JPS5934225B2 - Fe-Ni low thermal expansion amber type alloy with excellent welding hot cracking resistance - Google Patents

Fe-Ni low thermal expansion amber type alloy with excellent welding hot cracking resistance

Info

Publication number
JPS5934225B2
JPS5934225B2 JP9083781A JP9083781A JPS5934225B2 JP S5934225 B2 JPS5934225 B2 JP S5934225B2 JP 9083781 A JP9083781 A JP 9083781A JP 9083781 A JP9083781 A JP 9083781A JP S5934225 B2 JPS5934225 B2 JP S5934225B2
Authority
JP
Japan
Prior art keywords
thermal expansion
hot cracking
cleanliness
alloy
cracking resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9083781A
Other languages
Japanese (ja)
Other versions
JPS57207154A (en
Inventor
清彦 野原
寛 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP9083781A priority Critical patent/JPS5934225B2/en
Priority to DE19823222292 priority patent/DE3222292A1/en
Priority to FR8210350A priority patent/FR2507627A1/en
Publication of JPS57207154A publication Critical patent/JPS57207154A/en
Publication of JPS5934225B2 publication Critical patent/JPS5934225B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel

Description

【発明の詳細な説明】 この発明は、耐溶接高温割れ性に優れたFe−Ni系低
熱膨張アンバー型合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an Fe--Ni low thermal expansion amber type alloy that has excellent weld hot cracking resistance.

近年、原油価格の高騰の深亥Hヒに伴うエネルギー源多
様化の一環としてLNG(液化天然ガス)の需要が増大
しつつある。
In recent years, demand for LNG (liquefied natural gas) has been increasing as part of the diversification of energy sources due to the soaring price of crude oil.

そして、LNGの海上輸送用船舶及び陸上貯蔵用低温容
器のメンブレンタンク用材料としてステンレスと並んで
低熱膨張率を有するF e −N i系のいわゆるアン
バー型合金が大量に用いられている。
Along with stainless steel, a so-called amber type alloy based on Fe--Ni, which has a low coefficient of thermal expansion, is used in large quantities as a material for membrane tanks of LNG marine transportation ships and land storage low-temperature containers.

上記メンブレン・タンクに用いられる低熱膨張アンバー
型合金は、極低温LNG温度(約−162℃)において
十分な強度と延性ならびに靭性を有するが、溶接組立施
工時にいわゆる高温割れを起こしやすい点が大きな欠点
となっている。
The low thermal expansion amber type alloy used for the above membrane tank has sufficient strength, ductility, and toughness at cryogenic LNG temperatures (approximately -162°C), but a major drawback is that it is susceptible to so-called hot cracking during welding assembly construction. It becomes.

特にタンクのコーナ一部の補修溶接時にこの高温割れが
生じやすいため、何回も手直しして多層盛溶接を行う必
要があった。
This high-temperature cracking is particularly likely to occur during repair welding of a portion of the tank corner, so it was necessary to perform multiple rework and perform multi-layer welding.

しかし、たとえそのような非能率的な面倒な施工を行っ
ても万全を期しかた(、タンクのリークを完全に防止し
えないばかりか、温度変化に伴う変動負荷が作用した場
合、この割れが起点となってマクロな疲労破壊を惹起す
ることが懸念されていた。
However, even if such inefficient and troublesome construction is carried out, it is important to take all possible precautions (not only will it not be possible to completely prevent tank leaks, but also the possibility of cracking caused by fluctuating loads due to temperature changes). There was a concern that this could become a starting point and cause macroscopic fatigue failure.

したがって、この種合金の物理的性質(なかんず(低熱
膨張性)や機械的性質を阻害することなく、耐溶接高温
割れ性を改善したF e −N i系アンバー型合金が
嘱望されていたのである。
Therefore, there has been a desire for an Fe-Ni-based amber-type alloy that has improved weld hot cracking resistance without impairing the physical properties (low thermal expansion) and mechanical properties of this type of alloy. be.

本発明の目的は、製造性・経済性をも考慮しつつ、この
ような新しいアンバー型合金を提供することにある。
An object of the present invention is to provide such a new amber-type alloy while also considering manufacturability and economy.

本発明のFe−Ni系アンバー型合金は、次のとおりで
ある。
The Fe-Ni-based amber type alloy of the present invention is as follows.

