JP2010163679A - Film deposition system and film deposition method for oxide thin film - Google Patents

Film deposition system and film deposition method for oxide thin film Download PDF

Info

Publication number
JP2010163679A
JP2010163679A JP2009060763A JP2009060763A JP2010163679A JP 2010163679 A JP2010163679 A JP 2010163679A JP 2009060763 A JP2009060763 A JP 2009060763A JP 2009060763 A JP2009060763 A JP 2009060763A JP 2010163679 A JP2010163679 A JP 2010163679A
Authority
JP
Japan
Prior art keywords
chamber
heat treatment
film
thin film
oxide thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009060763A
Other languages
Japanese (ja)
Inventor
Masaya Konishi
昌也 小西
Hajime Ota
肇 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Superconductivity Technology Center
Sumitomo Electric Industries Ltd
Original Assignee
International Superconductivity Technology Center
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Superconductivity Technology Center, Sumitomo Electric Industries Ltd filed Critical International Superconductivity Technology Center
Priority to JP2009060763A priority Critical patent/JP2010163679A/en
Publication of JP2010163679A publication Critical patent/JP2010163679A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a film deposition system for an oxide thin film where, when an oriented metallic substrate is heat-treated in a reducing atmosphere directly before the formation of an oxide thin film, the phenomenon that heat treatment time is made longer than required so as to cause the increase in cost does not occur, and further, the phenomenon that heat treatment temperature is made higher than required so as to cause the reduction in quality does not occur, and to provide a method for depositing an oxide thin film using the system. <P>SOLUTION: In the film deposition system for the oxide thin film, directly behind a reduction heat treatment chamber in which an oxide layer on the surface of a long-length oriented metallic substrate is removed, provided with a film deposition chamber where an oxide thin film is deposited on the surface of the oriented metallic substrate carried from the reduction heat treatment chamber, the space between the reduction heat treatment chamber and the film deposition chamber is provided with an atmosphere shielding part making the mutual atmospheres of the reduction heat treatment chamber and the film deposition chamber into the substantially independent atmospheres, and further, each of the reduction heat treatment chamber and the film deposition chamber is provided with a gas feed mechanism and an exhaust mechanism. The film deposition method uses the system. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は酸化物薄膜の成膜装置および成膜方法に関し、特に長尺基板上への酸化物薄膜の成膜に際して、還元熱処理と成膜とを互いに独立した雰囲気下で行う酸化物薄膜の成膜装置及び成膜方法に関する。   The present invention relates to an oxide thin film deposition apparatus and a film deposition method, and more particularly to formation of an oxide thin film in which reduction heat treatment and film deposition are performed in an atmosphere independent from each other when an oxide thin film is formed on a long substrate. The present invention relates to a film apparatus and a film forming method.

高温超電導体の発見以来、ケーブル、限流器、電磁石などの機器への応用を目指した高温超電導線材の開発が活発になされている。現在の代表的な高温超電導体は、REBaCu7−δ(ここに、REは希土類元素を示す。)などの酸化物であり、優れた高温超電導線材を得るためには、前記の酸化物について配向性の高い薄膜を形成する必要がある。 Since the discovery of high-temperature superconductors, high-temperature superconducting wires have been actively developed for applications in devices such as cables, current limiters, and electromagnets. A typical current high-temperature superconductor is an oxide such as RE 1 Ba 2 Cu 3 O 7-δ (where RE represents a rare earth element). In order to obtain an excellent high-temperature superconducting wire, It is necessary to form a highly oriented thin film for the oxide.

このため、長尺の線材の基板として、例えばNiなど、金属原子が2軸配向した長尺の配向金属基板を用いて、この配向金属基板上に酸化物薄膜をエピタキシャル成長させることにより配向金属基板と同じ2軸配向性を有する中間層を形成し、前記中間層の上にさらに超電導層をエピタキシャル成長させることにより中間層と同じ2軸配向性を有する超電導層を形成することが行われている。   For this reason, as a long wire substrate, for example, a long alignment metal substrate in which metal atoms are biaxially aligned, such as Ni, is used, and an oxide thin film is epitaxially grown on the alignment metal substrate. An intermediate layer having the same biaxial orientation is formed, and a superconducting layer having the same biaxial orientation as that of the intermediate layer is formed by epitaxially growing a superconducting layer on the intermediate layer.

しかし、このような配向金属基板を用いても、配向金属基板表面が酸化されて酸化層が形成されている場合には、配向金属基板表面の2軸配向性が損なわれ、中間層として形成されるCeOなどの酸化物薄膜は独自の配向(<111>軸が基板面に対して垂直方向に配向した1軸配向)をとりやすく、配向金属基板にエピタキシャルな中間層を形成することが困難となるため、超電導に適した配向を有する超電導層を形成することが困難となる。 However, even when such an oriented metal substrate is used, when the surface of the oriented metal substrate is oxidized to form an oxide layer, the biaxial orientation of the oriented metal substrate surface is impaired, and an intermediate layer is formed. Oxide thin films such as CeO 2 tend to have a unique orientation (uniaxial orientation with the <111> axis oriented perpendicular to the substrate surface), making it difficult to form an epitaxial intermediate layer on an oriented metal substrate Therefore, it becomes difficult to form a superconducting layer having an orientation suitable for superconductivity.

このような問題を解決するために、例えば、特許文献1には、酸化物薄膜の形成の直前に配向金属基板を還元雰囲気下で熱処理を行うことにより、配向金属基板表面の酸化層を除去することが提案されている。   In order to solve such a problem, for example, in Patent Document 1, the oxide layer on the surface of the oriented metal substrate is removed by performing a heat treatment on the oriented metal substrate in a reducing atmosphere immediately before the formation of the oxide thin film. It has been proposed.

特開2005−1935号公報JP 2005-1935 A

しかし、特許文献1では、1つの処理室(処理がなされる部屋)内で搬送されていく長尺の基板に還元熱処理を行った直後に酸化物薄膜の形成を行ったり、上流側の還元熱処理室で還元熱処理がなされた長尺の基板を開口された通路を介して下流側の成膜室へ搬送し、その室内で酸化物薄膜の形成を行ったりしている。   However, in Patent Document 1, an oxide thin film is formed immediately after performing a reduction heat treatment on a long substrate transported in one processing chamber (a room in which treatment is performed), or an upstream reduction heat treatment is performed. A long substrate subjected to reduction heat treatment in the chamber is transferred to the downstream deposition chamber through the opened passage, and an oxide thin film is formed in the chamber.

このとき、処理が行われる室が1つの場合はもちろん、2つの処理室で処理を行う場合であっても、ガス供給機構は還元熱処理室に、排気機構は成膜室に設けられているため、酸化層を除去する還元熱処理と、酸化層が除去された基板への酸化物薄膜の形成を行う成膜処理とが、同じ組成の雰囲気中で行われることとなる。   At this time, the gas supply mechanism is provided in the reduction heat treatment chamber and the exhaust mechanism is provided in the film formation chamber even when processing is performed in two processing chambers as well as in the case where the processing chamber is one. The reduction heat treatment for removing the oxide layer and the film forming process for forming the oxide thin film on the substrate from which the oxide layer has been removed are performed in an atmosphere having the same composition.

しかしながら、還元熱処理と成膜処理とでは、最適な雰囲気の組成は相違する。即ち、還元熱処理では、酸化層から酸素を除去するという面から、雰囲気中の還元性ガス、例えば水素は、分圧が大きいほど好ましい。しかし、成膜処理では、還元性ガスの分圧が大きいと、酸化物薄膜を形成するための酸素と結合して、酸化物薄膜に酸素欠損を生じる恐れがあり、分圧をあまり大きくすることは好ましくない。   However, the optimum atmosphere composition differs between the reduction heat treatment and the film formation treatment. That is, in the reduction heat treatment, from the viewpoint of removing oxygen from the oxide layer, a reducing gas in the atmosphere, such as hydrogen, is preferable as the partial pressure is increased. However, in the film forming process, if the partial pressure of the reducing gas is large, it may be combined with oxygen for forming the oxide thin film, which may cause oxygen vacancies in the oxide thin film. Is not preferred.

