JPS5938849A - Arithmetic circuit - Google Patents

Arithmetic circuit

Info

Publication number
JPS5938849A
JPS5938849A JP57148945A JP14894582A JPS5938849A JP S5938849 A JPS5938849 A JP S5938849A JP 57148945 A JP57148945 A JP 57148945A JP 14894582 A JP14894582 A JP 14894582A JP S5938849 A JPS5938849 A JP S5938849A
Authority
JP
Japan
Prior art keywords
time
register
bit
adder
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57148945A
Other languages
Japanese (ja)
Other versions
JPS6259828B2 (en
Inventor
Noboru Kobayashi
登 小林
Isato Yoshida
勇人 吉田
Masuyuki Ikezawa
池沢 斗志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57148945A priority Critical patent/JPS5938849A/en
Publication of JPS5938849A publication Critical patent/JPS5938849A/en
Publication of JPS6259828B2 publication Critical patent/JPS6259828B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/544Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices for evaluating functions by calculation
    • G06F7/5443Sum of products

Abstract

PURPOSE:To execute a calculation at a high speed, by inputting a halfway part of multiplication in a parallel multiplier to the first and the second registers which are separately provided freshly by an N-bit portion, and adding its output and the previous calculation result by a three-input adder. CONSTITUTION:A multiplicand A and a multiplier B are inputted to 16-bit registers 1, 2, the partial product is derived by a parallel multiplying circuit 3, addition is executed in several stages so that three inputs become two inputs by an adder of each digit, and outputs whose final each digit (final digit is 32) becomes two inputs are inputted to 32-bit registers 9, 10 separately by 32 pieces each. Subsequently, these outputs and a calculation result C before a 32-bit register 8 which stores the previous calculation results are inputted to a three- input adder 11, are added, and (AXB+C) is derived, is inputted to the 32-bit register 8 and is stored.

Description

【発明の詳細な説明】 (al  発明の技術分野 本発r3Aは(AXB+前回の演算結果)?求める演W
:回路に係り高速に演算出来る演算回路に関する。
[Detailed description of the invention] (al Technical field of the invention Is r3A (AXB + previous calculation result)?
:Relates to circuits and relates to arithmetic circuits that can perform high-speed calculations.

(bl  従来技術上問題点 第1図は従来例のCAXB十前回の演算結果)の演算回
路のブロック図、第2図は第1図の場合の動作のタイム
チャートでt、る。
(bl Problems with the Prior Art) FIG. 1 is a block diagram of the arithmetic circuit of the conventional CAXB 10th calculation result, and FIG. 2 is a time chart of the operation in the case of FIG. 1.

図中1,2は16ビツトレジスタ、3は並列乗算回路、
4,7は加算器、5,8は32ビツトレジスタ、6は並
列乗算器、’0+’l+Fに時間紫示し、tは演算周期
時間ケ示す。
In the figure, 1 and 2 are 16-bit registers, 3 is a parallel multiplication circuit,
4 and 7 are adders, 5 and 8 are 32-bit registers, 6 is a parallel multiplier, '0+'l+F is shown in purple, and t is an operation cycle time.

今前回の演算結果The(32ビツト)とし、被乗数v
A、(x6ビツト)、乗数?B(16ビツト)とし、(
AXB+C)の演算?第1図の演算回路で行なう場合け
、A+ B?16ビツトレジスタ1.2に入力し、並列
乗算回路3にて部分積金求め各桁の加算?、加算器にて
3人力が2出力になるよう数段加算し、最終段の加算器
4に人力する場合は各桁共2出力にfj:、りて入力す
る。この各格共2出力の信号’k 7Jll算器4にて
別算し、各桁共1ビットで示す値としてAXI3の信金
32ピッ計レジスタ5に入力する。このΔ、XBの32
ビツトレジスタ5に記、憶された値全加算器7に入力す
ると共に前の演算結果全記憶している32ビツトレジス
タ8より前の演算結果C?7]11算器7に人力l−て
(Ayl拝口を求め又32ビツトレジスタ8に入力し記
憶1丁。
Let the previous calculation result The (32 bits) be the multiplicand v
A, (x6 bits), multiplier? B (16 bits) and (
AXB+C) operation? When using the arithmetic circuit shown in Figure 1, A+B? Input to 16-bit register 1.2, calculate partial product in parallel multiplier circuit 3, and add each digit? , in an adder, add several stages so that 3 manual inputs become 2 outputs, and when adding manually to the adder 4 at the final stage, each digit is input as 2 outputs fj:. These two output signals for each case are calculated separately by the 'k7Jll calculator 4, and inputted to the Shinkin Bank 32-pit counter register 5 of the AXI 3 as a value indicated by 1 bit for each digit. This Δ, 32 of XB
The value stored in the bit register 5 is input to the full adder 7, and the calculation result C before the 32-bit register 8 which stores all the previous calculation results? 7] 11 Calculate manually on calculator 7 (calculate Ayl's name), input it into 32-bit register 8, and store it in memory.