Ni:30〜45%、C:≦0.04%、Si:0.0
5〜0.25%、 Mn : 0.10〜0.40%、
PとSの合計:60.020%を含み、残部はFeから
なるF e −N i系合金であって、0:≦0.00
60係、清浄度:≦0,05に規制するとともに、添加
元素としてTa:01005〜0.500%、Hf:0
.001〜0.100%、 Mo : 0.10〜2.
00%。
Ni: 30-45%, C: ≦0.04%, Si: 0.0
5-0.25%, Mn: 0.10-0.40%,
A Fe-Ni alloy containing 60.020% of the total of P and S, with the remainder consisting of Fe, and 0:≦0.00
60, cleanliness: ≦0.05, and additional elements Ta: 01005-0.500%, Hf: 0
.. 001-0.100%, Mo: 0.10-2.
00%.

W=□、10〜2.00%のうち1種又は2種以上含有
する、耐溶接高温割れ性に優れた低熱膨張アンバー型合
金。
A low thermal expansion amber type alloy containing one or more of W=□ and 10 to 2.00% and having excellent welding hot cracking resistance.

この発明で清浄度はJISGO555に従い顕微鏡の接
眼鏡に縦・横おのおの20本の格子線をもつガラス板を
そう人して被検面を無作為に繰返し検鏡し、介在物によ
って占められた格子点中心の数を数え、この場合測定す
る視野数は60を標準とし、顕微鏡の倍率は400倍を
標準とする試験方法で、視野内のガラス板上の総格子点
数p、視野数fおよび介在物によって占められた格子点
中心の数nにより、つぎの式によって介在物の占める面
積百分率を算出し、その鋼の清浄度dを判定した値であ
る。
In accordance with JIS GO 555, cleanliness is determined by placing a glass plate with 20 vertical and horizontal grid lines in the eyepiece of a microscope and repeatedly inspecting the surface to be examined at random. This is a test method in which the number of point centers is counted, and in this case, the standard number of fields of view to be measured is 60, and the standard magnification of the microscope is 400 times. The area percentage occupied by inclusions is calculated using the following formula based on the number n of lattice point centers occupied by objects, and the cleanliness d of the steel is determined.

本発明者らは、アンバー型合金の使用上で問題になって
いる溶接高温割れには、P、S、0(清浄度)の粒界偏
析が関係することをファプリケータでの不良発生事例と
基礎実験結果から推定できたので、9(清浄度)をある
レベル以下に低減することを前提条件とし又、P及びS
を固定して粒界を強化する添加元素を種々探求した。
The present inventors have found that the weld hot cracking that has become a problem in the use of amber-type alloys is related to the grain boundary segregation of P, S, and 0 (cleanliness) based on examples of failures occurring in faplicators. Since it was possible to estimate from the experimental results, the prerequisite was to reduce 9 (cleanliness) below a certain level, and P and S
Various additive elements were explored to fix the grain boundaries and strengthen the grain boundaries.

先づ、はじめに本発明者らがこのような添加元素を探究
するために行った溶接高温割れ試験条件を述べておく。
First, the welding hot cracking test conditions conducted by the present inventors in order to explore such additive elements will be described.

試料サイズ811B X 60 闘’X 350間の試
料の中央短手方向に、次の条件でTIG溶接を行い、第
1ビードを設ける。
TIG welding is performed under the following conditions to provide a first bead in the central short direction of the sample between sample sizes 811B x 60 x 350.

すなわち溶接電圧12v1溶接電流200A、溶接速度
100rtatt/min s A rシールドガス流
量1513 /win 、 W )−チ2.4m中、イ
クステンション約2闘。
That is, welding voltage: 12v1, welding current: 200A, welding speed: 100rtatt/min, shielding gas flow rate: 1513/win, W) - 2.4m, extension approximately 2cm.

ついで中央長手方向に、同一溶接条件でTIG溶接を行
い、トーチが第1ビードの幅中央に達したときに、急速
な曲げ変形を与えることにより2.0%の付加歪を作用
させ、第2ビードを設定する。
Next, TIG welding is performed in the center longitudinal direction under the same welding conditions, and when the torch reaches the center of the width of the first bead, an additional strain of 2.0% is applied by applying rapid bending deformation. Set the bead.

その結果、合金に発生する溶接高温割れの2種類のタイ
プ、すなわち凝固割れ及び再加熱割れのいずれの評価も
可能である。
As a result, it is possible to evaluate both types of weld hot cracking that occurs in alloys, namely solidification cracking and reheating cracking.

つまり凝固割れは第2ビードにより、また再加熱割れは
第1ビード上に発生する。
In other words, solidification cracking occurs on the second bead, and reheating cracking occurs on the first bead.

