JPS58100661A - High ni alloy with superior weldability and corrosion resistance - Google Patents

High ni alloy with superior weldability and corrosion resistance

Info

Publication number
JPS58100661A
JPS58100661A JP19844681A JP19844681A JPS58100661A JP S58100661 A JPS58100661 A JP S58100661A JP 19844681 A JP19844681 A JP 19844681A JP 19844681 A JP19844681 A JP 19844681A JP S58100661 A JPS58100661 A JP S58100661A
Authority
JP
Japan
Prior art keywords
alloy
bead
welding
less
cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19844681A
Other languages
Japanese (ja)
Other versions
JPS6058779B2 (en
Inventor
Soji Matsuo
松尾 宗次
Hiroo Suzuki
洋夫 鈴木
Takashi Kobayashi
尚 小林
Tadao Ogawa
忠雄 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19844681A priority Critical patent/JPS6058779B2/en
Publication of JPS58100661A publication Critical patent/JPS58100661A/en
Publication of JPS6058779B2 publication Critical patent/JPS6058779B2/en
Expired legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high Ni alloy with superior weldability and corrosion resistance by restricting the N content of a high-Ni iron alloy showing characteristics of ''Invar '' as well as the P, S and O contents to an extremely low level. CONSTITUTION:This high Ni alloy consists of 30-45% Ni, <=0.4% Mn, <=0.25% Si, <=0.05% C, 0.2-0.4% Cr, (Cr-0.1)%<=Co<=Cr%, <=0.005% P, <=0.001% S, 0.003% O, <=0.002% N and the balance essentially Fe. When this high Ni alloy is used as the material of the lining of an LNG storage house which is welded under very severe welding conditions, in order to perfectly prevent the occurrence of weld defects during welding, it is necessary to regulate not only the P, S and O contents but also the N content to said ranges. When the amounts of the elements exceed said ranges, the occurrence of cracks in the weld metal and at the zone affected by heating can not be prevented. The elements are required to satisfy said conditions at the same time.

Description

【発明の詳細な説明】 本発明はインバー特性を示すNlを30〜45%含む鉄
合金で、溶接性・耐食性の優れた高N1合金を提供する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is an iron alloy containing 30 to 45% Nl exhibiting Invar characteristics, and provides a high N1 alloy with excellent weldability and corrosion resistance.

Nlを30〜45チ含む鉄合金は、200℃から一19
6℃に亘る温度域での熱膨張係数が小さく、かつ低温靭
性にも優れているために、低温液体保存用の容器や各種
の機能材料として用途が拡大しつつある合金材料である
Iron alloys containing 30 to 45 inches of Nl are
Because it has a small coefficient of thermal expansion in a temperature range of 6°C and excellent low-temperature toughness, it is an alloy material whose uses are expanding as containers for storing low-temperature liquids and various functional materials.

しかしながら、かかる高N1合金はオーステナイト単相
合金であるため罠、熱伝導性も悪く、溶接を施した際に
溶融凝固した部分や熱影醤部が著しく脆化しやすく溶接
割れなどを起し、施工上の大きな問題となっていた。そ
こで、本発明者等はこれらについて種々検討した結果、
溶融凝固した部分中熱影響部が脆化しやすい原因は、高
Ni合金中に含まれる微量不純物元素p、s、oならび
KN力どが、溶接時に凝固テンドライト界面に偏析した
り、多重溶接熱サイクルを受けてオーステナイト粒界に
偏析・析出するととに起因していることを明らかKした
However, since such high N1 alloys are austenitic single-phase alloys, they also have poor thermal conductivity, and when welding, the melted solidified areas and heat-exposed areas tend to become extremely brittle, resulting in weld cracking and other problems. This was a big problem. Therefore, as a result of various studies on these matters, the present inventors found that
The reason why the heat-affected zone in the melted and solidified part is prone to embrittlement is that trace impurity elements p, s, o and KN particles contained in the high Ni alloy segregate at the solidified tendrite interface during welding, or due to multiple welding thermal cycles. It was clearly shown that this was caused by the segregation and precipitation at the austenite grain boundaries.

従来から、Si、P、S、Oは溶接時の高温割れ感受性
を促進することが知られておや、割れ防止の丸めに81
0.4チ以下、Po、015チ以下、SO,01%以下
とすることが望ましいとされている。
It has been known that Si, P, S, and O promote hot cracking susceptibility during welding.
It is said that it is desirable to set it to 0.4 inches or less, Po, 015 inches or less, and SO, 01% or less.