次ばA、Hの代りに次の被乗数A11乗数B、2t6ビ
ツトレジスタ1,2に入力し上記と同じく乗算w行ない
A+XF’+ffi求め32ビツトレジスタ5に記憶し
、前の演算結果(AXEl十〇)との和音加算器7にて
求め32ビツトレジスタ8に記憶する。
Next, instead of A and H, input the next multiplicand A11 multiplier B and 2t6 into bit registers 1 and 2, perform the same multiplication as above to obtain A+XF'+ffi, store it in 32-bit register 5, and store the previous operation result (AXEl ) is calculated by the chord adder 7 and stored in the 32-bit register 8.

以上のことは次々と繰返えされる。The above steps are repeated one after another.

この1つの結果が出てから次の結果力1出るまでの時間
′tl−第2図で説明する。第2図の実線で囲まれでい
る時間は各レジスタが記憶している時間7示し、各レジ
スタは演算周期時間tの間紀憶している。点線で囲まれ
ている時間は並列乗算器6の演算時間及び加算器7の演
算時間?示している。レジス1511.2に被乗数へ乗
数B力5入力しに時間t0より、並列乗算器6がA、X
Bの乗算結果會出丁迄の時間ht、−to=tでこれは
並列乗算回路3にて要する時間と加算器4にて要する時
間の和となり長く々る。
The time 'tl from when one result is obtained to when the next result force 1 is produced will be explained with reference to FIG. The time surrounded by a solid line in FIG. 2 indicates the time 7 that each register stores, and each register stores data for an operation cycle time t. Is the time surrounded by dotted lines the calculation time of parallel multiplier 6 and the calculation time of adder 7? It shows. After inputting the multiplier B to the multiplicand in register 1511.2, from time t0, the parallel multiplier 6 inputs A, X
The time ht, -to=t until the multiplication result of B is output is the sum of the time required in the parallel multiplier circuit 3 and the time required in the adder 4, which is long.

従ってこの時間t、−4o=iが演算周期時間を決定す
る。
Therefore, this time t, -4o=i determines the calculation cycle time.

算回路3に要する時間分(t、)だけ短いが演算周期時
間tは上記の条件とて決定されるので時間t。
Although it is shorter by the time (t,) required for the calculation circuit 3, the calculation cycle time t is determined based on the above conditions, so the time is t.

は侍ち時間とな勺、AXB十〇の演算が終了しこの結果
金レジスタ8に入力す、る迄の時間は2tとなり、演算
時間が長くなる欠点となる。
The waiting time is 2t until the operation of AXB10 is completed and the result is input to the money register 8, which has the disadvantage of increasing the operation time.

(C)  発明の目的 本発明の目的は上記の欠点全熱(し高速に演算出来る演
算回路の提供にある。
(C) Object of the Invention The object of the present invention is to provide an arithmetic circuit which can overcome the above-mentioned disadvantages of total heat and perform high-speed calculations.