さて、一般にオーステナイト高合金は溶接時に高温割れ
を生じやすいが、これは現象的には凝固冷却過程あるい
は再加熱冷却過程で材料が高温脆化を起こして大幅な延
性低下を招くからで、その冶金学的原因として、不純物
元素のP及びSの存在があげられる。
In general, austenitic high alloys are prone to high-temperature cracking during welding, but this is because the material undergoes high-temperature embrittlement during the solidification-cooling process or reheating-cooling process, resulting in a significant decrease in ductility. The chemical cause is the presence of impurity elements P and S.

このような観1点から、オーステナイト高合金の溶接高
温割れ防止対策として(眠なるべくP及びS量を低減す
ること、もしくは主としてSを組織中に固定してその悪
影響を防止するため、硫化物形成傾向の強いT 1 s
N b 、V t Z r s Ca eMg、R,
つなどを添加する試みが古(から行われ℃いる。
From this point of view, as a countermeasure to prevent welding hot cracking of austenitic high alloys (reducing the amounts of P and S as much as possible, or fixing S mainly in the structure and preventing its adverse effects, sulfide formation is recommended). T 1 s with a strong tendency
N b , V t Z r s Ca eMg, R,
Attempts have been made since ancient times to add such substances.

この点Fe−Ni系アンバー型合金についても、当然こ
れら元素の添加による高温割れ防止法が考えられるが、
本発明者らの詳細な実験と検討の結果によれば、通常の
製鋼・精錬工程で含有されるP+S≦0.020%なる
条件で、上記各添加元素を用いてもほとんど効果がな(
,0≦0.0060係、清浄度≦0.05なる条件のも
とで、Ta=0.005〜0.500%、 Hf=0.
001〜0.100% 、 Mo= 0.10〜2.0
0%、 W= 0.10〜2.00係のうち1種または
2種以上添加することによって始めて著効が生ずること
を見いだしたのである。
In this regard, it is possible to naturally add these elements to prevent hot cracking for Fe-Ni-based amber type alloys, but
According to the results of detailed experiments and studies by the present inventors, there is almost no effect even if the above-mentioned additive elements are used under the condition that P+S≦0.020%, which is contained in normal steelmaking and refining processes (
, 0≦0.0060, cleanliness≦0.05, Ta=0.005-0.500%, Hf=0.
001~0.100%, Mo=0.10~2.0
They found that a significant effect can only be obtained by adding one or more of the following: 0%, W = 0.10 to 2.00.

ここに、O≦0.0060%、清浄度≦0.05なる条
件が満たされていても、上記したTi、Nb。
Here, even if the conditions of O≦0.0060% and cleanliness≦0.05 are satisfied, the above-mentioned Ti and Nb.

V、Zr、Ca、Mg、R,Mなどの添加効果Aやはり
乏しく、またTa、Hf 、W、Moのうち1種または
2種以上添加するに際してTi、Nb。
The effect A of adding V, Zr, Ca, Mg, R, M, etc. is still poor, and when adding one or more of Ta, Hf, W, and Mo, Ti and Nb.

V、R,ッとの複合添加には、問題ないが(しかし複合
添加してもそれによる効果はと(に期待できないので、
あえて複合添加する必要はまったくない)、Zr、Ca
、Mgとの複合添加は、せつか(の著しい効果を台なし
にしてしまうので回避しなければならない。
There is no problem with the combined addition of V, R, etc. (However, even if they are added in combination, no effect can be expected, so
There is no need to add them in combination), Zr, Ca
, and Mg must be avoided since it will destroy the remarkable effects of Setsuka.

以上の添加元素の効果について、その一部を図によって
示す。
Some of the effects of the above additive elements are shown in the figures.

ここに第1図は本発明の条件を満足する場合で、0≦0
.0060%、清浄度≦0.05゜(P十S≦0.02
0%)においてTa、Hf。
Here, FIG. 1 shows the case where the conditions of the present invention are satisfied, 0≦0.
.. 0060%, cleanliness≦0.05゜(P1S≦0.02
0%), Ta, Hf.

Mo、Wの各添加元素の効果を添加元素なしの場合と比
べたもので、高温割れを第2ビード上の凝固割れと第1
ビード上の再加熱割れに区分して図示し又いる。
The effect of each added element Mo and W is compared with the case without added element, and hot cracking is caused by solidification cracking on the second bead and
The figure also shows the reheat cracks on the bead.

これから添加元素の効果が明白に認められる。From this, the effect of the added elements is clearly recognized.

第2図は0、清浄度の値が本発明の規制範囲内に規制さ
れていない場合で、添加元素なしの結果は第1図のそれ
よりさらに悪く、また添加元素効果も小さい。
FIG. 2 shows 0, a case where the cleanliness value is not regulated within the regulated range of the present invention, and the results without the added element are even worse than those in FIG. 1, and the effect of the added element is also small.

