JPS5934668A - Manufacture of thin solar battery - Google Patents

Manufacture of thin solar battery

Info

Publication number
JPS5934668A
JPS5934668A JP57143998A JP14399882A JPS5934668A JP S5934668 A JPS5934668 A JP S5934668A JP 57143998 A JP57143998 A JP 57143998A JP 14399882 A JP14399882 A JP 14399882A JP S5934668 A JPS5934668 A JP S5934668A
Authority
JP
Japan
Prior art keywords
reaction
layer
chamber
chambers
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57143998A
Other languages
Japanese (ja)
Inventor
Hiroshi Okaniwa
宏 岡庭
Toshio Motoki
元木 敏雄
Akio Kusuhara
楠原 章男
Hideo Takagi
高木 秀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57143998A priority Critical patent/JPS5934668A/en
Publication of JPS5934668A publication Critical patent/JPS5934668A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/206Particular processes or apparatus for continuous treatment of the devices, e.g. roll-to roll processes, multi-chamber deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To enable to manufacture solar batteries with good efficiency at a low cost and in industrial manner by forming a Si thin film on a flexible film which runs continuously by a method wherein reaction chambers to form each Si layer are independently provided respectively, and buffer chambers for different reaction are provided between each of the reaction chambers. CONSTITUTION:The flexible substrate film 11 is successively fed out to the reaction chambers 15a, 15b and 15c to form an N-layer, an I-layer, and a P-layer by plasma reaction, and then wound up to a bobbin as a flexible thin film 16 whereon each Si layer is deposited. The buffer chambers 27a, 27b, 27c and 27d are placed between each of the reaction chambers, and the former chambers can be independently controlled in pressure respectively by exhaust systems 28a, 28b, 28c and 28d. Thereby, the flexible thin film 16 does not receive the contamination due to unnecessary gas at each reaction process, accordingly a flexible thin film having the same characteristic as the flexible thin film obtained in individually independent reaction chambers can be obtained.

Description

【発明の詳細な説明】 本発明は薄膜太陽電池の製造方法1・〔関し、更に詳シ
、り(まシリコン薄膜をクロー放′出、プラズマ分解法
で可撓性フィルム上に連仕的に堆積させる方法の改良に
係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method 1 for manufacturing a thin film solar cell, and provides further details for manufacturing a thin film solar cell (1). This invention relates to improvements in the method of depositing.

非晶質或いは微結晶シリコン太陽電池は、単結晶型シリ
コン太陽電池に比し安価に作成し得るため近年特に注目
されている。一般的には基板としてステンレス鋼、ガラ
ス等の安価な材料が用いられ、これらの基板の上にホウ
素をドープしたpm非晶質シリコンMi (p jm 
) 、純非晶質シリコン1?lJ (i n )及びリ
ンをドープしたn型非晶質シリコン層(n層)を順次あ
るいはこの逆に、積層したpin構造あるいはn + 
p 構造がとられることが多い。基板が可撓性フィルム
となった場合でも本質的な構造は変らず、代表的な太陽
電池の構造を第1図に模式的に示す。
Amorphous or microcrystalline silicon solar cells have attracted particular attention in recent years because they can be produced at lower cost than single-crystalline silicon solar cells. In general, inexpensive materials such as stainless steel and glass are used as substrates, and boron-doped pm amorphous silicon Mi (p jm
), pure amorphous silicon 1? A pin structure or an n +
p structure is often adopted. Even when the substrate is a flexible film, the essential structure remains unchanged, and the structure of a typical solar cell is schematically shown in FIG.

第1(2)のイ14造41 において、可撓性フィルム
1にステンレス鋼をスパッタさせて形成された下部電極
層2の上に順次プラズマ反応で形成されたn −、i 
−、p−シリコン層3,4.5が積層され、透明電極膜
6から電力を取り出すためのアルミニウムあるい(よパ
ラジウムで構成される収集電極7が形成される。が〜る
Jj4成をとる太陽田、池の製造上留意すべき点は、n
 11<j l  P層のドーピング量が確実に制御さ
れかつ11ノ費、1層。
In the first (2) A14 structure 41, n − , i
-, p-silicon layers 3, 4.5 are laminated, and a collector electrode 7 made of aluminum or palladium for extracting power from the transparent electrode film 6 is formed. Points to keep in mind when manufacturing sun fields and ponds are:
11<j l The doping amount of the P layer is reliably controlled and the cost of 11 is 1 layer.

p層の各層作成時に不要カスの浸入あるいは不要ガスに
よる汚染を防止することである、ステンレス鋼、ガラス
等の硬質材を基板として用いる場合は一般的に基板寸法
が小さいため基板の移動には別途の搬送手段に取りつげ
た状態で行なわれ、搬送手段による基板の移動も間歇的
となる場合が多い。か〜る場合はn1ζコ、i層、p層
の反応室を分離独立させるル)るいは特開昭56−11
4387号公報に示される様にn /f’l+1層、p
層の反応室にシャッター等の手段を設け、該シャッター
の開閉により各反応室を確実に分間できて、各層形成時
の不要ガスのυ人あるいは汚染が防止できる。
This is to prevent the infiltration of unnecessary debris or contamination by unnecessary gas when creating each layer of the p-layer.When using a hard material such as stainless steel or glass as a substrate, the substrate size is generally small, so a separate process is required to move the substrate. The substrate is often moved intermittently by the transport means. In this case, the n1ζ, i-layer, and p-layer reaction chambers may be separated and independent, or JP-A-56-11
As shown in Japanese Patent No. 4387, n/f'l+1 layer, p
A means such as a shutter is provided in the reaction chamber of each layer, and each reaction chamber can be reliably separated by opening and closing the shutter, thereby preventing unnecessary gases or contamination during the formation of each layer.