そこで、基板表面の酸化層の除去よりも酸化物薄膜の形成の方を優先する(重要である)ため、酸化物薄膜の形成に適した雰囲気組成、即ち還元性ガスの組成を小さくした雰囲気とし、酸化層を除去するための補償として、熱処理時間を長くしたり、熱処理温度を高くすることが考えられる。   Therefore, since the formation of the oxide thin film is prioritized (important) over the removal of the oxide layer on the substrate surface, an atmosphere composition suitable for the formation of the oxide thin film, that is, an atmosphere in which the reducing gas composition is reduced. As compensation for removing the oxide layer, it is conceivable to lengthen the heat treatment time or raise the heat treatment temperature.

しかし、熱処理時間を長くするためには、基板の搬送速度を下げたり、処理室を長くしたりする必要があり、大幅なコストアップを招く恐れがある。   However, in order to lengthen the heat treatment time, it is necessary to lower the substrate transfer speed or lengthen the treatment chamber, which may cause a significant cost increase.

また、熱処理温度を高くした場合には、短時間での酸化層除去が可能となるが、その一方で、張力による基板の伸びや、基板である配向金属の再結晶化による表面平坦性の悪化や結晶配向性の悪化などの悪影響も発生し、品質の低下を招く恐れがある。   In addition, when the heat treatment temperature is increased, the oxide layer can be removed in a short time, but on the other hand, the substrate is stretched due to tension, and the surface flatness is deteriorated due to recrystallization of the alignment metal as the substrate. In addition, adverse effects such as deterioration of crystal orientation and the like may occur, leading to deterioration in quality.

そこで、本発明は、上記した諸問題に鑑み、酸化物薄膜の形成の直前に配向金属基板を還元雰囲気下で熱処理を行うに際して、必要以上に熱処理時間を長くしてコストアップを招くことがなく、また、必要以上に熱処理温度を高くして品質の低下を招くことがない酸化物薄膜の成膜装置およびこのような装置を用いた酸化物薄膜の成膜方法を提供することを課題とする。   Therefore, in view of the above-described problems, the present invention does not increase the cost by extending the heat treatment time more than necessary when the oriented metal substrate is heat-treated in a reducing atmosphere immediately before the formation of the oxide thin film. It is another object of the present invention to provide a film forming apparatus for an oxide thin film that does not cause deterioration in quality by raising the heat treatment temperature more than necessary, and a method for forming an oxide thin film using such an apparatus. .

本発明は、以上の課題を解決することを目的としてなされたものであり、基板表面からの酸化層の除去と基板表面への酸化膜の形成を行う各々の処理室の雰囲気を互いに独立させて、それぞれの処理に好適な雰囲気となるように制御するものである。以下、各請求項の発明を説明する。   The present invention has been made for the purpose of solving the above problems, and the atmospheres of the respective processing chambers for removing the oxide layer from the substrate surface and forming the oxide film on the substrate surface are made independent of each other. These are controlled so that the atmosphere is suitable for each treatment. The invention of each claim will be described below.

請求項1に記載の発明は、
長尺の配向金属基板の表面の酸化層を除去する還元熱処理室の直後に、前記還元熱処理室より搬送された前記配向金属基板の表面に酸化物薄膜を成膜する成膜室を備えた酸化物薄膜の成膜装置であって、
前記還元熱処理室と前記成膜室との間に、前記還元熱処理室および前記成膜室の互いの雰囲気を実質的に独立した雰囲気とする雰囲気遮断部が設けられ、
さらに、前記還元熱処理室および前記成膜室のそれぞれにガス供給機構および排気機構が設けられていることを特徴とする酸化物薄膜の成膜装置である。
The invention described in claim 1
Oxidation provided with a film forming chamber for forming an oxide thin film on the surface of the oriented metal substrate conveyed from the reducing heat treatment chamber immediately after the reducing heat treatment chamber for removing the oxide layer on the surface of the long oriented metal substrate An apparatus for forming a thin film,
Between the reduction heat treatment chamber and the film formation chamber, an atmosphere blocking unit is provided that makes the atmosphere of the reduction heat treatment chamber and the film formation chamber substantially independent from each other,
Further, the oxide thin film deposition apparatus is characterized in that a gas supply mechanism and an exhaust mechanism are provided in each of the reduction heat treatment chamber and the film deposition chamber.

本請求項の発明により、還元熱処理室および成膜室をそれぞれの処理に最適な雰囲気となるように制御して、基板の酸化層の除去と酸化物薄膜の形成とを各々に最適な雰囲気下で連続して行うことができるため、長尺基板上へ優れた酸化物薄膜を形成することができる。   According to the present invention, the reduction heat treatment chamber and the film formation chamber are controlled so as to have an optimum atmosphere for each treatment, and the removal of the oxide layer on the substrate and the formation of the oxide thin film are performed in an optimum atmosphere for each. Therefore, an excellent oxide thin film can be formed on a long substrate.

雰囲気遮断部は、還元熱処理室と成膜室とを区切るものであり、長尺基板が通ることができるだけの小さな孔が設けられており、この孔の近傍以外では、還元熱処理室と成膜室の雰囲気ガスが混合しないようになっているため、容易に、還元熱処理室および成膜室の互いの雰囲気を実質的に独立した雰囲気とすることができる。   The atmosphere blocker separates the reduction heat treatment chamber and the film formation chamber, and is provided with a small hole through which the long substrate can pass. Except for the vicinity of this hole, the reduction heat treatment chamber and the film formation chamber are provided. Therefore, the atmospheres in the reduction heat treatment chamber and the film formation chamber can be made substantially independent from each other.

そして、各処理室におけるそれぞれの雰囲気の設定は、各処理室に設けられたガス供給機構(例えば、ガス供給装置)および排気機構(例えば、排気装置)により行うことができる。ガスの供給、排気を制御することにより、還元熱処理室および成膜室の雰囲気をそれぞれ独立して最適な雰囲気に調整することができる。   Each atmosphere in each processing chamber can be set by a gas supply mechanism (for example, a gas supply device) and an exhaust mechanism (for example, an exhaust device) provided in each processing chamber. By controlling the supply and exhaust of the gas, the atmospheres in the reduction heat treatment chamber and the film formation chamber can be independently adjusted to the optimum atmosphere.

このように、還元熱処理室および成膜室の互いの雰囲気が実質的に独立しており、各処理室にガス供給機構および排気機構が設けられているため、還元熱処理室についても酸化層を除去するための最適な雰囲気を設定することができ、還元熱処理を、酸化物薄膜の形成に適した雰囲気(還元性ガスの組成を小さくした雰囲気)の下で行う必要がなく、熱処理時間を必要以上に長くしたり、熱処理温度を必要以上に高くして行う必要がない。その結果、短時間に、高温での処理による各悪影響の発生を防止して、還元熱処理を行うことができ、コストアップを抑制することができる。   As described above, the atmospheres of the reduction heat treatment chamber and the film formation chamber are substantially independent of each other, and the gas supply mechanism and the exhaust mechanism are provided in each treatment chamber. Therefore, the oxide layer is also removed from the reduction heat treatment chamber. It is possible to set an optimum atmosphere for the reduction heat treatment, and it is not necessary to perform the reduction heat treatment in an atmosphere suitable for the formation of the oxide thin film (an atmosphere in which the composition of the reducing gas is reduced), and the heat treatment time is longer than necessary. It is not necessary to increase the heat treatment temperature or to make the heat treatment temperature higher than necessary. As a result, it is possible to perform reduction heat treatment in a short period of time by preventing the occurrence of various adverse effects due to the treatment at a high temperature, thereby suppressing an increase in cost.