第3図はO1清浄度の値は規制せず、Caを添加した場
合で、Ta、Hf。
Figure 3 shows the case where the O1 cleanliness value is not regulated and Ca is added, Ta and Hf.

Mo、W添加なしの場合は第2図のそれと比べて割れ性
に大差なく(すなわちCaの添加効果が小さいことを示
す)、本発明の特徴であるTa。
In the case without the addition of Mo or W, there is no significant difference in crackability compared to that shown in FIG. 2 (in other words, this shows that the effect of adding Ca is small), which is a feature of the present invention.

Hf、Mo、Wの添加効果も小さい。The effect of adding Hf, Mo, and W is also small.

以上の結果から、アンバー型合金の溶接高温割れの改善
には前記した本発明の合金条件を満足する必要のあるこ
とが知られる。
From the above results, it is known that in order to improve weld hot cracking of an amber type alloy, it is necessary to satisfy the alloy conditions of the present invention described above.

このような結果を招来する理由は次のようである。The reason for this result is as follows.

本発明合金の高温割れをもたらす高温での相境界の延性
低下には非金属介在物の寄与が無視できず、第1図、第
2図かられかるように介在物の低減を図ることにより若
干の耐高温割れの改善が可能である。
The contribution of non-metallic inclusions cannot be ignored in the reduction in ductility at the phase boundary at high temperatures that leads to hot cracking in the alloy of the present invention, and as can be seen in Figures 1 and 2, it is possible to reduce the amount of inclusions to a certain extent. It is possible to improve the high temperature cracking resistance of

そして、0.清浄度をある値より下げて非金属介在物を
低減して、かつTa、Hf。
And 0. The cleanliness is lowered below a certain value to reduce nonmetallic inclusions, and Ta, Hf.

Mo、Wなどを添加すると、それらの相境界に対する固
溶強化とS(及びP)を固定する効果とによって、高温
延性の低下が抑制され、高温割れが起こりに((なるの
である。
When Mo, W, etc. are added, the decrease in high temperature ductility is suppressed due to the solid solution strengthening of the phase boundaries and the effect of fixing S (and P), thereby preventing hot cracking from occurring.

したがって、0.清浄度がある値以下に規制されないと
、上記の低非金属介在物条件が満たされず、またZr、
Ca、Mgなどが併存すると、これら元素のOとの親和
力の強さが作用して必然的に清浄度が劣化するため、や
はり低非金属介在物条件が満たされないため、耐高温割
れ性は改善されない。
Therefore, 0. If the cleanliness is not regulated below a certain value, the above low nonmetallic inclusion condition will not be met, and Zr,
When Ca, Mg, etc. coexist, the strong affinity of these elements with O acts and the cleanliness inevitably deteriorates, so the low nonmetallic inclusion condition is not met, so the hot cracking resistance improves. Not done.

従来より、S固定元素とされているTi、Nb。Ti and Nb have traditionally been considered as S-fixing elements.

V s Z r x Ca s Mg −RBylは、
9.清浄度の値にかかわらず、本合金に対しては、固溶
強化とS固定効果による相境界強化能力がTa、Hf。
VsZrxCasMg-RByl is
9. Regardless of the cleanliness value, this alloy has the ability to strengthen phase boundaries due to solid solution strengthening and S fixation effects compared to Ta and Hf.

Mo 、Wに比べて小さいために、耐高温割れ改善効果
が小さい。
Since it is smaller than Mo and W, the effect of improving hot cracking resistance is small.

次にこの発明合金の成分組成範囲、介在物条件の限定理
由を述べる。
Next, the reasons for limiting the composition range and inclusion conditions of this invention alloy will be described.

Ni:30−45%pN1はFe−Ni合金の熱膨張係
数を支配する元素であり、低温では36係近傍で、高温
では42%近傍で熱膨張の極〆卦を呈する。
Ni: 30-45%pN1 is an element that controls the thermal expansion coefficient of the Fe-Ni alloy, and exhibits a thermal expansion limit near 36 coefficients at low temperatures and near 42% at high temperatures.

そして30%未満もしくは45係を越えると熱膨張係数
が著しく大きくなり、その上靭性も劣化するので30〜
45%とする。
If the coefficient is less than 30% or exceeds 45, the coefficient of thermal expansion will become significantly large, and the toughness will also deteriorate.
It shall be 45%.

