50mg/l 次亜リン酸ナトリウム 0.06mol/l(6.36g/l) pH 8.0 液温 25℃ 真鍮基板上にニッケルめっきを10μm行なった試験片
を、上記組成の無電解パラジウムめっき浴に浸漬し、全
波長同時発振、TEM00モードのアルゴンレーザをレー
ザ出力2Wで6秒間照射したところ、図1で示すよう
に、直径がレーザの直径にほぼ等しい、偏平で略円柱状
の析出物が得られた。そしてこの析出物は密着性、耐熱
性、ボンディング性等、工業用として十分な特性を備え
ていることが確認できた。
The present invention will be described in more detail with reference to the following examples. Example 1 Palladium acetate 0.01 mol / l (1.77 g / l) Ethylenediamine 5.3 ml / l Thioglycolic acid 50 mg / l Sodium hypophosphite 0.06 mol / l (6.36 g / l) pH 8.0 Liquid temperature 25 ° C. A test piece obtained by nickel-plating 10 μm on a brass substrate was immersed in an electroless palladium plating bath having the above composition, and irradiated with a lasing power of 2 W for 6 seconds using an all-wavelength simultaneous oscillation, TEM 00 mode argon laser. However, as shown in FIG. 1, a flat, substantially cylindrical precipitate having a diameter substantially equal to the diameter of the laser was obtained. It was confirmed that this precipitate had sufficient properties for industrial use, such as adhesiveness, heat resistance, and bondability.

【0022】実施例2 塩化パラジウム 0.01mol/l(1.77g/l) エチレンジアミン 5.3ml/l 塩化タリウム (タリウムイオンとして)200ppm 次亜リン酸ナトリウム 0.06mol/l(6.36g/l) pH 8.0 液温 25℃ ニッケル基板上にニッケルめっきを10μm行なった試
験片を、上記組成の無電解パラジウムめっき浴に浸漬
し、全波長同時発振、TEM00モードのアルゴンレーザ
をレーザ出力2Wで5秒間照射したところ、直径がレー
ザの直径にほぼ等しい、偏平で略円柱状の析出物が得ら
れた。そしてこの析出物は密着性、耐熱性、ボンディン
グ性等、工業用として十分な特性を備えていることが確
認できた。なお、比較例として塩化タリウムを添加しな
い場合には、パラジウムの析出が認められなかった。な
お、タリウムイオン濃度は10〜1000ppmで効果
があった。
Example 2 Palladium chloride 0.01 mol / l (1.77 g / l) Ethylenediamine 5.3 ml / l Thallium chloride (as thallium ion) 200 ppm Sodium hypophosphite 0.06 mol / l (6.36 g / l) ) PH 8.0 liquid temperature 25 ° C. A test piece obtained by nickel-plating 10 μm on a nickel substrate is immersed in an electroless palladium plating bath having the above composition, all wavelengths simultaneous oscillation, TEM 00 mode argon laser with laser output 2 W After irradiation for 5 seconds, a flat, substantially cylindrical precipitate having a diameter approximately equal to the diameter of the laser was obtained. It was confirmed that this precipitate had sufficient properties for industrial use, such as adhesiveness, heat resistance, and bondability. As a comparative example, when thallium chloride was not added, precipitation of palladium was not observed. The thallium ion concentration was effective at 10 to 1000 ppm.