さらにS、θ等の害を除去するためにC&やMg。Furthermore, C& and Mg are added to remove harmful substances such as S and θ.

L& * C@などを添加する手法本高温割れ感受性に
有効なことが判っている。しかし、これらの元素は添加
量制御の技術自体がむずかしいこと、多量添加するとか
えって割れ感受性を促進させること、また母材の靭性を
損なうこと、さらに少量添加では脱硫、脱酸効果が認め
られなくなるととなどから、必らずしも割れ防止策とし
ては適切な手法罠なっていない。
The method of adding L&*C@ etc. has been found to be effective in reducing high temperature cracking susceptibility. However, the technology to control the amount of these elements added is difficult, adding large amounts may actually promote cracking susceptibility, impair the toughness of the base metal, and addition of small amounts may result in no desulfurization or deoxidizing effect. For these reasons, it is not necessarily an appropriate method to prevent cracking.

本発明は、p、s、oに加えてさらにNをそれぞれ極め
て低い含有量に抑制することKよシ溶接割れ感受性を大
幅に軽減した高Ni合金に関するもので、本合金は連続
鋳造法で久造しても割れ疵が発生せず、またそれに引き
続く熱間圧延工程においても極めて優れた加工性を有す
るものである。
The present invention relates to a high-Ni alloy that has significantly reduced susceptibility to weld cracking by suppressing N in addition to p, s, and o to extremely low contents. No cracks occur even when the steel is rolled, and it has extremely excellent workability even in the subsequent hot rolling process.

本発明は、N130〜45%、Mn0.41以下。In the present invention, N130 to 45% and Mn 0.41 or less.

sio、zs−以下、C0,05−以下* Cr 0.
2〜0.4%、(Cr−0,1)−≦Co≦Cr%を含
み、Po、005−以下、SO,001%以下、80.
003−以下。
sio, zs- or less, C0,05- or less* Cr 0.
2 to 0.4%, (Cr-0,1)-≦Co≦Cr%, Po, 005- or less, SO, 001% or less, 80.
003-below.

NO,002%以下に規制し、残部が実質的にF・よシ
なる高Ni合金である。
It is a high Ni alloy with NO, 0.002% or less, and the balance is substantially F.

以下に各成分元素の限定理由を述べる。The reason for limiting each component element will be described below.

200℃から一196℃の低温域における熱膨張係数が
小さく(以下インバー特性と呼ぶ)、かつ低温靭性、S
接柱、耐食性にも優れるための母相を構成する主要元素
Ni 、 Mn、 81 、 C、CoならびKCrの
限定理由は以下の通りである。
It has a small coefficient of thermal expansion in the low temperature range from 200°C to -196°C (hereinafter referred to as Invar properties), and has excellent low-temperature toughness and S
The reason for limiting the main elements Ni, Mn, 81, C, Co, and KCr constituting the matrix in order to have excellent contact and corrosion resistance is as follows.

N1を30〜45チとした理由は、この範囲外では熱膨
張係数が大きくなり、インバー特性を示しにくくなるた
めである。
The reason why N1 is set to 30 to 45 inches is that outside this range, the coefficient of thermal expansion becomes large and it becomes difficult to exhibit invar characteristics.

Mnは0.4チ超含有すると低温靭性およびインバー特
性が低下する。またSlを0.25%以下に限定したの
は、それ以上含有すると溶接時の割れ感受性を高めるた
めである。
When Mn is contained in excess of 0.4 mm, the low temperature toughness and Invar properties deteriorate. Further, the reason why Sl is limited to 0.25% or less is that if it is contained more than that, the susceptibility to cracking during welding increases.

Cは0.05−を超えて含有すると耐食性が劣化すると
ともに、インバー特性と低温靭性も低下するため、C0
,05%以下と限定した。
If C exceeds 0.05-, the corrosion resistance will deteriorate, and the invar properties and low-temperature toughness will also decrease.
,05% or less.