C二≦0.04%;0.04%を越えると熱膨張係数が
増大してF e −N i合金の特徴である低熱膨張性
を損うことになるばかりでなく、炭化物が析出して熱間
加工性や溶接後の靭性が劣化するので、その含有量を0
.04%以下に限定する。
C≦0.04%; If it exceeds 0.04%, the coefficient of thermal expansion will increase and not only will the low thermal expansion, which is a characteristic of Fe-Ni alloy, be impaired, but also carbides will precipitate. Since hot workability and toughness after welding deteriorate, its content should be reduced to 0.
.. Limited to 0.4% or less.

Si;0.05〜0.25%;Siは合金精錬に際して
、脱酸剤として0.05%以上は必要であるが、0.2
5%を越えて存在すると熱間加工性が損われるので0.
05〜0,25%に限定する。
Si: 0.05-0.25%; Si is required as a deoxidizing agent in alloy refining in an amount of 0.05% or more, but 0.2%
If it exists in excess of 5%, hot workability will be impaired, so 0.
0.05% to 0.25%.

Mn : 0.10〜0.40%;Mnもまた合金精錬
に際して脱酸剤として0.10%以上必要であるが、0
.40%を越えて存在しても脱酸効果には変わりはなく
、原価的に不利となるため、0.10〜0.40係に限
定する。
Mn: 0.10-0.40%; Mn is also required as a deoxidizing agent during alloy refining in an amount of 0.10% or more, but 0.10% to 0.40%;
.. Even if the amount exceeds 40%, the deoxidizing effect remains the same and the cost is disadvantageous, so the amount is limited to 0.10 to 0.40.

P及びs:p十s≦0.020%:P及びSの和が0.
020%を越えて存在すると、溶接作業に際して安定し
たと一部が得にく(、著しく作業能率が損われるので、
上限を0.020%と限定する。
P and s: p10s≦0.020%: The sum of P and S is 0.
If it exists in excess of 0.020%, it will be difficult to obtain stability during welding work (as work efficiency will be significantly impaired,
The upper limit is limited to 0.020%.

0:0.0060%以下、及び清浄度:0.05以下;
溶接高温割れの発生を低減し、Ta、Hf。
0: 0.0060% or less, and cleanliness: 0.05 or less;
Reduces the occurrence of welding hot cracking, Ta, Hf.

Mo、Wなどの添加効果を引き出すための前提条件とし
て酸化物、硫化物系など種々の非金属介在物の存在量を
低減する必要があり、そのために鋼中酸素量O≦0.0
060係、清浄度≦0.05でなげればならない。
As a prerequisite for bringing out the effects of addition of Mo, W, etc., it is necessary to reduce the amount of various non-metallic inclusions such as oxides and sulfides.
060, the cleanliness level must be 0.05.

Ta : 0.005〜0.500%;0≦0.006
0係、清浄度≦0.05なる条件下で添加することによ
り溶接高温割れの改善に効果のある元素でこの発明の特
徴の一部を構成するものである。
Ta: 0.005-0.500%; 0≦0.006
It is an element that is effective in improving weld hot cracking when added under the conditions of coefficient 0 and cleanliness ≦0.05, and constitutes a part of the characteristics of the present invention.

0.005%未満の含有率では効果は期しがたく、0.
500係を越えて含有せしめると熱間加工性を阻害し、
コスト高を招(ので、0.005〜Q、500係に限定
する。
If the content is less than 0.005%, it is difficult to expect an effect;
If the content exceeds 500%, hot workability will be inhibited,
This will increase the cost (therefore, it is limited to 0.005~Q, 500 units).

Hf:0.001〜0.100チ;0≦0.0060係
、清浄度≦0.05なる条件下で添加することにより溶
接高温割れの改善に効果のある元素で、やはりこの発明
の特徴の一部となるものである。
Hf: 0.001 to 0.100, an element that is effective in improving weld hot cracking when added under the conditions of 0≦0.0060 and cleanliness≦0.05, which is also a feature of this invention. It becomes a part of it.

0.001%未満では効果が期しがたく、0.100%
を越えて含有せしめると材料の延性を低下させ、コスト
も高くなるので、o、ooi〜0.100%に限定する
Less than 0.001% is unlikely to be effective; 0.100%
If the content exceeds 0.0%, the ductility of the material will decrease and the cost will increase, so it is limited to 0.00% to 0.100%.

MO及びW二それぞれ0.10〜2.00%;これらの
成分もこの発明を特徴づけるもので、0≦0.0060
%、清浄度≦0.05なる条件下で添加されると溶接高
温割れ性の改善をもたらす。
MO and W2 each 0.10 to 2.00%; these components also characterize this invention, and 0≦0.0060
%, and when added under the condition of cleanliness≦0.05, the weld hot cracking property is improved.