【0023】実施例3 塩化パラジウム 0.01mol/l(1.77g/l) エチレンジアミン 5.3ml/l 蟻酸タリウム (タリウムイオンとして)10ppb 次亜リン酸ナトリウム 0.06mol/l(6.36g/l) pH 8.0 液温 25℃ ニッケル基板上にニッケルめっきを10μm行なった試
験片を、添加剤として酢酸タリウムを添加した上記組成
の無電解パラジウムめっき浴に浸漬し、全波長同時発
振、TEM00モードのアルゴンレーザをレーザ出力2W
で15秒間照射したところ、直径がレーザの直径にほぼ
等しい、偏平で略円柱状の析出物が得られた。そしてこ
の析出物は密着性、耐熱性、ボンディング性等、工業用
として十分な特性を備えていることが確認できた。タリ
ウムは、ニッケル上に析出してパラジウムの無電解めっ
きの促進と、析出物と基板との密着力を増加させ、水素
吸蔵量を減少させることによってパラジウム析出物の形
状の変化を抑制するようである。なお、塩化タリウムに
比べ蟻酸タリウムの場合は添加量が少なくてよいという
利点が確かめられた。蟻酸タリウムを1ppmより多く
添加するとスポットめっきは得られず基板全体に析出し
た。また、レーザ照射時間を16秒以上にするとめっき
物は得られなかった。
Example 3 Palladium chloride 0.01 mol / l (1.77 g / l) Ethylenediamine 5.3 ml / l Thallium formate (as thallium ion) 10 ppb Sodium hypophosphite 0.06 mol / l (6.36 g / l) ) PH 8.0 liquid temperature 25 ° C. A test piece obtained by nickel-plating 10 μm on a nickel substrate was immersed in an electroless palladium plating bath of the above composition to which thallium acetate was added as an additive to simultaneously oscillate all wavelengths, TEM 00. Mode argon laser with laser output 2W
When irradiated for 15 seconds, a flat, substantially cylindrical precipitate having a diameter approximately equal to the diameter of the laser was obtained. It was confirmed that this precipitate had sufficient properties for industrial use, such as adhesiveness, heat resistance, and bondability. Thallium appears to be deposited on nickel to promote the electroless plating of palladium, increase the adhesion between the precipitate and the substrate, and reduce the hydrogen storage capacity, thereby suppressing the change in the shape of the palladium precipitate. is there. In addition, it was confirmed that thallium formate has the advantage of requiring a smaller amount of addition than thallium chloride. When thallium formate was added in an amount of more than 1 ppm, spot plating could not be obtained and it was deposited on the entire substrate. Moreover, when the laser irradiation time was set to 16 seconds or more, no plated product was obtained.

【0024】[0024]

【発明の効果】以上説明したように、本発明による無電
解パラジウムめっき浴及びその無電解めっき方法を用い
てレーザめっきを行なうと、めっき物の任意の箇所にレ
ーザ光又は基板を走査することにより、任意形状のパラ
ジウム皮膜を選択的に析出させることができるため、従
来の無電解パラジウムめっき方法で必要であった表面活
性化やマスク作成工程が不要になり、作業性とコストに
おいて有利であるとともに、浴の汚染も少なくなるとい
う効果がある。また、レーザ照射部のみで局所的な析出
が起こるため、浴の分解が起こりにく、従来の無電解パ
ラジウムめっき方法に比べ浴の寿命が更に長くなるとい
う効果がある。このため汎用性の高いパラジウムめっき
製品が安定して得られるという効果がある。
As described above, when laser plating is performed using the electroless palladium plating bath and the electroless plating method according to the present invention, the laser beam or the substrate is scanned at an arbitrary position on the plated product. Since the palladium film of any shape can be selectively deposited, the surface activation and the mask making process which are required in the conventional electroless palladium plating method are not required, which is advantageous in workability and cost. It also has the effect of reducing the pollution of the bath. Further, since local precipitation occurs only in the laser irradiation portion, the bath is less likely to be decomposed, and there is an effect that the life of the bath is further extended as compared with the conventional electroless palladium plating method. Therefore, there is an effect that a highly versatile palladium plated product can be stably obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】パラジウム化合物として酢酸パラジウムを用い