然しなから可続性フィルムを基板として用いる場合、工
業的生産のためには可続性フィルムは長尺の連続的な状
態で供されるのが巧常であり、可撓性フィルム自体が搬
送・」・段となる。かかる場合、0層、i層、p層を形
成する反応室を夫々独立して設iI’J−してプラズマ
反応を実施するにしてもEJ撓性フィルムが走行するに
必要な最低限の開口部が各反応室には必要となり、これ
らの開口部を皿じて可続性フィルムは各反応基金てに亘
って連続的に走行し、上記開口部の寸法を極力狭めても
各反応室間のガスの移動は防ぎえず、このため各反応室
内のガス成分に変化が生じ、太1id)電池の特性劣化
をもたらす。特に反応室同番て圧力差がある場合特性劣
化が顕著になる。
However, when using a flexible film as a substrate, it is convenient to provide the flexible film in a long continuous state for industrial production, and the flexible film itself is difficult to transport.・”・Dan. In such a case, even if the reaction chambers for forming the 0 layer, i layer, and p layer are installed independently to carry out the plasma reaction, the minimum opening required for the EJ flexible film to run is is required for each reaction chamber, and the fusible film runs continuously across each reaction chamber through these openings, so that even if the dimensions of the openings are made as narrow as possible, the The movement of gas cannot be prevented, and this causes changes in the gas components within each reaction chamber, resulting in deterioration of battery characteristics. In particular, when there is a pressure difference between reaction chambers of the same size, the deterioration of characteristics becomes remarkable.

本発明はか〜る欠点を解消すべく鋭意検討の結果なされ
たもので、 上述の各シリコン層を形成する反応室を夫々成するガλ
を連続的に供給しながら、緩衝室を経由して各反応室を
連続的に走行する可撓付フィルムの上にシリコン薄1i
ωを形成することを特徴とするもので、その目的とする
所は特性の優れた太1ソ!電池な動量よく安価K 、]
f 梁的に製造する方法を提供することにある。
The present invention has been made as a result of intensive studies to eliminate these drawbacks, and the present invention has been made as a result of intensive studies to solve the above-mentioned drawbacks.
While continuously supplying a silicone film, a silicon thin layer of 1i
It is characterized by forming an ω, and its purpose is to form a taichō with excellent characteristics! Batteries have good performance and are inexpensive.]
f. To provide a method for manufacturing beam-like.

以下本発す」を図面を参照しlKから、更に詳しく説明
するが、図面は本発明の一実施態様を示すにすぎず、本
発明を制限す2)ものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A more detailed explanation will be given below with reference to the drawings, but the drawings merely show one embodiment of the invention and do not limit the invention.

尚、第2図、第3図に示す反応(・ハの前後に更に下部
Ml、極層極層用成用応室(例えばスパッター室)や、
透明電極Riや収集電極形成用の反応室を加えて全てを
一貫製造することもできる。
In addition, before and after the reaction shown in FIGS. 2 and 3, there is a lower Ml, an application chamber for forming an electrode layer (for example, a sputtering chamber),
It is also possible to manufacture everything in an integrated manner by adding a reaction chamber for forming the transparent electrode Ri and the collecting electrode.

第2図は本発明実施例としてのI’J M装置iRを示
し、可セ:1性フィルムを基板として用いた連続的に太
r#電池を1!!造する概ツ2を示すものである。
FIG. 2 shows an I'JM device iR as an embodiment of the present invention, in which 1! ! This shows the second outline of the construction.

可撓性フ・fルノ、十に下部型j、′AIi′″Iを形
成させたiJ撓付性基板フィルム11ポビン12に巻き
とられた状態で巻出し室13に設j;i、され巻出しロ
ール14を介して巻き出され、l1hjθこ反応室15
a。
A flexible substrate film 11 with a lower mold `AIi''I formed thereon is placed in the unwinding chamber 13 in a state of being wound up on the roll 12. It is unwound through the unwinding roll 14, and the reaction chamber 15
a.