(d)発明の構成 本発明は上記の目的全達成するために、(AxB+前回
の演算結果)7求める演算回路においてv繋Bの並列乗
算器の乗算結実用Nビットのレジスタへの各ビットの値
?得るための加算器への2出力金、別々にNビット分新
しく設けT:第1.第2のレジスタに入力し、その出力
と前回の演算結果全記憶している第3のレジスタの出力
と金新しく設けた3人力加算器に入力し加算結果?該第
3のレジスタに出力すること11−%徴とする。
(d) Structure of the Invention In order to achieve all of the above objects, the present invention has the following objectives: (AxB + previous operation result) 7 In an arithmetic circuit to obtain, the multiplication result of a V-connected B parallel multiplier is used to transfer each bit to an N-bit register. value? Two outputs to the adder to obtain N bits are newly provided T: 1st. The output is input to the second register, and the output of the third register, which stores all the results of the previous operation, is input to the newly installed three-man adder, and the result is added? It is assumed that the output to the third register is 11-%.

3− (el  発明の災す前例 以下本発明の1実施例につき図に従って説明する。3- (el Disastrous precedent for invention) An embodiment of the present invention will be described below with reference to the drawings.

第3図は本発明の実施例の演算回路のブロック図、第4
図は第3図の場合の動作のタイムチャートである。
FIG. 3 is a block diagram of an arithmetic circuit according to an embodiment of the present invention, and FIG.
The figure is a time chart of the operation in the case of FIG.

図中vX1図と同一機能のものは同一記号で示す。Components in the figure that have the same functions as those in the vX1 diagram are indicated by the same symbols.

9.10は32ビツトレジスタ、11は3人力加算器、
’O+ ’l’ ? ”′は時間、t′は演算周期時間
を示すO 令弟1図と同じく前回の演算結果?C,被乗数を人、乗
数?Bとし、(AXB+C)の演算?第求め各桁の加算
器にて3人力か2出力になるよう数段加算し、最終の各
桁(最終の桁は32)共2出力になっている出力t1別
々に32個づつ32ビツトレジスタ9.10に入力し、
其れ等の出力と、前回の演算結果全記憶している32ビ
ツトのレジスタ8よす前の演算結果C’e−3人力刀口
算器114− に入力し加算させ(AXB十〇)’に求め32ビツトレ
ジスタ8に入力し記憶さす。以後ばA、Bの代わシに被
乗数A3乗数B、2t6ビツトレジスタ1.2に入力し
上記と同じく乗算全行ない最終の各桁共2出力になって
いる出力そ、別々に32個づつ32ビットレジスタ9,
10に入力し、其れ等の出力と前回の演算結果全記憶し
ている32ビツトのレジスタ8より前の演算結果(AX
B+C)?3人力加算器11に入力し加gさせ(A、 
X B 、−+AXB−1−C)IU”132ビツトレ
ジスタ8に人力し記憶さす。
9.10 is a 32-bit register, 11 is a 3-person adder,
'O+'l'? ``'' is time, t' is the calculation cycle time O. As in Figure 1, the previous calculation result ?C, the multiplicand is person, the multiplier ?B, and the operation of (AXB + C)? Add several stages to make 3 manual outputs or 2 outputs, and input 32 outputs t1 separately into the 32-bit register 9.10, where each final digit (the final digit is 32) has 2 outputs.
These outputs are input to the 32-bit register 8 which stores all the previous calculation results, and the previous calculation result C'e-3 is input to the manual calculator 114-, and added (AXB 〇)'. The result is input into the 32-bit register 8 and stored. After that, instead of A and B, input the multiplicand A3 multiplier B to the 2t6 bit register 1.2, perform all multiplications as above, and output 2 outputs for each digit at the end, 32 bits each for 32 bits separately. register 9,
The previous calculation result (AX
B+C)? 3 Input to the human power adder 11 and add g (A,
XB, -+AXB-1-C)IU" 132-bit register 8 and stored.

以上のことは次々と繰返えされる。The above steps are repeated one after another.

この場合は@1図の力n算器4と加算器7との動作を加
算器11にて同時に並行して行なう。
In this case, the operations of the force n calculator 4 and the adder 7 shown in @1 are simultaneously performed in parallel by the adder 11.