M。及びWのいずれの場合も0.10%未満ではこの効
果は発揮されず、2.00%を越えて添加されると、M
oの場合熱間加工性が劣化し、Wの場合低温靭性が損わ
れるので、それぞれ0.1θ〜2.00%に限定する。
M. In both cases, this effect is not exhibited when less than 0.10% of M and W is added, and when added in excess of 2.00%,
In the case of o, hot workability deteriorates, and in the case of W, low-temperature toughness is impaired, so each content is limited to 0.1θ to 2.00%.

この発明のアンバー型合金は、前述の成分組成及び非金
属介在物条件をすべて満足したときに優れた耐溶接高温
割れ性を示すのであるが、この点は、下記の表に示す実
施例について具体的に説明するとおりである。
The amber-type alloy of the present invention exhibits excellent weld hot cracking resistance when all of the above-mentioned composition and nonmetallic inclusion conditions are satisfied, and this point is specifically explained in the examples shown in the table below. As explained below.

実施例 下記表は、本発明合金を、本発明の条件の範囲かられず
かに逸脱した参考例ならびに在来のアンバー型合金の比
較例と対比してそれらの化学成分、溶接割れ性、熱間加
工性を示したものである。
Examples The table below compares the present alloy with reference examples that slightly deviate from the conditions of the present invention and comparative examples of conventional amber-type alloys, and compares their chemical composition, weld cracking resistance, and hot-temperature This shows the workability.

各合金は、通常の電気炉溶製鋼を炉外真空精錬炉にて精
錬し、鋼中酸素量と清浄度を低値にするためジルコンレ
ンガを使用し、無酸化注入による造塊を行っている。
Each alloy is made by refining regular electric furnace molten steel in an extra-furnace vacuum refining furnace, using zircon bricks to lower the oxygen content and cleanliness of the steel, and creating ingots by non-oxidizing injection. .

その後、分塊・熱延・冷延を注意深く行い、仕上光輝焼
鈍にて最終製品とした。
Thereafter, blooming, hot rolling, and cold rolling were carefully performed, followed by bright annealing to produce the final product.

なお、溶接割れ性は、前述の試験法によった。Note that the weld cracking property was determined by the above-mentioned test method.

表中A1〜8はFe−36%Ni系のこの発明による実
施例鋼で、この系の従来例の比較鋼と比べると著しく耐
溶接高温割れ性が向上している。
In the table, A1 to A8 are Fe-36%Ni based example steels according to the present invention, which have significantly improved weld hot cracking resistance compared to conventional comparative steels of this type.

特に、最も問題となる再加熱割れが低減している。In particular, reheat cracking, which is the most problematic, has been reduced.

このような強制試験による割れの低減は、(たとえその
数がOでなくても)実際作業上大幅な改善効果をもたら
すのである。
Reducing the number of cracks through such forced testing (even if the number of cracks is not O) brings about a significant improvement effect in actual work.

しかも、実施例の熱膨張係数は比較鋼と同様の値を示し
、アンバー型合金としての低熱膨張性をいささかも損う
ことがない。
Moreover, the coefficient of thermal expansion of the example exhibits a value similar to that of the comparative steel, and the low thermal expansion property as an amber-type alloy is not impaired in the slightest.

ところがこの発明の組成及び非金属介在物条件の範囲を
脱した参考例に掲げたFe−36%Ni系のA9〜12
(屋9はO1扁10は清浄度、煮11はT a 、 A
l 2はMoがそれぞれ逸脱)の溶接性Q転比較鋼にく
らべて若干改善されているが、発明鋼にははるかに及ば
ない。
However, Fe-36%Ni system A9-12 listed as a reference example which is out of the range of the composition and nonmetallic inclusion conditions of this invention
(Y9 is O1, Bian10 is cleanliness, boiled 11 is T a, A
Although the weldability of the weldability Q-transformed comparative steels with l 2 and Mo deviated from each other is slightly improved, it is far inferior to the invention steel.

なおAllの溶接性は発明鋼なみにすぐれているが、T
aが過剰に添加されたために熱間加工性が不良となった
The weldability of All is as good as that of invented steel, but T
Hot workability became poor because a was added in excess.