また、成膜室においても、同様に良好な酸化物薄膜を形成するための最適な雰囲気を設定することができる。その結果、前記した最適な雰囲気下での還元熱処理とも相俟って、充分に酸化層が除去された配向金属基板上に、優れた品質の酸化物薄膜を形成することができる。   In the film formation chamber, an optimum atmosphere for forming a good oxide thin film can be set similarly. As a result, in combination with the above-described reduction heat treatment under the optimum atmosphere, an oxide thin film having excellent quality can be formed on the oriented metal substrate from which the oxide layer has been sufficiently removed.

請求項2に記載の発明は、
前記雰囲気遮断部が、排気機構を有していることを特徴とする請求項1に記載の酸化物薄膜の成膜装置である。
The invention described in claim 2
2. The oxide thin film deposition apparatus according to claim 1, wherein the atmosphere blocking section has an exhaust mechanism.

本請求項の発明においては、雰囲気遮断部が排気機構を有しているため、還元熱処理室および成膜室の互いの雰囲気をより独立した雰囲気とすることができる。   In the present invention, since the atmosphere blocking part has the exhaust mechanism, the atmospheres of the reduction heat treatment chamber and the film forming chamber can be made more independent.

請求項3に記載の発明は、
前記成膜室が、第1の成膜室および第2の成膜室より構成されており、
前記第1の成膜室と前記第2の成膜室との間に、互いの雰囲気を実質的に独立した雰囲気とする雰囲気遮断部が設けられている
ことを特徴とする請求項1または請求項2に記載の酸化物薄膜の成膜装置である。
The invention according to claim 3
The film formation chamber is composed of a first film formation chamber and a second film formation chamber;
2. The atmosphere blocking portion is provided between the first film forming chamber and the second film forming chamber, and an atmosphere blocking portion is provided to make each atmosphere substantially independent. The oxide thin film deposition apparatus according to Item 2.

本請求項の発明においては、成膜室を、互いが実質的に独立した雰囲気の第1の成膜室と第2の成膜室とに分けて設けているため、各室の雰囲気を還元性または酸化性など適宜変更することにより、基板の酸化層の除去と酸化物薄膜の形成において、よりきめ細かい対応が可能となり、より優れた品質の酸化物薄膜を形成することができる。   In the invention of this claim, since the film forming chambers are divided into the first film forming chamber and the second film forming chamber which are substantially independent from each other, the atmosphere in each chamber is reduced. By appropriately changing the properties such as the oxidation property or the oxidization property, it becomes possible to respond more finely in the removal of the oxide layer of the substrate and the formation of the oxide thin film, and it is possible to form an oxide thin film with better quality.

請求項4に記載の発明は、
長尺の配向金属基板の表面に酸化物薄膜を成膜する成膜方法であって、
所定の雰囲気に制御された還元熱処理室において、前記配向金属基板の表面の酸化層を除去する還元熱処理工程と、
前記酸化層が除去された前記配向金属基板を、雰囲気遮断部を経由して、前記還元熱処理室の直後に設けられると共に、前記還元熱処理室の雰囲気から実質的に独立した所定の雰囲気に制御された成膜室に搬送する搬送工程と、
前記成膜室において、前記還元熱処理室より搬送された前記配向金属基板の表面に酸化物薄膜を成膜する成膜工程と
を有することを特徴とする酸化物薄膜の成膜方法である。
The invention according to claim 4
A film forming method for forming an oxide thin film on the surface of a long oriented metal substrate,
In a reduction heat treatment chamber controlled to a predetermined atmosphere, a reduction heat treatment step for removing an oxide layer on the surface of the oriented metal substrate;
The oriented metal substrate from which the oxide layer has been removed is provided immediately after the reduction heat treatment chamber via an atmosphere blocking portion and controlled to a predetermined atmosphere substantially independent of the atmosphere of the reduction heat treatment chamber. A transporting process for transporting to the film forming chamber;
A film forming method for forming an oxide thin film on the surface of the oriented metal substrate conveyed from the reduction heat treatment chamber in the film forming chamber.

本請求項の発明においては、雰囲気遮断部により互いの雰囲気が実質的に独立し、それぞれ還元熱処理および成膜に適した所定の雰囲気にされた還元熱処理室および成膜室において、還元熱処理と成膜処理を行うため、充分に酸化層が除去された配向金属基板上に、優れた酸化物薄膜を形成することができる。   In the invention of this claim, each atmosphere is substantially independent by the atmosphere blocker, and each of the reduction heat treatment and the film formation chamber has a predetermined atmosphere suitable for the reduction heat treatment and film formation. Since the film treatment is performed, an excellent oxide thin film can be formed on the oriented metal substrate from which the oxide layer has been sufficiently removed.

請求項5に記載の発明は、
前記成膜工程が、
第1の成膜室において、還元雰囲気下で、前記還元熱処理室より搬送された前記配向金属基板の表面に第1の酸化物薄膜を成膜する第1の成膜工程と、
前記第1の酸化物薄膜が成膜された前記配向金属基板を、雰囲気遮断部を経由して第2の成膜室に搬送する搬送工程と、
前記第2の成膜室において、酸化雰囲気下で、前記第1の酸化物薄膜の表面に第2の酸化物薄膜を成膜する第2の成膜工程と
を有することを特徴とする請求項4に記載の酸化物薄膜の成膜方法である。
The invention described in claim 5
The film forming step includes
A first film forming step of forming a first oxide thin film on a surface of the oriented metal substrate transported from the reduction heat treatment chamber in a reducing atmosphere in a first film forming chamber;
A transfer step of transferring the oriented metal substrate on which the first oxide thin film has been formed to a second film formation chamber via an atmosphere blocking unit;
The second film formation chamber includes a second film formation step of forming a second oxide thin film on the surface of the first oxide thin film in an oxidizing atmosphere. 4. The method for forming an oxide thin film according to 4.

酸化物薄膜の形成は、酸化雰囲気下で行うことが好ましい。しかし、酸化雰囲気下では、基板表面に酸化物薄膜が成膜される前に、還元熱処理により酸化層を除去した配向金属基板が再び酸化されてしまう。   The oxide thin film is preferably formed in an oxidizing atmosphere. However, under an oxidizing atmosphere, before the oxide thin film is formed on the substrate surface, the oriented metal substrate from which the oxide layer has been removed by the reduction heat treatment is oxidized again.

このため、本請求項の発明においては、予め、第1の成膜工程において還元雰囲気下で第1の酸化物薄膜を薄く形成させる。これにより、酸化雰囲気下で酸化物薄膜の成膜を行う本来の酸化物薄膜の成膜工程である第2の成膜工程において、前記の薄く形成された第1の酸化物薄膜が、基板が再び酸化されることを防止するバリヤとして機能し、基板が酸化されることなく、第2の酸化物薄膜として酸素欠損のない酸化物薄膜を形成させることができる。なお、第1の成膜工程における還元雰囲気は、第1の酸化物薄膜が酸素欠損状態にならないように、弱還元雰囲気にすることが好ましい。   For this reason, in the present invention, the first oxide thin film is previously formed thinly in a reducing atmosphere in the first film forming step. As a result, in the second film forming step, which is an original oxide thin film forming step in which an oxide thin film is formed in an oxidizing atmosphere, the thin first oxide thin film is formed on the substrate. An oxide thin film that does not have oxygen vacancies can be formed as the second oxide thin film without functioning as a barrier that prevents oxidation again and without oxidizing the substrate. Note that the reducing atmosphere in the first film formation step is preferably a weak reducing atmosphere so that the first oxide thin film is not in an oxygen deficient state.