本発明で対象とするN130〜45嗟を含むF・合金は
、大気中において錆が生じ易いので、施工および使用時
の問題となる。しかしこの発錆性もCrを0.2〜0.
4チ添加すると飛曙的に向上する。Crの添加効果は光
輝焼鈍中に表面KCrが濃化、偏析するととくよって安
定な表面皮膜を形成するためである・。
The F alloy containing N130 to N45, which is the object of the present invention, is susceptible to rusting in the atmosphere, which poses a problem during construction and use. However, this rusting property also has a Cr content of 0.2 to 0.
Adding 4 tsp improves dramatically. The effect of adding Cr is that when surface KCr becomes concentrated and segregated during bright annealing, it forms a stable surface film.

Coは添加量の増加にともない低温における機械的性質
の劣化や製品コストの増大を招くことになるが、Crの
添加にともなうインバー特性の劣化を補うために適当量
の添加が必要であることが見い出された。そして、最大
のインバー特性維持効果を保ち、Cr添加の悪影響を除
くためにはCr含有量とほぼ同量ないし0.1チ程度低
いCoiでよいことがわかった。そのためCr含有量を
Crと表示すれば(Cr−0,1)−≦Co≦Cr %
となる。
As the amount of Co added increases, it causes deterioration of mechanical properties at low temperatures and increases product cost, but it is necessary to add an appropriate amount to compensate for the deterioration of invar properties due to the addition of Cr. Found out. It has also been found that in order to maintain the maximum effect of maintaining Invar characteristics and eliminate the adverse effects of Cr addition, it is sufficient to use Coi in an amount that is approximately the same as the Cr content or approximately 0.1 inch lower than the Cr content. Therefore, if the Cr content is expressed as Cr, (Cr-0,1)-≦Co≦Cr %
becomes.

低温域における熱膨張係数が小さく、低温靭性。Low thermal expansion coefficient in low temperature range, low temperature toughness.

耐食性1強度、溶接性にも優れるための母相を構成する
主要元素の望ましい添加量の範囲としては、Nl 30
〜451 、 Mn 0.1〜0.3 fs 、 81
0.1〜0.2S、C0,02〜0.05%、CrO,
2〜0.4%−(Cr −0,1)S≦Co≦Cr %
である。
The desirable addition amount range of the main elements constituting the matrix for excellent corrosion resistance 1 strength and weldability is Nl 30
~451, Mn 0.1~0.3 fs, 81
0.1~0.2S, C0.02~0.05%, CrO,
2-0.4%-(Cr-0,1)S≦Co≦Cr%
It is.

次に、s 、o、pおよびNの上限規制について述べろ
、。
Next, describe the upper limits for s, o, p, and N.

従来、s、o、pについては溶接割れ防上の観点から、
例えば80.005%以下、00.025チ以下、Pは
(8+P)0.020チ以下なる規制により割れ防止が
可能なことが報告されており、場合によってはCa +
 La r CI T Yの1種以上を添加することが
報告されている。
Conventionally, for s, o, and p, from the viewpoint of preventing weld cracking,
For example, it has been reported that cracking can be prevented by regulating 80.005% or less, 00.025% or less, and P (8 + P) 0.020% or less, and in some cases, Ca +
It has been reported that one or more types of La r CI T Y are added.

また、Nに関しては溶鋼の凝固時に発生する気泡防止の
観点からNO,004−以下に規制するかNが0.00
4〜0.03%含有される際には、TI。
In addition, from the viewpoint of preventing bubbles generated during solidification of molten steel, N should be regulated to 0.004- or less or N should be 0.004- or less.
TI when contained in an amount of 4 to 0.03%.

Zrなどを0.02〜0.1−添加することが有効であ
ることが報告されている。しかし、Nが溶接割れに有害
であるととKついては何ら知見が得られていなかりた。
It has been reported that it is effective to add Zr or the like in an amount of 0.02 to 0.1. However, no knowledge has been obtained regarding whether N is harmful to weld cracking or K.

本発明者等は溶接条件が極めて過酷になるLNG用貯菫
庫の内張シに本高Ni合金を用いるに際し、溶接施工時
に溶接欠陥を皆無にするたJ6には、Pをo、ooss
以下、SlO,0O11以下、0を0.003チ以下さ
らにNを0.002慢以下にそれぞれ規制する必要があ
ることを見い出した。
The present inventors have determined that when using a high-density Ni alloy for the lining of an LNG storage tank where welding conditions are extremely severe, we added P to o, ooss to J6 to eliminate welding defects during welding.
Hereinafter, it has been found that it is necessary to restrict SlO, 0O to 11 or less, 0 to 0.003 or less, and N to 0.002 or less.