15b、15clC送り出され、1′rシリコン八・j
のfil績した可撓性薄膜16として、利取りロール1
7を介して巻取り室18内でポビン19に巻きとられる
。可佛性薄膜16は巻取り室18より取り出され、第1
図に示される透明導電膜6及び収集1に極7を被着させ
て太陽電池の素材として供される。
15b, 15clC sent out, 1′r silicon 8・j
As the flexible thin film 16, the profit-taking roll 1 is
7 and is wound around a pobbin 19 in a winding chamber 18. The flexible thin film 16 is taken out from the winding chamber 18 and
A transparent conductive film 6 and a collector 1 shown in the figure are coated with a pole 7 and used as a material for a solar cell.

nrfi、i層、p層をプラズマ反応で形成させるため
の反応室、即ち第1反応室15a、第2反応室15b及
び第3反応室15eが順回設置され、各反応115a、
15b、15eKは夫々排気糸20 a、  20 b
、  20 c及びガスd7人手段21 a、  2 
l b、  21 cが接続されている。
Reaction chambers for forming the nrfi, i-layer, and p-layer by plasma reactions, that is, a first reaction chamber 15a, a second reaction chamber 15b, and a third reaction chamber 15e, are installed in order, and each reaction 115a,
15b and 15eK are exhaust threads 20a and 20b, respectively.
, 20 c and gas d7 person means 21 a, 2
lb and 21c are connected.

又各反応室15 a、  15 b、  15 c内に
は夫々一対の’4極22a:23a、22b:23b。
Also, in each of the reaction chambers 15a, 15b, 15c, there are a pair of quadrupolar poles 22a:23a, 22b:23b, respectively.

22c:23cが組みこまれ、外部に111かれた高周
波電源24a、24b、24cに接続している。又巻出
し113及び巻取り室181Cは夫夫排気系25.26
が接続されている。巻出し室13と第1反応室15aと
の間、第1反応室15aと第2反応室15bとの間、第
2反応室15bと第3反応室15cとの間及びEJ3反
応室15cと巻取り室18との間には夫々緩衝室27 
a、  27 b、  27 c及び27dが設置され
、各緩衝fi27a、27h、27c、27dlCは夫
々排気系2 RA 、  281) 、  2 )+ 
(! 、  28 dが伝統され夫々独立に各れE (
::ll室内の圧力が制御できイ)よう配慮されている
、。
22c and 23c are incorporated and connected to high frequency power sources 24a, 24b, and 24c installed externally. Also, the unwinding 113 and the winding chamber 181C are connected to the exhaust system 25.26.
is connected. Between the unwinding chamber 13 and the first reaction chamber 15a, between the first reaction chamber 15a and the second reaction chamber 15b, between the second reaction chamber 15b and the third reaction chamber 15c, and between the EJ3 reaction chamber 15c and the winding. Buffer chambers 27 are provided between the intake chambers 18 and 18, respectively.
a, 27b, 27c and 27d are installed, and each buffer fi27a, 27h, 27c, 27dlC is an exhaust system 2RA, 281), 2)+, respectively.
(!, 28 d is traditional, and each independently E (
::ll Care has been taken to ensure that the pressure inside the room can be controlled.

か匁る構成をとる製造装置jにより各シリコン層形成方
法を更に詳しく説明する。
The method for forming each silicon layer will be explained in more detail using the manufacturing apparatus j that has a structure that is similar to that shown in FIG.

巻出し室13にはIJト気系25が、緩衝室278には
排気系28aが夫々接A11i:されでいる。巻出し¥
13での発生力′スは密封部からの漏洩ガス。
An IJ air system 25 is connected to the unwinding chamber 13, and an exhaust system 28a is connected to the buffer chamber 278. Unrolling¥
The force generated at 13 is due to gas leaking from the sealed part.

回持性基材11内の溶解ガス及び可椋性基月11表I+
11への吸着ガスが主たるもので、器壁への吸着ガスは
ボビン12を巻出し室13へ設置縁した後の初期状態の
み発生がみもれるので、排気系25の排気容量は定常的
な党生カスJ、(を勘果して決定される。排気系25は
可に6性基旧11に帰因する発生ガス導Ihが綴仙j3
d27aを通じて第1反応室15aに入り、n Jis
形成のためのプラズマ反応に悪影脅しない限り必破では
ないが、熊常上述の発生ガス種には孕気成分、水蒸気成
分が含まれ、このためには1)[基糸25を設けること
が望ましい。又緩衝室27aの排気系28aはイi出し
室13で異常放出ガスがあった場合排気糸25のJJF
気昂−不足による巻出し冨13の圧力十ケ1の影響を第
1反応室15aに及ぼさないためとボビン12を巻出し
室13へ設f&/ した伎の初期状態の排気時間を短縮
するため匠有効である。
Dissolved gas in retentive base material 11 and flexibility base material 11 Table I+
11 is the main gas, and the gas adsorbed to the vessel wall is generated only in the initial state after the bobbin 12 is installed in the unwinding chamber 13. Therefore, the exhaust capacity of the exhaust system 25 is constant. The exhaust system 25 is determined by taking into account the following:
Enters the first reaction chamber 15a through d27a, and enters the first reaction chamber 15a through n Jis
Although it is not inevitable as long as it does not threaten the plasma reaction for formation, the above-mentioned generated gas species include a pregnant air component and a water vapor component. is desirable. Also, the exhaust system 28a of the buffer chamber 27a
In order not to affect the first reaction chamber 15a due to the pressure of the unwinding depth 13 due to insufficient air pressure, and to shorten the evacuation time in the initial state when the bobbin 12 is installed in the unwinding chamber 13. Takumi is effective.