本発明により、酸化物薄膜の形成の直前に配向金属基板を還元雰囲気下で熱処理を行うに際して、必要以上に熱処理時間を長くしてコストアップを招くことがなく、また、必要以上に熱処理温度を高くして品質の低下を招くことがない酸化物薄膜の成膜装置およびこのような装置を用いた酸化物薄膜の成膜方法を提供することができる。   According to the present invention, when the oriented metal substrate is heat-treated in a reducing atmosphere immediately before the formation of the oxide thin film, the heat treatment time is not prolonged and the cost is not increased, and the heat treatment temperature is increased more than necessary. It is possible to provide a film forming apparatus for an oxide thin film that does not cause a deterioration in quality by increasing the height, and a method for forming an oxide thin film using such an apparatus.

本発明の第1の実施の形態に係る酸化物薄膜の成膜装置の要部の構成を示す図である。It is a figure which shows the structure of the principal part of the film-forming apparatus of the oxide thin film which concerns on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る酸化物薄膜の成膜装置の雰囲気遮断部の構成を示す図である。It is a figure which shows the structure of the atmosphere interruption | blocking part of the film-forming apparatus of the oxide thin film which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る酸化物薄膜の成膜装置の雰囲気遮断室の構成を示す図である。It is a figure which shows the structure of the atmosphere interruption | blocking chamber of the film-forming apparatus of the oxide thin film which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施の形態に係る酸化物薄膜の成膜装置の要部の構成を示す図である。It is a figure which shows the structure of the principal part of the film-forming apparatus of the oxide thin film which concerns on the 4th Embodiment of this invention. 本発明の実施例により得られた薄膜についてのX線回折図である。It is an X-ray diffraction pattern about the thin film obtained by the Example of this invention. 本発明の実施例により得られた薄膜についてのX線回折図である。It is an X-ray diffraction pattern about the thin film obtained by the Example of this invention.

以下、本発明をその最良の実施の形態に基づいて説明する。なお、本発明は、以下の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、以下の実施の形態に対して種々の変更を加えることが可能である。   Hereinafter, the present invention will be described based on the best mode. Note that the present invention is not limited to the following embodiments. Various modifications can be made to the following embodiments within the same and equivalent scope as the present invention.

(第1の実施の形態)
第1の実施の形態は、還元熱処理室と成膜室の間に、長尺基板を通すための小孔を有する雰囲気遮断部を設けることにより、両室の雰囲気ガスが互いに混ざり合うことを抑制し、両室の雰囲気をそれぞれ実質的に独立して各処理に最適な雰囲気に保つことができる酸化物薄膜の成膜装置の例である。以下、図1を参照しつつ本実施の形態を説明する。
(First embodiment)
In the first embodiment, an atmosphere blocking portion having a small hole for passing a long substrate is provided between the reduction heat treatment chamber and the film forming chamber, thereby preventing the atmosphere gases in both chambers from mixing with each other. This is an example of an oxide thin film deposition apparatus capable of maintaining the atmosphere in both chambers substantially independently of each other and maintaining the optimum atmosphere for each treatment. Hereinafter, the present embodiment will be described with reference to FIG.

図1は、本実施の形態に係る長尺の基板上への酸化物薄膜の成膜装置の要部の構成を示す図である。図1において、10は長尺の基板であり、21は基板10の供給ロールであり、22は巻取りロールである。また、30は還元熱処理室であり、31は還元熱処理室30内部に設けられたヒータであり、35は還元熱処理室30へ所定のガスを供給するためのガス供給装置であり、36は排気装置である。   FIG. 1 is a diagram showing a configuration of a main part of an apparatus for forming an oxide thin film on a long substrate according to the present embodiment. In FIG. 1, 10 is a long board | substrate, 21 is a supply roll of the board | substrate 10, 22 is a winding roll. Further, 30 is a reduction heat treatment chamber, 31 is a heater provided in the reduction heat treatment chamber 30, 35 is a gas supply device for supplying a predetermined gas to the reduction heat treatment chamber 30, and 36 is an exhaust device. It is.

40は成膜室であり、41は成膜室40の内部に設けられたヒータであり、45は成膜室40へ所定のガスを供給するためのガス供給装置であり、46は排気装置である。また、90は基板10上に酸化物薄膜を形成するためのターゲット(材料)である。また、還元熱処理室30と成膜室40の間には、雰囲気遮断部として、小孔50aを有する雰囲気遮断壁50が設けられている。   40 is a film forming chamber, 41 is a heater provided in the film forming chamber 40, 45 is a gas supply device for supplying a predetermined gas to the film forming chamber 40, and 46 is an exhaust device. is there. Reference numeral 90 denotes a target (material) for forming an oxide thin film on the substrate 10. Further, an atmosphere blocking wall 50 having a small hole 50a is provided between the reduction heat treatment chamber 30 and the film forming chamber 40 as an atmosphere blocking portion.

そして、11は還元熱処理が施される前の基板10の表面の酸化層であり、91は基板10の表面に形成された酸化物薄膜である。   Reference numeral 11 denotes an oxide layer on the surface of the substrate 10 before the reduction heat treatment, and 91 denotes an oxide thin film formed on the surface of the substrate 10.

本実施の形態に係る酸化物薄膜の成膜装置では、Ni基合金製の配向されたテープ状の長尺の基板10が供給ロール21から巻出され、還元熱処理室30、雰囲気遮断壁50に設けられた小孔50a、成膜室40を経由して搬送された後、巻取りロール22に巻取られる。途中、還元熱処理室30内の加熱された還元雰囲気に晒されることにより、上下両表面の酸化層11が還元され、その直後に成膜室40内で基板10の下面に酸化物薄膜91が形成される。   In the oxide thin film deposition apparatus according to the present embodiment, an oriented tape-like long substrate 10 made of a Ni-based alloy is unwound from a supply roll 21, and is applied to a reduction heat treatment chamber 30 and an atmosphere blocking wall 50. After being conveyed through the provided small hole 50 a and the film forming chamber 40, the film is wound around the winding roll 22. On the way, the oxide layer 11 on both the upper and lower surfaces is reduced by being exposed to a heated reducing atmosphere in the reduction heat treatment chamber 30, and immediately after that, an oxide thin film 91 is formed on the lower surface of the substrate 10 in the film formation chamber 40. Is done.

そして、還元熱処理室30と成膜室40のそれぞれには、ガス供給機構としてのガス供給装置35、45および排気機構としての排気装置36、46が設けられており、それぞれの雰囲気を実質的に独立して最適な雰囲気、即ち、還元熱処理室30の雰囲気を還元に最適な雰囲気に、成膜室40の雰囲気を成膜に最適な雰囲気に保つことができる。   Each of the reduction heat treatment chamber 30 and the film forming chamber 40 is provided with gas supply devices 35 and 45 serving as gas supply mechanisms and exhaust devices 36 and 46 serving as exhaust mechanisms. It is possible to keep the optimum atmosphere independently, that is, the atmosphere in the reduction heat treatment chamber 30 is the optimum atmosphere for reduction, and the atmosphere in the film forming chamber 40 is the optimum atmosphere for film formation.

還元に最適な還元熱処理室30の雰囲気としては、例えば水素雰囲気のように強い還元雰囲気とすることが好ましい。強い還元雰囲気とすることにより、還元熱処理時の温度を特に高温にすることなく短時間に還元熱処理を施すことができる。   The atmosphere of the reduction heat treatment chamber 30 that is optimal for reduction is preferably a strong reducing atmosphere such as a hydrogen atmosphere. By adopting a strong reducing atmosphere, the reducing heat treatment can be performed in a short time without particularly raising the temperature during the reducing heat treatment.