た場合における析出物の2000倍SEM写真。
FIG. 1 is a 2000X SEM photograph of a precipitate when palladium acetate was used as a palladium compound.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 パラジウム化合物と次亜リン酸ナトリウ
ムとエチレンジアミンとを含有するめっき浴を用いる無
電解パラジウムめっき方法において、 パラジウム化合物として酢酸パラジウムを用いるととも
に、めっき浴に浸漬しためっき物にレーザを照射するこ
とを特徴とする無電解パラジウムめっき方法。
1. An electroless palladium plating method using a plating bath containing a palladium compound, sodium hypophosphite, and ethylenediamine, wherein palladium acetate is used as the palladium compound, and a plated product immersed in the plating bath is irradiated with a laser. A method for electroless palladium plating comprising:
【請求項2】 パラジウム化合物として塩化パラジウム
を用いるとともに、添加剤としてタリウム化合物を加え
る請求項1記載の無電解パラジウムめっき方法。
2. The electroless palladium plating method according to claim 1, wherein palladium chloride is used as the palladium compound and a thallium compound is added as the additive.
【請求項3】 タリウム化合物として少なくとも塩化タ
リウム又は蟻酸タリウムのいずれかを用いる請求項2記
載の無電解パラジウムめっき方法。
3. The electroless palladium plating method according to claim 2, wherein at least either thallium chloride or thallium formate is used as the thallium compound.
【請求項4】 レーザにアルゴンレーザを用いるととも
に、レーザ出力が1〜5W、レーザ照射時間が0.1〜
15秒である請求項1ないし請求項3のいずれかに記載
の無電解パラジウムめっき方法。
4. An argon laser is used as the laser, the laser output is 1 to 5 W, and the laser irradiation time is 0.1 to 5.
It is 15 seconds, The electroless palladium plating method in any one of Claim 1 thru | or 3.
【請求項5】 操作条件が、水素イオン濃度(pH)
7.5〜12、温度5〜35℃である請求項1ないし請
求項4のいずれかに記載の無電解パラジウムめっき方
法。
5. The operating condition is hydrogen ion concentration (pH).
The electroless palladium plating method according to any one of claims 1 to 4, wherein the temperature is 7.5 to 12 and the temperature is 5 to 35 ° C.
【請求項6】 請求項1ないし請求項5のいずれかに記
載の無電解パラジウムめっき方法で用いるめっき浴であ
って、めっき浴の組成が、パラジウム化合物0.005
〜0.5mol/l、エチレンジアミン0.04〜1.
0mol/l、次亜リン酸ナトリウム0.02〜0.2
mol/lからなる無電解パラジウムめっき浴。
6. A plating bath used in the electroless palladium plating method according to claim 1, wherein the composition of the plating bath is 0.005 palladium compound.
.About.0.5 mol / l, ethylenediamine 0.04 to 1.
0 mol / l, sodium hypophosphite 0.02-0.2
Electroless palladium plating bath consisting of mol / l.
JP09396693A 1993-03-30 1993-03-30 Electroless palladium plating method and electroless plating bath used therein Expired - Fee Related JP3237098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09396693A JP3237098B2 (en) 1993-03-30 1993-03-30 Electroless palladium plating method and electroless plating bath used therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09396693A JP3237098B2 (en) 1993-03-30 1993-03-30 Electroless palladium plating method and electroless plating bath used therein