第1反応室15aには連続的にガス導入手段21aより
精籍に成分制御されたフォスフインを含むシランガス(
時には水素ガスあるいはアルゴンガスで希釈されて用い
られる場合もある)が尋人され、高周波電源20aが印
加された直&22a、23a間でプラズマ分解をうけ、
ある所定温度に制御された電極22aと接触する可撓性
−Jb 4:t 1tが温められているため、分解され
たガスが優先的に可撓性基拐11上に堆租する。Qf、
 1反応% 15 aは排気系20aによりプラズマ分
解に最適な圧力に制御され、一方緩衝室27aの圧力も
排気系28aにより第1反応室15aの圧力と同様I(
1′σ月にカVこ111す岬され、初伝系28aは緩(
4室27aのXi’、T列部、1、す’ 1Mt洩カス
、巻出し室13よりυ人−(るカス及びi(’、 1反
応室15aよりυ人するカスを吸引1−1巻出し室13
と第1反応室15aとイーガス移動の点で隔離役目を果
している。
The first reaction chamber 15a is continuously supplied with a silane gas containing phosphine whose composition is precisely controlled by the gas introducing means 21a (
(Sometimes it is used after being diluted with hydrogen gas or argon gas) is subjected to plasma decomposition between direct & 22a and 23a to which a high frequency power supply 20a is applied.
Since the flexible substrate -Jb 4:t it which is in contact with the electrode 22a controlled to a certain predetermined temperature is heated, the decomposed gas is preferentially deposited on the flexible substrate 11. Qf,
I(
KaVko111 was caped in the 1'σ month, and the first transmission line 28a was loosely (
Xi' of the 4th chamber 27a, T row part, 1, Su' 1 Mt of leaking waste, υ person-(rubbing from the unwinding chamber 13, and υ person's waste from the 1 reaction chamber 15a, suction 1-1 volume) Outlet room 13
It plays a role of isolation from the first reaction chamber 15a in terms of egas movement.

更に弔1反応室]5aと話2反応?イ≦151)との間
には緩衝室27))が設置〆1゛2−れ、該緩衝M27
bには排気系28bがj〈伏されている。該IJト気系
281)により緩征1室27bの圧力は第1反応室】5
a、第2反応室151)の圧力のい4れか低い方の圧力
にはg等しくある(・はわずかに低く制御され、このた
め可I、1つ性基4−411が第1反応室15aより第
2反応室+5bへ走行しても第1反応室15a内のカス
はLR2反応室+5bへオニ6動ぜず、第1反応室15
aと第2反応’zd 15 bはあたかも独立した反応
室としCの挙動を示す。緩衝室27bの圧力そのものは
上述の如く設定されるが、実用的にはER1反応室15
aと緩衝室27bとの開口部29及び緩衝室27bとt
A2反応室15bとの開口部3oの大ぎさは装置製作時
にはg決定され必すしも反応実施時の最逸の寸法に設定
されているとは言えず反応栄件変化にも対応し難いので
、11ω々の装置を何ら変更せず又装f4そのものに高
41′1度加工を要求しないよう配慮して装置i製作費
を安価とするため第4図に示されるスリット40を設置
するのが好適で、該スリット40を用いると可撓性基材
11の走行部に精密にスリット部の間隙41を合致さし
える利点があるととも罠。
Furthermore, Condolence 1 reaction room] 5a and story 2 reaction? A buffer chamber 27)) is installed between A≦151), and the buffer M27
The exhaust system 28b is shown upside down in b. Due to the IJ air system 281), the pressure in the first chamber 27b is reduced to the first reaction chamber 5
a, the lower of the pressures in the second reaction chamber 151) is equal to g (・ is controlled slightly lower, so that it is possible to Even if it travels from the first reaction chamber 15a to the second reaction chamber +5b, the waste in the first reaction chamber 15a does not move to the LR2 reaction chamber +5b, and the first reaction chamber 15
a and the second reaction 'zd 15 b exhibit the behavior of C as if they were independent reaction chambers. The pressure itself in the buffer chamber 27b is set as described above, but in practice, the pressure in the ER1 reaction chamber 15
The opening 29 between a and the buffer chamber 27b and the buffer chamber 27b and t
The size of the opening 3o with respect to the A2 reaction chamber 15b is determined at the time of device manufacture, but it cannot be said that it is set to the optimum size for carrying out the reaction, and it is difficult to respond to changes in reaction conditions. It is preferable to install the slit 40 shown in FIG. 4 in order to reduce the manufacturing cost of the device i without making any changes to the devices of 11ω and without requiring high 41'1 degree machining to the device f4 itself. The use of the slit 40 has the advantage of allowing the gap 41 of the slit portion to precisely match the running portion of the flexible base material 11.