これらの元素の含有量が、上述の範囲を超えて存在する
と溶接金属部ならびく熱影響部での割れ発生を阻止でき
なくなる。
If the content of these elements exceeds the above-mentioned range, it will not be possible to prevent the occurrence of cracks in the heat-affected zone, which is located in the weld metal part.

さらに1これらの元素はいずれ本同時に上述の条件を満
たす必要がらり、例えばs 、o 、pを規制してもN
の規制がない場合は、最初の溶接において割れなどの欠
陥が認められなくとも、交叉溶接子補修などのこれに続
く溶接の際に、溶接熱サイクルを受けた最初の溶接部に
亀裂が発生してしまう。
Furthermore, these elements will eventually need to satisfy the above conditions at the same time; for example, even if s, o, and p are regulated, N
In the absence of regulations, even if no defects such as cracks are observed in the first weld, cracks may occur in the first weld that has undergone the welding heat cycle during subsequent welding, such as when repairing a crossed welder. I end up.

次に、実施例によシ本発明の詳細な説明する。Next, the present invention will be explained in detail by way of examples.

実施例1 81表に示した成分のA〜Fの高N1合金を連続鋳造に
よりスラブとし、熱間圧延、熱延板焼鈍を経て、冷間圧
延、光輝焼鈍を行なってシート製品とした。
Example 1 High N1 alloys having the components A to F shown in Table 81 were made into slabs by continuous casting, hot rolled, hot rolled plate annealed, cold rolled and bright annealed to make sheet products.

これらの膨張率(−180℃〜0℃)測定および積層試
片を水道水中に浸漬し、発錆挙動を観察した。その結果
を第2表に示すが、表中の判定は、熱膨張係数、耐錆性
のいずれも優れているもの(○印)と劣りているもの(
×印)とに区別した。
These expansion coefficients (-180°C to 0°C) were measured and the laminated specimens were immersed in tap water to observe rusting behavior. The results are shown in Table 2, and the judgments in the table are those that are excellent in both thermal expansion coefficient and rust resistance (marked with ○) and those that are inferior (marked with ○).
(marked with an x).

第2表 供試鋼の熱膨張係数と発端試験結果実施例2 第3表、第4表に示すようなA1−40の各化学成分の
鋼をm製し、−これを6.5■厚の熱延板に加工し、溶
体化熱処理(1030℃、30分天気中保持後水冷)を
行なった。これらの鋼板より長さ320■、中40■、
厚さ5■の試験板を作成し、パリストレイン試験(Va
restraint T@sts溶接中強制曲げ歪割れ
試験)により溶接時の高温割れ感受性を評価した。第1
図はパリストレイン試形状、(b)は試験機にとシつけ
て試験溶接中の概念図、(C)は試験後の試験板形状を
示す。
Table 2 Thermal expansion coefficient of test steel and initial test results Example 2 A steel of each chemical composition of A1-40 as shown in Tables 3 and 4 was made into m-thickness. It was processed into a hot rolled sheet and subjected to solution heat treatment (1030°C, held in the weather for 30 minutes, then water cooled). From these steel plates, the length is 320cm, the medium is 40cm,
A test plate with a thickness of 5 cm was prepared and subjected to the Paris strain test (Va
High-temperature cracking susceptibility during welding was evaluated by restraint T@sts (forced bending strain cracking test during welding). 1st
The figure shows the sample shape of the Paristrain, (b) shows a conceptual diagram during test welding on a testing machine, and (c) shows the shape of the test plate after the test.

図中1は試験板、2は試験sm予定位置、3社TIG 
@@ )−チ、4は曲率8を有する曲げ!ロック、5は
溶接割れを示す。
In the figure, 1 is the test board, 2 is the planned test SM position, and TIG from 3 companies.
@@ ) - Chi, 4 is a bend with a curvature of 8! Lock, 5 indicates weld cracking.