成膜に最適な成膜室40の雰囲気としては、ArやAr+H等の不活性雰囲気または弱い還元雰囲気とすることが好ましい。これは、成膜室40の雰囲気を強い還元雰囲気とした場合には、形成した酸化物薄膜91に酸素欠損が生じる恐れがあるためである。一方、酸素欠損の発生を防ぐために、成膜室40の雰囲気をAr+酸素のように酸素を含んだ雰囲気とした場合には、還元熱処理された基板10が成膜室40に移った時に酸化されてしまう恐れがあり、また、小孔50aの近傍で両室の雰囲気が混合し、反応して水が生成する恐れがある。 The atmosphere in the film formation chamber 40 that is optimal for film formation is preferably an inert atmosphere such as Ar or Ar + H 2 or a weak reducing atmosphere. This is because oxygen deficiency may occur in the formed oxide thin film 91 when the atmosphere in the film formation chamber 40 is a strong reducing atmosphere. On the other hand, in order to prevent the occurrence of oxygen deficiency, when the atmosphere of the film formation chamber 40 is an atmosphere containing oxygen such as Ar + oxygen, the substrate 10 subjected to the reduction heat treatment is oxidized when it moves to the film formation chamber 40. There is also a risk that the atmosphere in both chambers mixes in the vicinity of the small holes 50a and reacts to generate water.

具体的には、例えば、還元熱処理室30と成膜室40に同一の組成のAr+Hからなる雰囲気ガスを用いて、ガス供給装置35、45および排気装置36、46を調整して、還元熱処理室30のガス圧を高くして還元熱処理室30の水素分圧を高くすることにより、還元熱処理室30の雰囲気を還元熱処理に適した雰囲気にする一方、成膜室40のガス圧を低くすることにより、成膜室の雰囲気を成膜に適した雰囲気にすることが挙げられる。 Specifically, for example, the reducing heat treatment chamber 30 and the film forming chamber 40 are adjusted by adjusting the gas supply devices 35 and 45 and the exhaust devices 36 and 46 by using an atmospheric gas composed of Ar + H 2 having the same composition. By increasing the gas pressure in the chamber 30 and increasing the hydrogen partial pressure in the reduction heat treatment chamber 30, the atmosphere in the reduction heat treatment chamber 30 is made an atmosphere suitable for the reduction heat treatment, while the gas pressure in the film formation chamber 40 is lowered. Thus, the atmosphere in the film formation chamber can be changed to an atmosphere suitable for film formation.

なお、小孔50aの断面の大きさおよび雰囲気遮断壁50の厚さは、基板10が無理なく通過でき、かつ還元熱処理室30と成膜室40の雰囲気ガスが極力混合しないように適宜設定されている。   The size of the cross section of the small hole 50a and the thickness of the atmosphere blocking wall 50 are appropriately set so that the substrate 10 can pass through without difficulty and the atmospheric gas in the reduction heat treatment chamber 30 and the film formation chamber 40 is not mixed as much as possible. ing.

本実施の形態においては、還元熱処理室30の直後に成膜室40が設けられているため、還元熱処理を行った後直ちに成膜を行うことができ、成膜前に基板が酸化されることを抑制することができる。   In this embodiment, since the film formation chamber 40 is provided immediately after the reduction heat treatment chamber 30, film formation can be performed immediately after performing the reduction heat treatment, and the substrate is oxidized before film formation. Can be suppressed.

なお、一般的には、基板10が還元熱処理室30内で雰囲気に晒される時間は5〜20分程度であり、温度としては還元熱処理室30(および還元熱処理室における基板の温度)が850〜1000℃程度、成膜室40(および成膜室における基板の温度)が600〜870℃程度である。   In general, the time during which the substrate 10 is exposed to the atmosphere in the reduction heat treatment chamber 30 is about 5 to 20 minutes, and as the temperature, the reduction heat treatment chamber 30 (and the temperature of the substrate in the reduction heat treatment chamber) is 850 to 850. The film formation chamber 40 (and the temperature of the substrate in the film formation chamber) is about 600 to 870 ° C.

なお、基板10としては、例えば薄膜超電導線材の基板に用いられる配向金属基板であれば特に限定はされず、例えば、幅10mm、厚さ100μm程度の長尺のNiやNi−W合金(Ni95モル%、Fe5モル%)等を用いることができる。   The substrate 10 is not particularly limited as long as it is an oriented metal substrate used for a thin film superconducting wire substrate, for example, a long Ni or Ni—W alloy (Ni 95 mol) having a width of about 10 mm and a thickness of about 100 μm. %, Fe5 mol%) and the like.

また、雰囲気遮断壁50は、通過する長尺の基板10の断面形状、寸法に合わせて、小孔50aの断面の大きさを可変としても、取り換え可能としても良い。   In addition, the atmosphere blocking wall 50 may be variable or replaceable even if the cross-sectional size of the small hole 50a is variable in accordance with the cross-sectional shape and dimensions of the long substrate 10 that passes therethrough.

(第2の実施の形態)
第2の実施の形態は、前記第1の実施の形態に係る成膜装置の雰囲気遮断壁50の厚さを大きくする成膜装置の例である。以下、図2を参照しつつ本実施の形態を説明する。
(Second Embodiment)
The second embodiment is an example of a film forming apparatus that increases the thickness of the atmosphere blocking wall 50 of the film forming apparatus according to the first embodiment. Hereinafter, the present embodiment will be described with reference to FIG.

図2は、本実施の形態に係る長尺の基板上への酸化物薄膜の成膜装置の雰囲気遮断部の構成を示す図である。本実施の形態に係る成膜装置の場合、雰囲気遮断壁50の厚さを厚くすることにより小孔50aの長さが長くなり、還元熱処理室30と成膜室40の雰囲気ガスがより混ざり難くなり、両室の雰囲気をそれぞれ充分に独立させてより最適な雰囲気に保つことができる。   FIG. 2 is a diagram illustrating a configuration of an atmosphere blocking unit of the apparatus for forming an oxide thin film on a long substrate according to the present embodiment. In the case of the film forming apparatus according to the present embodiment, by increasing the thickness of the atmosphere blocking wall 50, the length of the small hole 50a is increased, and the atmospheric gas in the reduction heat treatment chamber 30 and the film forming chamber 40 is less likely to be mixed. As a result, the atmospheres in the two rooms can be made sufficiently independent to maintain a more optimal atmosphere.

(第3の実施の形態)
第3の実施の形態は、還元熱処理室と成膜室との間に、雰囲気遮断部として、排気機構が設けられた雰囲気遮断室を設けた成膜装置の例である。以下、図3を参照しつつ本実施の形態を説明する。
(Third embodiment)
The third embodiment is an example of a film forming apparatus in which an atmosphere blocking chamber provided with an exhaust mechanism is provided as an atmosphere blocking section between the reduction heat treatment chamber and the film forming chamber. Hereinafter, the present embodiment will be described with reference to FIG.

図3は、本実施の形態に係る成膜装置の雰囲気遮断室の構成を示す図である。図3において、52は還元熱処理室30と成膜室40の間に設けられた雰囲気遮断室であり、53は還元熱処理室30と雰囲気遮断室52との間に設けられた雰囲気遮断壁であり、54は成膜室40と雰囲気遮断室52との間に設けられた雰囲気遮断壁であり、53a、54aはそれぞれ雰囲気遮断壁53、54に設けられた小孔である。また、56は雰囲気遮断室52に設けられた排気装置である。   FIG. 3 is a diagram showing the configuration of the atmosphere blocking chamber of the film forming apparatus according to the present embodiment. In FIG. 3, 52 is an atmosphere blocking chamber provided between the reduction heat treatment chamber 30 and the film forming chamber 40, and 53 is an atmosphere blocking wall provided between the reduction heat treatment chamber 30 and the atmosphere blocking chamber 52. , 54 are atmosphere blocking walls provided between the film forming chamber 40 and the atmosphere blocking chamber 52, and 53a, 54a are small holes provided in the atmosphere blocking walls 53, 54, respectively. Reference numeral 56 denotes an exhaust device provided in the atmosphere blocking chamber 52.