第1反応室15aと第2反応室15bとの圧力差が大き
い場合の緩衝室27aの圧力制御がやさしくなる利点も
有する。
Another advantage is that the pressure in the buffer chamber 27a can be easily controlled when the pressure difference between the first reaction chamber 15a and the second reaction chamber 15b is large.

nIピ・iが堆Ah L−た可撓性基材11は緩衝室2
7bを経て、3j(2反応室15bに入り、ガス導入手
段21bより導入されたシランガス(水素ガス。
The flexible base material 11 is the buffer chamber 2.
7b, silane gas (hydrogen gas) enters 3j (2 reaction chambers 15b, and is introduced from the gas introduction means 21b).

アルゴンガス等で布釈されて用いられる場合もある)が
第1反応室15a内と同様にプラズマ分解を受けて1層
としてn)曽の上に堆積される。
(sometimes used after being sparged with argon gas or the like) is subjected to plasma decomposition in the same manner as in the first reaction chamber 15a and is deposited as a single layer on the n) so.

緩衝室27cも緩衝室27 bと同4,1zの作用効果
をもたりし、第2反応室15bはあたかも独立した反応
室としての・す動を示″J、、il+逓)△堆積せしめ
られた一丁撓喧牛錆材ttl’!先菫1東Jぎ27cを
経て、紀3反応室15’cでジボラ/を含む7ランガス
(水素カス、フルゴノガスでイ1)釈されて用いられる
場合もある)がグラスマ分解な覚り−て9層として可撓
性基材11にj’iii (¥(し可ト、3性れす膜1
6となり巻取り室1s 「>3のボビン19」二に巻き
とられてゆく。緩衝室27cはf、!1倫室27翫)と
、緩衝%27dは緩(4i ’t(i 27 aと、n
J’ (;2性基月11あるいは可撓性薄膜16の走1
f力向が異なるのみで、全く口1じ作用効11己を示す
The buffer chamber 27c also has the same effect as the buffer chamber 27b, and the second reaction chamber 15b behaves as if it were an independent reaction chamber. It is sometimes used after passing through the first Sumire 1 East J Gi 27c and converting it into a 7 run gas (hydrogen scum, fulgono gas) containing dibora/ in the Ki 3 reaction chamber 15'c. ) is a glasma decomposition, and the flexible base material 11 is coated with 9 layers.
6 and winding is carried out in the winding chamber 1s ">3 bobbin 19" 2. The buffer chamber 27c is f,! 1 run room 27 wire) and buffer% 27d are loose (4i 't (i 27 a and n
J'
They exhibit exactly the same action and effect, with only the difference in force direction.

n)檗4.iJ:パ、p層は第1図にンJくされイ・よ
うに夫々堆;hv厚さが異なり、可撓性基材11の走行
速度が同一であるので、このためには高周波電源の出力
、電極の犬ぎさ、導入ガス祉、 ′1(i極22 a、
  22 b、  22 cの温圧、火には各反応室の
圧力なKj(節して実施する。
n) Hinoki 4. iJ: Pa and p layers are shown in FIG. Output, electrode length, introduced gas flow, '1 (i-pole 22 a,
The temperature and pressure of 22 b and 22 c, and the pressure of each reaction chamber Kj (kj) are carried out separately.

以上の如く製造された可撓性74膜1Gは各反応1程゛
じ不安カスによるンち染を受けることなく形成されるた
め、連続的に可撓性基U11を走行させ、かつ〕丑統計
Jすなプラズマ分)・Jfを見j」iけ上連辿している
反応室で実施しているにもか〜わら丁、あたかも個々に
独立した反応室で得られる可撓性薄膜と同等の特性を有
するT3]撓性薄膜が得られる。
The flexible 74 film 1G produced as described above is formed without being stained by the same uneasy residue for about 1 hour in each reaction, so the flexible group U11 is allowed to run continuously, and Even though it is carried out in continuous reaction chambers, it is as if the flexible thin film obtained in each individual reaction chamber is equivalent to that of a flexible thin film obtained in an individual reaction chamber. A flexible thin film having the following characteristics is obtained.

第1図は可撓性晶相11の表面をはg水平に保ち水平方
向九走行させ、各層の堆積方向を一ト向きとして、各反
応室内部に44着する汚染物による汚宋を防止する構成
とされているが、可撓性基材110表面な画直に保ち水
平方向に走行させるあるいは垂直方向に走行させる構成
としてもよいことは勿論である。
In Figure 1, the surface of the flexible crystalline phase 11 is kept horizontal and moved in the horizontal direction, and the deposition direction of each layer is oriented in the same direction to prevent contamination caused by contaminants deposited inside each reaction chamber. However, it goes without saying that the surface of the flexible base material 110 may be kept straight and run horizontally or vertically.

)42図ははg平面状のjlj、1422 a、  2
2 b。
) 42 figure is g planar jlj, 1422 a, 2
2 b.