通常、パリストレイン試験は一回の溶接ピード形成時に
強制曲げ表面歪を与えて割れ発生を調べる1、シかし、
ここでは、補修溶接のようなく〕返し溶接および多層盛
溶接時の耐高温割れ性を評価する九めに、まず強制曲げ
表面歪を与えない第1ビード溶接を行ない、次に1この
第1ビード(古いビード)IfC一部重ねて第2ビード
溶接(新しいビード)を行ない、第2ピード溶接中に2
.5チの強制−げ表面歪を与えた。このようなダブルビ
ード法パリストレイン試験後の試験板形状と割れ発生状
況の概念図を第2図に示す、1 図中6は第1ビード(古いビード)、7は第2ビード(
新しいピートコ、5は溶接割れを示す。
Normally, the Paris strain test examines the occurrence of cracks by applying forced bending surface strain during one weld bead formation.
Here, in order to evaluate the hot cracking resistance during reverse welding and multi-layer welding such as repair welding, we first performed the first bead welding without applying forced bending surface strain, and then (Old bead) Partially overlap IfC and perform second bead welding (new bead).
.. Forced surface distortion of 5 inches was applied. A conceptual diagram of the test plate shape and crack occurrence after such a double bead Paris strain test is shown in Figure 2. 1 In the figure, 6 is the first bead (old bead), 7 is the second bead (
New Peteco, 5 shows weld cracking.

2.5sの強制曲げ表面歪を与えるためKは試験板厚が
5.0−であることから曲げプロ、りの曲率Rは100
■を使用した。また、第2ビードの溶接は、@1ビード
溶接後数分経過後行なった。表面歪付加点近傍に発生し
た表面の割れ状況は30倍の双眼式実体顕微鏡により調
べ、合計割れ長さを算出した。
In order to give a forced bending surface strain of 2.5 seconds, K is a bending professional since the test plate thickness is 5.0 -, and the curvature R of R is 100.
■ was used. Further, the welding of the second bead was performed several minutes after the welding of @1 bead. The state of surface cracks that occurred near the point where surface strain was applied was examined using a binocular stereomicroscope with a magnification of 30 times, and the total crack length was calculated.

割れは第1ビード(古いぜ一ド)と第2ビード(新しい
ビード)、さらに1第2ビードの母材熱影響部に発生す
るが、IA骸試験材では母材熱影響部の割れは非常に少
なく、また、その発生状況に試験材間に有意差が認めら
れなかった。そこで、第1ビードと第2ビードの割れK
ついて、観察・測定した結果を第5表に示した。試験は
同一鋼種でく夛返し3個行ないそれぞれの割れ長さとそ
の平均値を表中に記した。
Cracks occur in the base metal heat-affected zone of the first bead (old bead), second bead (new bead), and the first and second beads, but in the IA skeleton test material, cracking in the base metal heat-affected zone is very small. Furthermore, there was no significant difference in the occurrence status between the test materials. Therefore, the crack K between the first bead and the second bead
Table 5 shows the results of observation and measurement. The test was repeated three times using the same steel type, and the respective crack lengths and their average values are recorded in the table.