1つの結果が出てから次の結果が出る迄の時間t−第4
図にて説明する。第4図の実線で囲まれている時間は各
レジスタが記憶している時間7示し各レジスタは演算周
期時間t1の間記憶している。
Time t from one result to the next result - 4th
This will be explained with a diagram. The time surrounded by the solid line in FIG. 4 indicates the time 7 during which each register stores data, and each register stores data during the calculation cycle time t1.

点線で囲まれている時間は並列乗算回路3の演算時間及
び加算器11の演算時間?示している。レジスタ1.2
に被乗数A乗数Bが入力−4を時間t7より並列乗算回
路3がA ’=’ Bの乗算の途中結果(第1図の刀口
箕器4に入力する迄の演算)會出丁迄の時間Jfit、
’−t0=t’でこの時間にて演算周期時間孕決定する
。この時間は第1図の場合より加算:咎4の演算時間分
短い。尚加算器11の゛演算に要する時間は第1図の7
III算器4及び7に要する時間とほぼ等しいが並列乗
算口IJ@ 3の演林時間よりは少し短い。しかし演算
周期時間t′は上記の条件にて決定されるので時間t、
′は待ち時間とな机AxB−1−Cの演算が終了し、こ
の結果?レジスタ8に入力する迄の時間は2(Iとなり
第1図の場合より第1図の加算器4の演算時間の2倍だ
け短くなる。
Is the time surrounded by dotted lines the calculation time of the parallel multiplier circuit 3 and the calculation time of the adder 11? It shows. Register 1.2
Multiplicand A multiplier B inputs -4 at time t7, and the parallel multiplier circuit 3 calculates the intermediate result of multiplication of A'='B (calculations until it is input to the knife 4 in Fig. 1). Jfit,
With '-t0=t', the calculation cycle time is determined at this time. This time is shorter than the case of FIG. 1 by the calculation time of addition: 4. The time required for the operation of the adder 11 is 7 in Fig. 1.
The time required for the III calculators 4 and 7 is almost the same, but it is slightly shorter than the computation time for the parallel multiplier IJ@3. However, since the calculation cycle time t' is determined based on the above conditions, the time t,
' is the waiting time.The calculation of machine AxB-1-C is completed and this result? The time required to input the data to the register 8 is 2(I, which is twice the calculation time of the adder 4 in FIG. 1 than in the case of FIG. 1).

以上は被乗数乗数共16ビ、トで説明しπがこれUN/
2ビットでもよい。こQ)場合は各32ビツトレジスタ
はNビットレジスタとなる。
The above is explained in terms of multiplicand and multiplier of 16 bits, and π is this UN/
It may be 2 bits. In this case, each 32-bit register becomes an N-bit register.

げ)発明の効果 以上詳細に説明せる如く不発明によれば、2つの加11
.wxつの加算器にて同時に並行して行うので高速に演
算出来る効果がある。
g) Effect of invention As explained in detail above, according to non-invention, there are two effects
.. Since the calculations are performed simultaneously in parallel using wx adders, there is an effect that the calculation can be performed at high speed.

【図面の簡単な説明】[Brief explanation of drawings]

7− 第1図は従来例の(人×B+前回の演算結果)の演算回
路のブロック図、第2図は第1図の場合の動作のタイム
千ヤード、第3図は本発明の実施例の(AXB十前回の
演算結果)の演算回路のブロック図、第4図は第3図の
場合の動作タイムチャートである。 図中1.2は16ピツトレジスタ、3は並列乗算回路、
4,7.11は加算器、5,8,9.10は32ビツト
レジスタ、6は並列乗算器?示す。 r−−−−T 藁 2 図 43 図 第 4 図
7- Fig. 1 is a block diagram of a conventional arithmetic circuit (person x B + previous calculation result), Fig. 2 is the operation time of 1,000 yards in the case of Fig. 1, and Fig. 3 is an embodiment of the present invention. FIG. 4 is a block diagram of the arithmetic circuit (results of the tenth AXB operation) and an operation time chart in the case of FIG. 3. In the figure, 1.2 is a 16 pit register, 3 is a parallel multiplier circuit,
4, 7.11 are adders, 5, 8, 9.10 are 32-bit registers, and 6 is a parallel multiplier? show. r---T Straw 2 Figure 43 Figure 4

Claims (1)