22c上を可撓性晶相11が上りながら走行している実
施例を示ずが、t+G 3図に示すように回転する円筒
状’1iQ31a、31b、31 c上に可続性晶相1
1を密着させ、相対する円弧型電極32 a、  32
 b、  32 cとの間でプラスマ分解を一、ら生さ
せて67917層を形成′」Qことも可能でjりり、こ
の場合でも谷緩衝室の作用効果は第2tAに示されるも
のと(’J ’) 2す0.rい。以上はpintl#
li造で90示したがnip構造でも本質的に何ら変ら
ない。
Although an example in which the flexible crystal phase 11 is running upwards on the 22c is not shown, the flexible crystal phase 1 is placed on the rotating cylindrical '1iQ31a, 31b, and 31c as shown in t+G3.
1 are brought into close contact with each other, and opposing arc-shaped electrodes 32 a, 32
It is also possible to generate a 67917 layer by causing plasma decomposition between b and 32 c, and in this case, the effect of the valley buffer chamber is as shown in the second tA. J') 2s0. R. The above is pintl#
90 was shown for the Li structure, but there is essentially no difference in the NIP structure.

第4図に示される平板のスリット4Uの作用効果は上述
の如きものであるか、同様の作用効果をもたらすスリッ
ト形QQ IA−、は第5図に示される如ぎりスリット
42もあり、各反応室間σ)あるいは巻出し室、咎取り
室との間の圧力差が大きい」場合に好適であり、絵心1
室内への2々動ノノス二I□1を誠少せしめてよりねn
(な反応オ内のカス成分の制御を実施したい場合1.’
ii 6図の」、5にスリン1.43を複数個以上設け
てもよ1.・。第7図(よ可撓性基羽11の中間位1.
1jでの412持を考慮したロール状スリット44a、
44b’?;採用しtこ例で可撓性i1.!i 月11
のNL ’+iiiに1゛1−ル44a。
The effect of the flat plate slit 4U shown in FIG. Suitable for cases where there is a large pressure difference between the chambers (σ) or between the unwinding chamber and the pick-up chamber, and the picture center 1
Please let Makoto refrain from entering the room.
(If you want to control the waste components in the reaction 1.'
ii Multiple sulins 1.43 may be provided in ``6'' and 5 in Figure 1.・. FIG. 7 (Middle position 1 of the highly flexible base feather 11.
Rolled slit 44a considering 412 retention in 1j,
44b'? ; Adopted in this example is flexibility i1. ! i month 11
NL'+iii of 1゛1-rule 44a.

45aを接ガI;させ可抗性基オ)Jllの空間位1イ
を’+till ?1tll L、ソレニ、幻向するq
  /L 44 b 11I、Zr〜l−J平板状部旧
45bを極力可読性基材11へ近りげM H窓内の圧力
制御を容易にする手段の例であ乞。
45a and the resistive group O) Jll's space position 1 is '+till? 1tll L, soreni, q
/L 44 b 11I, Zr~l-J This is an example of a means for bringing the old plate-shaped portion 45b as close to the readable base material 11 as possible to facilitate pressure control within the MH window.

かくして本発明によれば、特性の優ねた太陽電池を効率
よく安価K T EM的に製造し7え、その効果は可(
へ、!性フィルノ、を基板とすることと相俟ってその寄
与するjvr犬である。尚、本発明の更なる好適な態様
として、 (1)  各反応室の両端に緩衝室が設けられ、反応室
間(C位!4t Lない緩衝室にも反応室の排気系とは
独立の排気系を設けて作動せしめることを特徴とする本
発明方法。
Thus, according to the present invention, a solar cell with excellent characteristics can be manufactured efficiently and inexpensively using KTEM7, and its effects are reasonable (
fart,! It is a JVR dog that contributes in conjunction with the fact that it is based on sex. Further, as a further preferred embodiment of the present invention, (1) Buffer chambers are provided at both ends of each reaction chamber, and the buffer chamber between the reaction chambers (C position! 4tL) is provided with a A method of the present invention, characterized in that an exhaust system is provided and activated.

(11)  各反応室が緩イ毎室近傍に排気口を有する
ことを’:V 6にとする本発明方法。
(11) A method of the present invention in which each reaction chamber has an exhaust port near each chamber.