本実施の形態においては、還元熱処理室30と成膜室40間に2つの雰囲気遮断壁53、54が設けられているだけでなく、さらに雰囲気遮断室52を設け、排気装置56で小孔53a、54aから雰囲気遮断室52内に侵入してきた雰囲気ガスを排除するため、還元熱処理室30と成膜室40の雰囲気の雰囲気ガスが混ざることをほぼ完全に阻止することができる。   In the present embodiment, not only two atmosphere blocking walls 53 and 54 are provided between the reduction heat treatment chamber 30 and the film forming chamber 40, but also an atmosphere blocking chamber 52 is provided, and the exhaust device 56 provides a small hole 53 a. , 54a, the atmospheric gas that has entered the atmosphere blocking chamber 52 is excluded, so that the atmospheric gases in the atmospheres of the reduction heat treatment chamber 30 and the film forming chamber 40 can be almost completely prevented from being mixed.

(第4の実施の形態)
第4の実施の形態は、成膜工程を2段階に分けて成膜処理を行う酸化物薄膜の成膜装置の例である。以下、図4を参照しつつ本実施の形態を説明する。
(Fourth embodiment)
The fourth embodiment is an example of an oxide thin film deposition apparatus that performs a film deposition process in two stages. Hereinafter, the present embodiment will be described with reference to FIG.

図4は、本実施の形態に係る長尺の基板上への酸化物薄膜の成膜装置の要部の構成を示す図である。図4において、60は第1の成膜室であり、61は第1の成膜室60の内部に設けられたヒータであり、62はターゲットである。また、65は第1の成膜室60へ所定のガスを供給するためのガス供給装置であり、66は排気装置である。   FIG. 4 is a diagram showing a configuration of a main part of an apparatus for forming an oxide thin film on a long substrate according to the present embodiment. In FIG. 4, 60 is a first film forming chamber, 61 is a heater provided in the first film forming chamber 60, and 62 is a target. Reference numeral 65 denotes a gas supply device for supplying a predetermined gas to the first film formation chamber 60, and 66 denotes an exhaust device.

そして、70は第2の成膜室であり、71は第2の成膜室70の内部に設けられたヒータであり、72はターゲットである。また、75は第2の成膜室70へ所定のガスを供給するためのガス供給装置であり、76は排気装置である。   Reference numeral 70 denotes a second film formation chamber, reference numeral 71 denotes a heater provided in the second film formation chamber 70, and reference numeral 72 denotes a target. 75 is a gas supply device for supplying a predetermined gas to the second film forming chamber 70, and 76 is an exhaust device.

また、第1の成膜室60と第2の成膜室70との間には、小孔を有する雰囲気遮断壁51が設けられている。そして、92は第1の成膜室60において基板10の表面に形成された第1の酸化物薄膜であり、93は第2の成膜室70において形成された第2の酸化物薄膜である。なお、図1に示した符号と同じ符号については、説明が重複するため省略する。   In addition, an atmosphere blocking wall 51 having a small hole is provided between the first film forming chamber 60 and the second film forming chamber 70. Reference numeral 92 denotes a first oxide thin film formed on the surface of the substrate 10 in the first film formation chamber 60, and 93 denotes a second oxide thin film formed in the second film formation chamber 70. . In addition, about the code | symbol same as the code | symbol shown in FIG. 1, since description overlaps, it abbreviate | omits.

本実施の形態に係る酸化物薄膜の成膜装置では、長尺の基板10は、還元熱処理室30内の加熱された還元雰囲気に晒されることにより、上下両表面の酸化層11が還元された後、雰囲気遮断壁50を経由して第1の成膜室60に搬送される。   In the oxide thin film deposition apparatus according to the present embodiment, the long substrate 10 is exposed to the heated reducing atmosphere in the reduction heat treatment chamber 30, whereby the oxide layers 11 on both the upper and lower surfaces are reduced. Thereafter, the film is transferred to the first film forming chamber 60 through the atmosphere blocking wall 50.

第1の成膜室60は、ガス供給装置65および排気装置66により、還元雰囲気に設定されており、搬送されてきた基板10の表面には、第1の酸化物薄膜92が薄く形成される。還元雰囲気であるため、第1の酸化物薄膜92の形成に際して、基板10の表面が再度酸化されることはない。なお、第1の酸化物薄膜92の形成は基板表面の酸化を防止するバリヤを形成させることが目的であるため、第1の成膜室60は、酸素欠損が生じない程度に薄く成膜されるように、還元熱処理室30内よりも弱い還元雰囲気とすることが好ましい。   The first film formation chamber 60 is set in a reducing atmosphere by a gas supply device 65 and an exhaust device 66, and a thin first oxide thin film 92 is formed on the surface of the substrate 10 that has been transported. . Because of the reducing atmosphere, the surface of the substrate 10 is not oxidized again when the first oxide thin film 92 is formed. Note that since the formation of the first oxide thin film 92 is intended to form a barrier that prevents oxidation of the substrate surface, the first film formation chamber 60 is formed thin enough to prevent oxygen deficiency. Thus, it is preferable that the reducing atmosphere is weaker than that in the reducing heat treatment chamber 30.

第1の酸化物薄膜92が形成された基板10は、引き続いて、雰囲気遮断壁51を経由して第2の成膜室70に搬送される。   The substrate 10 on which the first oxide thin film 92 is formed is subsequently transferred to the second film formation chamber 70 via the atmosphere blocking wall 51.

第2の成膜室70は、ガス供給装置75および排気装置76により、酸化雰囲気に設定されており、搬送されてきた基板10の表面に形成された第1の酸化物薄膜92の上に、所定の厚さの第2の酸化物薄膜93が形成される。基板10の表面には既に第1の酸化物薄膜92が形成されているため、酸化雰囲気であっても、基板10の表面が酸化されることはない。また、酸化雰囲気であるため、第2の酸化物薄膜93には、酸素欠損が生じることもない。   The second film formation chamber 70 is set in an oxidizing atmosphere by the gas supply device 75 and the exhaust device 76, and on the first oxide thin film 92 formed on the surface of the substrate 10 that has been transferred, A second oxide thin film 93 having a predetermined thickness is formed. Since the first oxide thin film 92 has already been formed on the surface of the substrate 10, the surface of the substrate 10 is not oxidized even in an oxidizing atmosphere. In addition, since there is an oxidizing atmosphere, oxygen vacancies do not occur in the second oxide thin film 93.

(実施例)
以下、本発明を、実施例を参照しつつ具体的に説明する。
配向Ni基板上に、前記第3の実施の形態に係る成膜装置を使用してCeO膜を形成した。この際、還元熱処理室と成膜室の何れにも雰囲気ガスとして3モル%のHを含むArを導入し、さらに成膜室の圧力は最適な成膜条件である5.2Paに保持し、還元熱処理室のガス圧をガス供給装置および排気装置を用いて制御し、これにより還元熱処理室内での還元性ガスであるHの分圧を表1に示すように調整した。また、還元熱処理の温度は850℃とし、成膜温度は650℃とした。
(Example)
Hereinafter, the present invention will be specifically described with reference to examples.
A CeO 2 film was formed on the oriented Ni substrate by using the film forming apparatus according to the third embodiment. At this time, Ar containing 3 mol% of H 2 is introduced as an atmospheric gas into both the reduction heat treatment chamber and the film formation chamber, and the pressure in the film formation chamber is maintained at 5.2 Pa which is an optimum film formation condition. Then, the gas pressure in the reduction heat treatment chamber was controlled using a gas supply device and an exhaust device, and thereby the partial pressure of H 2 that is a reducing gas in the reduction heat treatment chamber was adjusted as shown in Table 1. The temperature of the reduction heat treatment was 850 ° C., and the film formation temperature was 650 ° C.