以上のように、この発明の合金は、アンバー型合金とし
ての低熱膨張性を損うことなく、かつその他の基本性質
を保持しつつ、耐溶接高温割れ性を大幅に改善したもの
であり、好ましくは液化天然ガスの運搬・貯蔵用メンブ
レンタンク素材としての用途に適用することが8できる
が、超電導磁石支持部材、カメラ・電気部品関係、(液
体)水素利用技術関係などの部材に適用できる。
As described above, the alloy of the present invention has significantly improved weld hot cracking resistance without impairing the low thermal expansion as an amber-type alloy and retains other basic properties, and is therefore preferable. It can be applied as a membrane tank material for transporting and storing liquefied natural gas8, but it can also be applied to components such as superconducting magnet support members, cameras and electrical components, and (liquid) hydrogen utilization technology.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図にζ本発明合金における溶接割れに対する添加元
素の効果を、本発明のOと清浄度の条件を満足するが、
添加元素のない比較鋼と対比して示すグラフであり、第
2図は、本発明の0と清浄度の条件を満足しない場合に
おいて、溶接割れに対する同添加元素による影響を、同
添加元素のない比較鋼と対比して示すグラフであり、第
3図Oi。 本発明のOと清浄度の条件を満足せず、かつCaが添加
された場合において、同添加元素による溶接性に対する
影響を、同添加元素のない比較鋼と対比して示すグラフ
である。
Figure 1 shows the effect of added elements on weld cracking in the alloy of the present invention, which satisfies the O and cleanliness conditions of the present invention.
Fig. 2 is a graph showing the comparison steel with no additive elements, and Fig. 2 shows the influence of the same additive elements on weld cracking in cases where the cleanliness conditions of the present invention are not satisfied. FIG. 3 is a graph shown in comparison with comparative steel. It is a graph showing the influence of the added element on weldability in a case where the O and cleanliness conditions of the present invention are not satisfied and Ca is added, in comparison with a comparative steel without the added element.

Claims (1)

【特許請求の範囲】 iNi 二 30〜45%、C: ≦0.04% 、
Si :0.05〜0.25%、 Mn : 0.
10〜0.40%、P十S二≦0.020%を含み、残
部FeからなるFe−Ni合金において、更にO二≦0
.0060係、清浄度二≦0.05に調整するとともに
、添加元素としてT a : 0.005〜0.500
%、Hf二0、001〜0.100%、 Mo : 0
.10〜2.00%。 W:0.10〜2.00%のうち1種又は2種以上含有
することを特徴とする、耐溶接高温割れ性に優れた低熱
膨張アンバー型合金。
[Claims] iNi2 30-45%, C: ≦0.04%,
Si: 0.05-0.25%, Mn: 0.
In a Fe-Ni alloy containing 10 to 0.40%, P and S2≦0.020%, and the balance consisting of Fe, further O2≦0
.. 0060, adjust the cleanliness to 2≦0.05, and add T a : 0.005 to 0.500 as an added element.
%, Hf20,001~0.100%, Mo: 0
.. 10-2.00%. W: A low thermal expansion amber-type alloy with excellent weld hot cracking resistance, characterized by containing one or more of 0.10 to 2.00%.
JP9083781A 1981-06-15 1981-06-15 Fe-Ni low thermal expansion amber type alloy with excellent welding hot cracking resistance Expired JPS5934225B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP9083781A JPS5934225B2 (en) 1981-06-15 1981-06-15 Fe-Ni low thermal expansion amber type alloy with excellent welding hot cracking resistance
DE19823222292 DE3222292A1 (en) 1981-06-15 1982-06-14 Alloy of the Invar type with low thermal expansion and an extremely high resistance to heat cracks during welding
FR8210350A FR2507627A1 (en) 1981-06-15 1982-06-14 ALLOY HAVING A LOW COEFFICIENT OF THERMAL EXPANSION THAT DOES NOT CRUISE TO WELDING

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9083781A JPS5934225B2 (en) 1981-06-15 1981-06-15 Fe-Ni low thermal expansion amber type alloy with excellent welding hot cracking resistance

Publications (2)

Publication Number Publication Date
JPS57207154A JPS57207154A (en) 1982-12-18
JPS5934225B2 true JPS5934225B2 (en) 1984-08-21

Family

ID=14009693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9083781A Expired JPS5934225B2 (en) 1981-06-15 1981-06-15 Fe-Ni low thermal expansion amber type alloy with excellent welding hot cracking resistance

Country Status (3)