(+111  各緩衝室に少くとも1個のスリット部材
を設はしたことを特徴とする本発明方法 な植げることができる。
(+111) The method of the present invention is characterized in that each buffer chamber is provided with at least one slit member.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は代表的なシリコン薄膜太陽電池の断n1図、第
2図は平面状電極を有する製造装置の実施例、第3図は
円筒状電極を有する製造装置の実施例、第4〜第716
1は不完す11のスリットの例を示す図である。 第1図中、lは司り、艷)≦17・イルム、2は下部1
1シ極層、3,4.5はシリコン層、6(よ透明電4ヅ
、7 a、、7 b、  7 cは収集型4Φケ示ず、
。 第2図中、]lは?3]俳性、)、lj板フィルム、1
2はボビン、13は巻出し室、14は巻き出しロール、
l 5 a、  15 b、  15 cは反応室、1
6け司扛1性薄膜、17は・ムーきルリロール、】8は
巻き取り室、19はボビン、7.Oa、20b。 20cけ排気系、21a、21b、2]、cはカス導入
手段、22a、23a、22b、  2ab。 22c、23cは電極、24 a、  24’ b、 
24c。 は高周波11′1源、25.2fiは排気系、27a。 27 b、  27 c、  27 dはv:物堅、2
8a。 281)、28c、28dは排気;4,29.30は開
口部を示す。 第3図中、31 a、  3 l b、  31 cは
円筒状電極、32 a、  32 b、  32 cは
円弧4’l Tb 4mを示す。 第4図中、40はスリット、41は開口部を示す。 y< 5図中、42はスリットを示す。 IT 6 e!41中、43a、43bはスリットを示
す。 第7図中、44a、44b及び45 a、 45bは−
−ル状スリットを示す。 特t’r出願人 工業技術院長 石   坂   誠   −
Fig. 1 is a cross-sectional view of a typical silicon thin film solar cell, Fig. 2 is an example of a manufacturing apparatus having planar electrodes, Fig. 3 is an example of a manufacturing apparatus having cylindrical electrodes, and 716
1 is a diagram showing an example of 11 incomplete slits. In Figure 1, l is for control, 艷)≦17・ilm, 2 is for lower part 1
1 is a polar layer, 3 and 4.5 are silicon layers, 6 (transparent electrode 4ヅ, 7 a, 7 b, 7 c are collection type 4Φ, not shown)
. In Figure 2, ]l? 3] Actress, ), lj board film, 1
2 is a bobbin, 13 is an unwinding chamber, 14 is an unwinding roll,
l 5 a, 15 b, 15 c are reaction chambers, 1
6. A thin film, 17 is a roll roll, 8 is a winding chamber, 19 is a bobbin, 7. Oa, 20b. 20c exhaust system, 21a, 21b, 2], c is waste introduction means, 22a, 23a, 22b, 2ab. 22c, 23c are electrodes, 24a, 24'b,
24c. is the high frequency 11'1 source, 25.2fi is the exhaust system, and 27a. 27 b, 27 c, 27 d are v: solidity, 2
8a. 281), 28c, and 28d are exhaust; 4, 29, and 30 are openings. In FIG. 3, 31a, 3lb, and 31c are cylindrical electrodes, and 32a, 32b, and 32c are circular arcs 4'lTb 4m. In FIG. 4, 40 indicates a slit and 41 indicates an opening. y<5 In the figure, 42 indicates a slit. IT 6 e! In 41, 43a and 43b indicate slits. In Fig. 7, 44a, 44b and 45a, 45b are -
- Shows a loop-shaped slit. Special t'r applicant Makoto Saka, Nagaseki, Agency of Industrial Science and Technology -

Claims (1)

【特許請求の範囲】[Claims] 彷数の異伝導型シリコンノ脅で構成されるN膜をグロー
放電プラズマ分解法で可(、/!性フィルム上1(堆積
させて薄膜太陽′電池を連続的に製造するに際し、上記
各シリコン層を夫々独立して形成せしめうるa数の反応
室及び当該反応室間にあり当該反応室の排気系とは独立
した排気系を治する緩衝室によって一体的且つ連q的に
(1′η成された反応′41’l中に上記可a ’+i
Kフィルノ、を連A?i’e的に走行せしめ、当該2ξ
(1お室の411気系な作動させつつ各反応室において
J4伝導型シリコン層を形成せしめることを特徴どする
far膜太陽、に池の製造方法。
N films composed of different conductivity types of silicon can be deposited on a film by glow discharge plasma decomposition (,/!) to continuously produce thin film solar cells. integrally and consecutively (1'η In the reaction '41'l, the above possible a '+i
K Philno, consecutive A? i'e, the said 2ξ
(A method for producing a far film solar cell, which is characterized by forming a J4 conductive silicon layer in each reaction chamber while operating the 411 gas system in one chamber.
JP57143998A 1982-08-21 1982-08-21 Manufacture of thin solar battery Pending JPS5934668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57143998A JPS5934668A (en) 1982-08-21 1982-08-21 Manufacture of thin solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57143998A JPS5934668A (en) 1982-08-21 1982-08-21 Manufacture of thin solar battery

Publications (1)

Publication Number Publication Date
JPS5934668A true JPS5934668A (en) 1984-02-25

Family

ID=15351930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57143998A Pending JPS5934668A (en) 1982-08-21 1982-08-21 Manufacture of thin solar battery

Country Status (1)