【特許請求の範囲】[Claims] (、A、 X B+前回の演算結果)を求める演算回路
に8いて、A、XHの並列乗算器の乗算結実用Nビット
のレジスタへの各ビットの信金得るための加算器への2
出力を、別々にNビット分新しく設けた第1.第2のレ
ジスタに入力し、その出力と、前回の演算結果?記憶し
ている第3のレジスタの出力と?新しく設はプこ3人力
加算器に入力し加算結果全該第3のレジスタに出力する
こと2I¥1依とする演算回路。
(, A, X B + previous operation result), the multiplication result of A,
The first output is newly provided with N bits separately. Input to the second register, its output, and the result of the previous operation? What is the memorized output of the third register? The newly installed arithmetic circuit requires 2I\1 to input the input to the 3-way adder and output all the addition results to the third register.
JP57148945A 1982-08-27 1982-08-27 Arithmetic circuit Granted JPS5938849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57148945A JPS5938849A (en) 1982-08-27 1982-08-27 Arithmetic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57148945A JPS5938849A (en) 1982-08-27 1982-08-27 Arithmetic circuit

Publications (2)

Publication Number Publication Date
JPS5938849A true JPS5938849A (en) 1984-03-02
JPS6259828B2 JPS6259828B2 (en) 1987-12-12

Family

ID=15464166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57148945A Granted JPS5938849A (en) 1982-08-27 1982-08-27 Arithmetic circuit

Country Status (1)

Country Link
JP (1) JPS5938849A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60254373A (en) * 1984-05-31 1985-12-16 Nippon Precision Saakitsutsu Kk Arithmetic unit for sum of product
JPS62151976A (en) * 1985-12-25 1987-07-06 Nec Corp Sum of products arithmetic circuit
US5289399A (en) * 1991-12-06 1994-02-22 Sharp Kabushiki Kaisha Multiplier for processing multi-valued data
JPH06110659A (en) * 1992-06-30 1994-04-22 Nec Corp Microcomputer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622018A (en) * 1979-07-30 1981-03-02 Tokyo Shibaura Electric Co Vacuum breaker

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622018A (en) * 1979-07-30 1981-03-02 Tokyo Shibaura Electric Co Vacuum breaker

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60254373A (en) * 1984-05-31 1985-12-16 Nippon Precision Saakitsutsu Kk Arithmetic unit for sum of product
JPS62151976A (en) * 1985-12-25 1987-07-06 Nec Corp Sum of products arithmetic circuit
US5289399A (en) * 1991-12-06 1994-02-22 Sharp Kabushiki Kaisha Multiplier for processing multi-valued data
JPH06110659A (en) * 1992-06-30 1994-04-22 Nec Corp Microcomputer

Also Published As

Publication number Publication date
JPS6259828B2 (en) 1987-12-12

Similar Documents

Publication Publication Date Title
JP3244506B2 (en) Small multiplier
JP2002108606A (en) Sticky bit generating circuit and multiplier
JPS6347874A (en) Arithmetic unit
JPH0612229A (en) Multiplication and accumulation circuit
JPH0368416B2 (en)
JP2676410B2 (en) Circuit and method for predicting stat-bit value
JP3345894B2 (en) Floating point multiplier
JPH0477932B2 (en)
JPS60140422A (en) Arithmetic processing unit
JPH04205026A (en) Divider circuit
JP2597775B2 (en) Division method and division device
JPS5938849A (en) Arithmetic circuit
JPH10111791A (en) Division device
US5377134A (en) Leading constant eliminator for extended precision in pipelined division
US4041296A (en) High-speed digital multiply-by-device
JPH0578049B2 (en)
JP2685645B2 (en) Pipeline processing equipment
JP2972326B2 (en) Square root calculator
JP3517162B2 (en) Division and square root arithmetic unit
JPS63254525A (en) Dividing device
JPS59116852A (en) High-speed divider
JP3201097B2 (en) Multiplication prescription method in multiplier
JP3137131B2 (en) Floating point multiplier and multiplication method
JPH06301710A (en) Method and device for double precision product-sum operation
JPS63159930A (en) Multiplier