形成された各CeO膜につき、薄膜の評価を行った。具体的には、X線回折(θ−2θ法)を用いて、必要とする(100)配向を示す(200)回折ピークと、好ましくない配向を示す(111)回折ピーク、2つの強度を測定し、以下に示す式により配向率を求め、その指標とした。
配向率={(200)ピーク強度}/{(111)ピーク強度+(200)ピーク強度}
結果を表1に示す。
The thin film was evaluated for each formed CeO 2 film. Specifically, using X-ray diffraction (θ-2θ method), the (200) diffraction peak showing the required (100) orientation and the (111) diffraction peak showing the unfavorable orientation are measured. And the orientation rate was calculated | required with the formula shown below, and it was set as the parameter | index.
Orientation rate = {(200) peak intensity} / {(111) peak intensity + (200) peak intensity}
The results are shown in Table 1.

Figure 2010163679
Figure 2010163679

表1より、還元熱処理室の雰囲気ガスの圧力を高くするほど、CeO膜の配向率が高くなることが分かる。これは、還元性ガスHの分圧を高くするほど、Ni製配向基板表面の酸化層がより一層除去されて、その直後に基板表面に形成される酸化物薄膜、即ちCeO膜の配向性が向上するためである。 From Table 1, it can be seen that the higher the atmospheric gas pressure in the reduction heat treatment chamber, the higher the orientation ratio of the CeO 2 film. This is because, as the partial pressure of the reducing gas H 2 is increased, the oxide layer on the surface of the Ni alignment substrate is further removed, and the oxide thin film formed on the substrate surface immediately after that, that is, the orientation of the CeO 2 film This is because the property is improved.

表1の3番目に示す還元熱処理室のH分圧が0.20Pa、配向率が93.1%の薄膜について、X線回折を行った結果を図5に示す。図5に示すように、この薄膜の場合、矢印で示す位置に、わずかではあるが酸素欠損を示すピークが見られた。これは、成膜室の雰囲気圧が5.2Paという弱還元雰囲気下で、成膜を行ったためと推測される。 FIG. 5 shows the results of X-ray diffraction performed on a thin film having a H 2 partial pressure of 0.20 Pa and an orientation rate of 93.1% in the third reduction heat treatment chamber shown in Table 1. As shown in FIG. 5, in the case of this thin film, a slight peak indicating oxygen deficiency was observed at the position indicated by the arrow. This is presumably because the film was formed under a weak reducing atmosphere in which the atmospheric pressure in the film forming chamber was 5.2 Pa.

次に、前記第4の実施の形態に係る成膜装置を使用してCeO膜を形成した。この際、還元熱処理室と第1の成膜室の何れにも雰囲気ガスとして3モル%のHを含むArを導入し、還元熱処理室の圧力は6.7Paに、第1の成膜室の圧力は5.2Paとなるように、各ガス供給装置および排気装置を用いて制御した。これにより、還元熱処理室は還元雰囲気となり、第1の成膜室は弱還元雰囲気となる。また、第2の成膜室には雰囲気ガスとして0.5モル%のOを含むArを導入し、2.6Paの圧力となるように、ガス供給装置および排気装置を用いて制御した。これにより、第2の成膜室は酸化雰囲気となる。 Next, a CeO 2 film was formed using the film forming apparatus according to the fourth embodiment. At this time, Ar containing 3 mol% of H 2 as an atmospheric gas is introduced into both the reduction heat treatment chamber and the first film formation chamber, and the pressure in the reduction heat treatment chamber is set to 6.7 Pa. The pressure was controlled using each gas supply device and exhaust device so as to be 5.2 Pa. Thereby, the reduction heat treatment chamber becomes a reducing atmosphere, and the first film forming chamber becomes a weak reducing atmosphere. In addition, Ar containing 0.5 mol% O 2 was introduced into the second film formation chamber as an atmospheric gas, and was controlled using a gas supply device and an exhaust device so that the pressure was 2.6 Pa. Thereby, the second film formation chamber becomes an oxidizing atmosphere.

得られた薄膜についての、X線回折を行った結果を図6に示す。図6に示すように、この薄膜の場合には、酸素欠損を示すピークは見られなかった。なお、この場合の配向率は、92.9%であった。   FIG. 6 shows the result of X-ray diffraction performed on the obtained thin film. As shown in FIG. 6, in the case of this thin film, the peak which shows oxygen deficiency was not seen. In this case, the orientation ratio was 92.9%.

以上より、成膜室として、還元雰囲気の第1の成膜室および酸化雰囲気の第2の成膜室を設けて、第1の成膜工程において基板表面の酸化を防止するバリヤ層としての第1の酸化物薄膜を薄く形成させ、第2の成膜工程において第1の酸化物薄膜の表面に第2の酸化物薄膜を形成させることにより、酸素欠損のない優れた酸化物薄膜が得られることが分かる。   As described above, the first film forming chamber in the reducing atmosphere and the second film forming chamber in the oxidizing atmosphere are provided as the film forming chambers, and the first barrier layer that prevents the oxidation of the substrate surface in the first film forming process is provided. By forming the first oxide thin film thinly and forming the second oxide thin film on the surface of the first oxide thin film in the second film forming step, an excellent oxide thin film without oxygen deficiency can be obtained. I understand that.

10 基板
11 酸化層
21 供給ロール
22 巻取りロール
30 還元熱処理室
31、41、61、71 ヒータ
35、45、65、75 ガス供給装置
36、46、56、66、76 排気装置
40 成膜室
50、51、53、54 雰囲気遮断壁
50a、53a、54a 小孔
52 雰囲気遮断室
60 第1の成膜室
62、72、90 ターゲット
70 第2の成膜室
91 酸化物薄膜
92 第1の酸化物薄膜
93 第2の酸化物薄膜
DESCRIPTION OF SYMBOLS 10 Substrate 11 Oxide layer 21 Supply roll 22 Winding roll 30 Reduction heat treatment chamber 31, 41, 61, 71 Heater 35, 45, 65, 75 Gas supply device 36, 46, 56, 66, 76 Exhaust device 40 Film formation chamber 50 , 51, 53, 54 Atmosphere blocking walls 50a, 53a, 54a Small holes 52 Atmosphere blocking chamber 60 First film forming chambers 62, 72, 90 Target 70 Second film forming chamber 91 Oxide thin film 92 First oxide Thin film 93 Second oxide thin film

Claims (5)