Country Link
JP (1) JPS5934668A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3604894A1 (en) * 1985-02-15 1986-08-21 Teijin Ltd., Osaka INTEGRATED SOLAR CELLS AND METHOD FOR THEIR PRODUCTION
US5378639A (en) * 1992-07-24 1995-01-03 Fuji Electric Co., Ltd. Method for manufacturing a thin-film photovoltaic conversion device
US6620288B2 (en) 2000-03-22 2003-09-16 Semiconductor Energy Laboratory Co., Ltd. Substrate treatment apparatus
US6827787B2 (en) 2000-02-10 2004-12-07 Semiconductor Energy Laboratory Co., Ltd. Conveyor device and film formation apparatus for a flexible substrate
US7594479B2 (en) 2000-03-29 2009-09-29 Semiconductor Energy Laboratory Co., Ltd. Plasma CVD device and discharge electrode
JP2010163679A (en) * 2008-12-18 2010-07-29 Sumitomo Electric Ind Ltd Film deposition system and film deposition method for oxide thin film
JP2011089165A (en) * 2009-10-22 2011-05-06 Kobe Steel Ltd Cvd film forming apparatus
JP2013237884A (en) * 2012-05-14 2013-11-28 Toyota Motor Corp Plasma film forming apparatus
JP2016020278A (en) * 2011-02-24 2016-02-04 株式会社ニコン Substrate processing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5743413A (en) * 1980-05-19 1982-03-11 Energy Conversion Devices Inc Semiconductor element and method of producing same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5743413A (en) * 1980-05-19 1982-03-11 Energy Conversion Devices Inc Semiconductor element and method of producing same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3604894A1 (en) * 1985-02-15 1986-08-21 Teijin Ltd., Osaka INTEGRATED SOLAR CELLS AND METHOD FOR THEIR PRODUCTION
US4697041A (en) * 1985-02-15 1987-09-29 Teijin Limited Integrated solar cells
US5378639A (en) * 1992-07-24 1995-01-03 Fuji Electric Co., Ltd. Method for manufacturing a thin-film photovoltaic conversion device
US6827787B2 (en) 2000-02-10 2004-12-07 Semiconductor Energy Laboratory Co., Ltd. Conveyor device and film formation apparatus for a flexible substrate
US6916509B2 (en) 2000-02-10 2005-07-12 Semiconductor Energy Laboratory Co., Ltd. Conveyor device and film formation apparatus for a flexible substrate
US7510901B2 (en) 2000-02-10 2009-03-31 Semiconductor Energy Laboratory Co., Ltd. Conveyor device and film formation apparatus for a flexible substrate
US6620288B2 (en) 2000-03-22 2003-09-16 Semiconductor Energy Laboratory Co., Ltd. Substrate treatment apparatus
US7594479B2 (en) 2000-03-29 2009-09-29 Semiconductor Energy Laboratory Co., Ltd. Plasma CVD device and discharge electrode
JP2010163679A (en) * 2008-12-18 2010-07-29 Sumitomo Electric Ind Ltd Film deposition system and film deposition method for oxide thin film
JP2011089165A (en) * 2009-10-22 2011-05-06 Kobe Steel Ltd Cvd film forming apparatus
JP2016020278A (en) * 2011-02-24 2016-02-04 株式会社ニコン Substrate processing method
JP2013237884A (en) * 2012-05-14 2013-11-28 Toyota Motor Corp Plasma film forming apparatus

Similar Documents

Publication Publication Date Title
US4873118A (en) Oxygen glow treating of ZnO electrode for thin film silicon solar cell
US6200825B1 (en) Method of manufacturing silicon based thin film photoelectric conversion device
US5563092A (en) Method of producing a substrate for an amorphous semiconductor
JPS5934668A (en) Manufacture of thin solar battery
NL8102411A (en) METHOD FOR MAKING A P-SEMICONDUCTOR ALLOY, AND AN ORGAN CONTAINING THIS ALLOY
Nair et al. Prospects of chemically deposited CdS thin films in solar cell applications
JPH0323489B2 (en)
JPS58169980A (en) Manufacture of photo voltaic element
US3413145A (en) Method of forming a crystalline semiconductor layer on an alumina substrate
JPH05504235A (en) Photodegradation-stable semiconductor material based on amorphous germanium and its manufacturing method
JP2000138384A (en) Amorphous semiconductor device and its manufacture
TW201001728A (en) Nanocrystalline photovoltaic device
JPS62151572A (en) Deposited film forming device
JPS5848473A (en) Manufacture of amorphous silicon solar cell
JP3542510B2 (en) Method for forming non-single-crystal semiconductor film and photovoltaic element, and apparatus for forming non-single-crystal semiconductor film
JP3068276B2 (en) Manufacturing method of non-single crystal tandem solar cell and manufacturing apparatus used therefor
JPH053689B2 (en)
JPS5844775A (en) Amorphous silicon semiconductor device and manufacture thereof
JPS58216475A (en) Manufacture of silicon solar battery
JP2001152347A (en) Plasma cvd apparatus, and manufacturing method of silicon thin film photoelectric converter
JPH0272676A (en) Polycrystalline silicone solar cell element and manufacture thereof
JPS61223190A (en) Electrode for photoelectrochemical reaction
JPH0620155B2 (en) Method and apparatus for manufacturing amorphous photoelectric conversion element
JP2000124460A (en) Characteristic improvement method in manufacture process of non-single crystalline semiconductor thin film element
JPS5837973A (en) Amorphous silicon semiconductor device and manufacture thereof