Publications (2)

Publication Number Publication Date
JPH06280031A true JPH06280031A (en) 1994-10-04
JP3237098B2 JP3237098B2 (en) 2001-12-10

Family

ID=14097152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09396693A Expired - Fee Related JP3237098B2 (en) 1993-03-30 1993-03-30 Electroless palladium plating method and electroless plating bath used therein

Country Status (1)

Country Link
JP (1) JP3237098B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001063640A1 (en) * 2000-02-22 2001-08-30 Matsushita Electric Industrial Co., Ltd. Method of producing plasma display panel and plasma display panel
US6436816B1 (en) * 1998-07-31 2002-08-20 Industrial Technology Research Institute Method of electroless plating copper on nitride barrier
JP2005060828A (en) * 2003-07-28 2005-03-10 Masaya Ichimura Photodeposition gold plating method and gold plating formation apparatus
JP2005248192A (en) * 2004-03-01 2005-09-15 Nariyuki Uemiya Method for manufacturing thin film for separating hydrogen, and palladium plating bath
JP2009108337A (en) * 2007-10-26 2009-05-21 Fujifilm Corp Electroless plating method, electroless plating apparatus and electromagnetic interference shield material
JP2009228097A (en) * 2008-03-25 2009-10-08 Institute Of Physical & Chemical Research Photoreduction processing method for three-dimensional nano-structure of metal
WO2010128688A1 (en) * 2009-05-08 2010-11-11 小島化学薬品株式会社 Electroless palladium plating solution
GB2501247A (en) * 2012-04-11 2013-10-23 Univ Swansea Counter Electrode for a Dye-Sensitised Solar Cell
CN105296974A (en) * 2015-08-27 2016-02-03 中国科学院兰州化学物理研究所 Palladium plating liquid and method for plating palladium on copper surface by using same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6436816B1 (en) * 1998-07-31 2002-08-20 Industrial Technology Research Institute Method of electroless plating copper on nitride barrier
US6805601B2 (en) 2000-02-22 2004-10-19 Matsushita Electric Industrial Co., Ltd. Method for producing plasma display panel and the plasma display panel
WO2001063640A1 (en) * 2000-02-22 2001-08-30 Matsushita Electric Industrial Co., Ltd. Method of producing plasma display panel and plasma display panel
US7641944B2 (en) 2003-07-28 2010-01-05 Kabushiki Kaisha Tokai Rika Denki Seisakusho Method for forming gold plating
JP2005060828A (en) * 2003-07-28 2005-03-10 Masaya Ichimura Photodeposition gold plating method and gold plating formation apparatus
JP4521228B2 (en) * 2003-07-28 2010-08-11 正也 市村 Gold plating method by light deposition and gold plating film forming apparatus
JP4557570B2 (en) * 2004-03-01 2010-10-06 成之 上宮 Method for producing thin film for hydrogen separation
JP2005248192A (en) * 2004-03-01 2005-09-15 Nariyuki Uemiya Method for manufacturing thin film for separating hydrogen, and palladium plating bath
JP2009108337A (en) * 2007-10-26 2009-05-21 Fujifilm Corp Electroless plating method, electroless plating apparatus and electromagnetic interference shield material
JP2009228097A (en) * 2008-03-25 2009-10-08 Institute Of Physical & Chemical Research Photoreduction processing method for three-dimensional nano-structure of metal
WO2010128688A1 (en) * 2009-05-08 2010-11-11 小島化学薬品株式会社 Electroless palladium plating solution
CN102449192A (en) * 2009-05-08 2012-05-09 小岛化学药品株式会社 Electroless palladium plating solution
US8562727B2 (en) 2009-05-08 2013-10-22 Kojima Chemicals Co., Ltd. Electroless palladium plating solution
GB2501247A (en) * 2012-04-11 2013-10-23 Univ Swansea Counter Electrode for a Dye-Sensitised Solar Cell
CN105296974A (en) * 2015-08-27 2016-02-03 中国科学院兰州化学物理研究所 Palladium plating liquid and method for plating palladium on copper surface by using same

Also Published As

Publication number Publication date
JP3237098B2 (en) 2001-12-10

Similar Documents

Publication Publication Date Title
Ali et al. A review of electroless gold deposition processes
Kochemirovsky et al. Laser-induced chemical liquid phase deposition of metals: chemical reactions in solution and activation of dielectric surfaces
JP3207525B2 (en) Controlled electroless plating
JP2004502871A (en) Electroless silver plating
Stremsdoerfer et al. Autocatalytic deposition of gold and palladium onto n‐GaAs in acidic media
WO2004067192A1 (en) Electroless plating solution and process
JP2017517626A (en) Compositions and methods for metallizing non-conductive plastic surfaces
US4780342A (en) Electroless nickel plating composition and method for its preparation and use
Iacovangelo Autocatalytic electroless gold deposition using hydrazine and dimethylamine borane as reducing agents
JP3237098B2 (en) Electroless palladium plating method and electroless plating bath used therein
US4695489A (en) Electroless nickel plating composition and method
JPH05148657A (en) Light-utilizing plating solution and plating method
JPH04231475A (en) Novel metal accelerator
JP3972158B2 (en) Electroless palladium plating solution
EP0073236B1 (en) Palladium and palladium alloys electroplating procedure
EP3134562B1 (en) Process for the preparation of iron boron alloy coatings and plating bath therefor
KR102541103B1 (en) Electroless platinum plating solution and platinum film obtained using the same
JPS6324072A (en) Electroless palladium-nickel alloy plating liquid
JP3288457B2 (en) Gold plating solution and gold plating method
JP2005047752A (en) Method for controlling film structure of zinc oxide film
JPH06145997A (en) Electroless gold plating liquid
JP2015209592A (en) ELECTROLESS DEPOSITION OF CONTINUOUS PALLADIUM LAYER USING Co2+ METAL ION COMPLEX OR Ti3+ METAL ION COMPLEX AS REDUCER
Ali et al. A review of electroless gold deposition processes
KR100535977B1 (en) Electroless Plating Method Using Additive for Electroplating
JP4059133B2 (en) Electroless nickel-gold plating method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20071005

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20101005

LAPS Cancellation because of no payment of annual fees