長尺の配向金属基板の表面の酸化層を除去する還元熱処理室の直後に、前記還元熱処理室より搬送された前記配向金属基板の表面に酸化物薄膜を成膜する成膜室を備えた酸化物薄膜の成膜装置であって、
前記還元熱処理室と前記成膜室との間に、前記還元熱処理室および前記成膜室の互いの雰囲気を実質的に独立した雰囲気とする雰囲気遮断部が設けられ、
さらに、前記還元熱処理室および前記成膜室のそれぞれにガス供給機構および排気機構が設けられていることを特徴とする酸化物薄膜の成膜装置。
Oxidation provided with a film forming chamber for forming an oxide thin film on the surface of the oriented metal substrate conveyed from the reducing heat treatment chamber immediately after the reducing heat treatment chamber for removing the oxide layer on the surface of the long oriented metal substrate An apparatus for forming a thin film,
Between the reduction heat treatment chamber and the film formation chamber, an atmosphere blocking unit is provided that makes the atmosphere of the reduction heat treatment chamber and the film formation chamber substantially independent from each other,
Furthermore, a gas supply mechanism and an exhaust mechanism are provided in each of the reduction heat treatment chamber and the film formation chamber, respectively, and the oxide thin film deposition apparatus.
前記雰囲気遮断部が、排気機構を有していることを特徴とする請求項1に記載の酸化物薄膜の成膜装置。   2. The oxide thin film deposition apparatus according to claim 1, wherein the atmosphere blocking section has an exhaust mechanism. 前記成膜室が、第1の成膜室および第2の成膜室より構成されており、
前記第1の成膜室と前記第2の成膜室との間に、互いの雰囲気を実質的に独立した雰囲気とする雰囲気遮断部が設けられている
ことを特徴とする請求項1または請求項2に記載の酸化物薄膜の成膜装置。
The film formation chamber is composed of a first film formation chamber and a second film formation chamber;
2. The atmosphere blocking portion is provided between the first film forming chamber and the second film forming chamber, and an atmosphere blocking portion is provided to make each atmosphere substantially independent. Item 3. The oxide thin film deposition apparatus according to Item 2.
長尺の配向金属基板の表面に酸化物薄膜を成膜する成膜方法であって、
所定の雰囲気に制御された還元熱処理室において、前記配向金属基板の表面の酸化層を除去する還元熱処理工程と、
前記酸化層が除去された前記配向金属基板を、雰囲気遮断部を経由して、前記還元熱処理室の直後に設けられると共に、前記還元熱処理室の雰囲気から実質的に独立した所定の雰囲気に制御された成膜室に搬送する搬送工程と、
前記成膜室において、前記還元熱処理室より搬送された前記配向金属基板の表面に酸化物薄膜を成膜する成膜工程と
を有することを特徴とする酸化物薄膜の成膜方法。
A film forming method for forming an oxide thin film on the surface of a long oriented metal substrate,
In a reduction heat treatment chamber controlled to a predetermined atmosphere, a reduction heat treatment step for removing an oxide layer on the surface of the oriented metal substrate;
The oriented metal substrate from which the oxide layer has been removed is provided immediately after the reduction heat treatment chamber via an atmosphere blocking portion and controlled to a predetermined atmosphere substantially independent of the atmosphere of the reduction heat treatment chamber. A transporting process for transporting to the film forming chamber;
A film forming process for forming an oxide thin film on the surface of the oriented metal substrate conveyed from the reduction heat treatment chamber in the film forming chamber.
前記成膜工程が、
第1の成膜室において、還元雰囲気下で、前記還元熱処理室より搬送された前記配向金属基板の表面に第1の酸化物薄膜を成膜する第1の成膜工程と、
前記第1の酸化物薄膜が成膜された前記配向金属基板を、雰囲気遮断部を経由して第2の成膜室に搬送する搬送工程と、
前記第2の成膜室において、酸化雰囲気下で、前記第1の酸化物薄膜の表面に第2の酸化物薄膜を成膜する第2の成膜工程と
を有することを特徴とする請求項4に記載の酸化物薄膜の成膜方法。
The film forming step includes
A first film forming step of forming a first oxide thin film on a surface of the oriented metal substrate transported from the reduction heat treatment chamber in a reducing atmosphere in a first film forming chamber;
A transfer step of transferring the oriented metal substrate on which the first oxide thin film has been formed to a second film formation chamber via an atmosphere blocking unit;
The second film formation chamber includes a second film formation step of forming a second oxide thin film on the surface of the first oxide thin film in an oxidizing atmosphere. 5. A method for forming an oxide thin film according to 4.
JP2009060763A 2008-12-18 2009-03-13 Film deposition system and film deposition method for oxide thin film Pending JP2010163679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009060763A JP2010163679A (en) 2008-12-18 2009-03-13 Film deposition system and film deposition method for oxide thin film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008322337 2008-12-18
JP2009060763A JP2010163679A (en) 2008-12-18 2009-03-13 Film deposition system and film deposition method for oxide thin film

Publications (1)

Publication Number Publication Date
JP2010163679A true JP2010163679A (en) 2010-07-29

Family

ID=42580067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009060763A Pending JP2010163679A (en) 2008-12-18 2009-03-13 Film deposition system and film deposition method for oxide thin film

Country Status (1)

Country Link
JP (1) JP2010163679A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012140694A (en) * 2011-01-06 2012-07-26 Choshu Industry Co Ltd Vacuum consistent film forming apparatus
CN111719132A (en) * 2020-06-29 2020-09-29 东部超导科技(苏州)有限公司 Multi-channel winding device integrating film coating and heat treatment of superconducting strip

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934668A (en) * 1982-08-21 1984-02-25 Agency Of Ind Science & Technol Manufacture of thin solar battery
JPS5984584A (en) * 1982-11-08 1984-05-16 Hitachi Ltd Continuous manufacturing device of thin film solar battery
JPH0243364A (en) * 1988-08-03 1990-02-13 Nippon Steel Corp Strip holder
JP2005056591A (en) * 2003-08-04 2005-03-03 Sumitomo Electric Ind Ltd Thin film superconductive wire rod and its manufacturing method
JP2005056754A (en) * 2003-08-06 2005-03-03 Sumitomo Electric Ind Ltd Superconductive wire and its manufacturing method
WO2008014040A2 (en) * 2006-05-08 2008-01-31 Applied Materials, Inc. Apparatus and method for coating substrates with approximate process isolation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934668A (en) * 1982-08-21 1984-02-25 Agency Of Ind Science & Technol Manufacture of thin solar battery
JPS5984584A (en) * 1982-11-08 1984-05-16 Hitachi Ltd Continuous manufacturing device of thin film solar battery
JPH0243364A (en) * 1988-08-03 1990-02-13 Nippon Steel Corp Strip holder
JP2005056591A (en) * 2003-08-04 2005-03-03 Sumitomo Electric Ind Ltd Thin film superconductive wire rod and its manufacturing method
JP2005056754A (en) * 2003-08-06 2005-03-03 Sumitomo Electric Ind Ltd Superconductive wire and its manufacturing method
WO2008014040A2 (en) * 2006-05-08 2008-01-31 Applied Materials, Inc. Apparatus and method for coating substrates with approximate process isolation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012140694A (en) * 2011-01-06 2012-07-26 Choshu Industry Co Ltd Vacuum consistent film forming apparatus
CN111719132A (en) * 2020-06-29 2020-09-29 东部超导科技(苏州)有限公司 Multi-channel winding device integrating film coating and heat treatment of superconducting strip

Similar Documents

Publication Publication Date Title
WO2011052736A1 (en) Low ac-loss multi-filament type superconductive wire material, and manufacturing method thereof
US7763343B2 (en) Mesh-type stabilizer for filamentary coated superconductors
JP2004511411A (en) Epitaxial oxide film by nitride conversion
JP2007525790A (en) Superconductor method and reactor
JP5415696B2 (en) Thick film superconducting film with improved functions
JP2007311194A (en) Superconducting thin film material and its manufacturing method
JP2007220467A (en) Method of manufacturing superconductive thin-film material, superconducting apparatus, and superconductive thin-film material
JP2008514545A5 (en)
US20140148343A1 (en) Re123-based superconducting wire and method of manufacturing the same
JP2013524434A (en) Thick oxide film with single layer coating
JP2010163679A (en) Film deposition system and film deposition method for oxide thin film
WO2011004842A1 (en) Substrate, process for production of substrate, electrically super-conductive wire material, and process for production of electrically super-conductive wire material
WO2011004684A1 (en) Method for producing substrate and superconductive wire rod
JP2010238634A (en) Oxide superconducting wire, method of manufacturing the same, and manufacturing device of substrate used for the same
JP2005093205A (en) Superconductor, and manufacturing method of the same
JP2011096593A (en) Method of manufacturing oxide superconducting thin film
JP2003323822A (en) Thin-film superconductive wire material and production process thereof
JP4128358B2 (en) Manufacturing method of oxide superconductor
JP2012022882A (en) Base material for oxide superconducting conductor and method of manufacturing the same, and oxide superconducting conductor and method of manufacturing the same
JP2005001935A (en) Method for producing thin oxide film
JP5306723B2 (en) Method for forming oxide thin film
WO2010061757A1 (en) Precursor manufacturing method, superconducting wire rod manufacturing method, precursor, and superconducting wire rod
JP5804936B2 (en) Superconducting wire manufacturing method
JP5764404B2 (en) Superconducting wire manufacturing method
JPWO2012111678A1 (en) Superconducting wire and method of manufacturing superconducting wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140630