Country Link
JP (1) JPS5934225B2 (en)
DE (1) DE3222292A1 (en)
FR (1) FR2507627A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61113747A (en) * 1984-11-07 1986-05-31 Nippon Mining Co Ltd Material for shadow mask
JPS61149461A (en) * 1984-12-25 1986-07-08 Nippon Mining Co Ltd Shadow mask material and shadow mask
WO1992000395A1 (en) * 1990-06-29 1992-01-09 Kabushiki Kaisha Toshiba Iron-nickel alloy
DE4402684C2 (en) * 1993-05-27 2001-06-21 Krupp Vdm Gmbh Use of a low-expansion iron-nickel alloy
FR2745298B1 (en) * 1996-02-27 1998-04-24 Imphy Sa IRON-NICKEL ALLOY AND COLD-ROLLED TAPE WITH CUBIC TEXTURE
DE102006062782B4 (en) 2006-12-02 2010-07-22 Thyssenkrupp Vdm Gmbh Iron-nickel alloy with high ductility and low expansion coefficient
CN104575912A (en) * 2014-12-31 2015-04-29 北京北冶功能材料有限公司 High-saturation magnetic intensity, low-consumption, stress-resistant and high-rigidity magnetically soft alloy

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR563419A (en) * 1923-03-08 1923-12-05 Commentry Fourchambault Et Dec Ferro alloy with very high positive variation of elastic moduli as a function of temperature, and endowed, in a suitable physical state, with a high elastic limit
DE679794C (en) * 1936-04-30 1939-08-15 Fried Krupp Akt Ges Use of iron-nickel alloys for objects with high permeability
DE1458510A1 (en) * 1963-11-19 1969-01-30 Vacuumschmelze Gmbh Use of an iron-nickel-based alloy with a small, adjustable temperature coefficient of transverse contraction for vibration and spring elements
FR1526479A (en) * 1966-06-08 1968-05-24 Wiggin & Co Ltd Henry Aging-hardening nickel-iron alloys for structures used at very low temperatures
FR1493034A (en) * 1966-07-12 1967-08-25 Soc Metallurgique Imphy Process for improving the weldability of iron-nickel alloys with a high nickel content and alloys obtained by this process
JPS55100959A (en) * 1979-01-26 1980-08-01 Nisshin Steel Co Ltd Invar alloy with excellent welding high temperature crack resistance and strain corrosion crack resistance
JPS55122855A (en) * 1979-03-12 1980-09-20 Daido Steel Co Ltd High strength low thermal expansion alloy
GB2047742A (en) * 1979-04-02 1980-12-03 Univ California Iron-based nickel alloy

Also Published As

Publication number Publication date
FR2507627B1 (en) 1985-04-05
JPS57207154A (en) 1982-12-18
DE3222292C2 (en) 1987-07-16
DE3222292A1 (en) 1982-12-30
FR2507627A1 (en) 1982-12-17

Similar Documents

Publication Publication Date Title
JP5186769B2 (en) Sulfuric acid dew-point corrosion steel
US3201233A (en) Crack resistant stainless steel alloys
WO2010090041A1 (en) Ferrite stainless steel with low black spot generation
WO1996001334A1 (en) Process for producing ferritic iron-base alloy and ferritic heat-resistant steel
JP2011202214A (en) Thick high tensile strength steel plate having excellent low temperature toughness in multilayer weld zone and method for producing the same
JPS5934225B2 (en) Fe-Ni low thermal expansion amber type alloy with excellent welding hot cracking resistance
EP4159884A1 (en) Solid wire for gas metal arc welding use
JPS5950437B2 (en) Covered arc welding rod for Cr-Mo based low alloy steel
JPH0129859B2 (en)
JPS59226151A (en) Austenitic high-alloy stainless steel with superior weldability and hot workability
JPS648694B2 (en)
JPS58100661A (en) High ni alloy with superior weldability and corrosion resistance
JP3536568B2 (en) Ferritic stainless steel for engine exhaust parts with excellent heat resistance and muffler corrosion resistance at welds
JPH0349979B2 (en)
JPS6160866A (en) Steel material for line pipe superior in sour resistance
JP2596868B2 (en) Welded structure with excellent HIC resistance and SSC resistance
JP3836977B2 (en) Clad steel plate with excellent low temperature toughness
JP3541778B2 (en) Welded steel pipe with excellent carbon dioxide corrosion resistance and hydrogen sulfide cracking resistance
JPS62110894A (en) Welding wire for nonmagnetic steel
WO2021201122A1 (en) Welded structure and storage tank
JPS5835255B2 (en) Structural low alloy steel
JP2001107198A (en) Martensitic stainless steel linepipe excellent in ssc resistance and its producing method
JP2001131706A (en) Invar alloy excellent in weldability
JPS586961A (en) Steel products with superior hydrogen induced cracking resistance
JPH0314549B2 (en)