第3表のム1〜ム181では比較鋼であり、そのうち4
1〜44.45〜49.410〜&12゜413〜A1
5およびI&16〜雇18FiそれぞれP 、 8 、
 N 、 81およびOの6量がそれぞれ本発明鋼よシ
多量となっている。そして今回のダブルピード法パリス
トレイン試験でいずれも割れ発生が認められた。本発明
鋼の範囲からN量のみはずれテイル崖10〜412.0
量のみはずれているム16〜118は、割れが第2ビー
ドに起らず、第1ビード(古いビード)のみに起ってい
る。また、本発明鋼の範囲から61量のみはずれている
413〜ム15は、逆K、割れが第1ビードに起らず第
2ビード(新しいビード)のみに起っている。P量およ
びS量が本発明鋼の範囲をはずれたものは、@1.第2
ビードいずれKも割れが発生した。割れ発生状況として
は第2ビードの割れがほぼ同じ程度KP、8P量の増加
に従って大きくなるのに対して、第1ビードの割れはS
量の増加に対して非常に敏感に反応して大きくなシ、P
量の変動に対してはむしろ鈍感である7゜ 一般に1第2ビードの割れはオーステナイトステンレス
鋼でしばしば遭遇するもので1)溶融金属が凝固する際
にp 、 s 、 stなどが粒界に偏析することKよ
って起る凝固割れである。一方、tIc1ビードにみら
れる割れは一度凝固した溶接金属が再度溶接熱サイクル
を受けた時に粒界液化を起したりて粒界脆化を起すとと
Kより発生するものとみられる。特に、NおよびOKよ
る窒化、酸化による粒界脆化に起因する割れの場合はか
なりの低温域(約550℃)tで発生することが予想さ
れる。事実、第1ビードの割れは歪付加点近傍から溶接
スター)@Ic向ってかな)の範囲に分散して発生した
M1 to M181 in Table 3 are comparative steels, of which 4
1~44.45~49.410~&12゜413~A1
5 and I&16~hired 18Fi P, 8, respectively.
Six amounts of N, 81, and O are each larger than in the steel of the present invention. In this double-peed Paris strain test, cracking was observed in both cases. Only the N amount is out of the range of the steel of the present invention, and the tail cliff is 10 to 412.0.
For the beads 16 to 118 where only the amount is off, cracking does not occur in the second bead, but only in the first bead (old bead). In addition, in 413 to 15, which are out of the range of the steels of the present invention by an amount of 61, reverse K and cracking did not occur in the first bead but only in the second bead (new bead). Steels with P content and S content outside the range of the steel according to the present invention are classified as @1. Second
Cracks occurred in all beads K. Regarding the occurrence of cracks, the cracks in the second bead increase to the same extent as the amount of KP and 8P increase, whereas the cracks in the first bead increase in size with S
It reacts very sensitively to an increase in the amount of large P.
It is rather insensitive to changes in the amount.7゜In general, cracks in the 1st and 2nd beads are often encountered in austenitic stainless steels. 1) When molten metal solidifies, p, s, st, etc. segregate at grain boundaries. This is solidification cracking caused by K. On the other hand, the cracks observed in the tIc1 bead appear to be caused by K, which occurs when the once solidified weld metal undergoes a welding thermal cycle again, causing grain boundary liquefaction and grain boundary embrittlement. In particular, cracks due to nitridation due to N and OK and grain boundary embrittlement due to oxidation are expected to occur at a considerably low temperature range (approximately 550° C.). In fact, cracks in the first bead occurred in a dispersed range from the vicinity of the strain application point to the welding star) @Ic).

ga表、落4表ノ419〜440 F!本発明鋼テある
が、いずれの鋼種についても第1ビード、第2ビードに
関らず割れは認められなかった。419〜ム25.A2
6〜ム37.438〜ム40はそれぞれC* Nl e
 Coの6量を本発明鋼の範囲内で変動したものである
が、パリストレイン試験では第5表に示すように第1.
第2ビードいずれにも全く割れが認められなかった。
ga table, drop 4 table 419-440 F! Although there are steels according to the present invention, no cracking was observed in any of the steel types, regardless of the first bead or the second bead. 419~mu25. A2
6~Mu37.438~Mu40 are each C*Nl e
The amount of Co was varied within the range of the steel of the present invention, but in the Paris strain test, as shown in Table 5, the amount of Co was 1.
No cracks were observed in any of the second beads.

なお、第4表に示したオーステナイトステンレス鋼8U
8304 、316 、3108についてのダブルピー
ド法パリストレイン試験結果も第5表忙同時に記したが
、第1ビード割れは全く認められず、第2ビード割れが
5U8316Ki干、 5US3108にかなシ激しく
起っている。S量8304はいずれのビードにも全く割
れの発生が認められなかった。これらの結果はオーステ
ナイトステンレス鋼の実際の溶接施工における経鹸と極
めてよく一散している。
In addition, the austenitic stainless steel 8U shown in Table 4
The results of the double-peed Paris strain test for 8304, 316, and 3108 are also listed in Table 5, and the first bead cracking was not observed at all, while the second bead cracking occurred severely in 5U8316Ki and 5US3108. . With an S content of 8304, no cracking was observed in any of the beads. These results are in very good agreement with the results obtained in actual welding of austenitic stainless steel.

以上に述べたことから本発明鋼は多層盛溶接。Based on the above, the steel of the present invention is welded in multiple layers.

補修溶接も含めて、オーステナイトステンレス鋼SU8
304と同じ程度の極めて優れた耐高温割れ感受性を有
することが明らかにされた。
Austenitic stainless steel SU8, including repair welding
It was revealed that it has extremely excellent hot cracking resistance and susceptibility to the same level as No. 304.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、バリストレイン試験の概念図管示すものであ
って、図中(1)は試験片形状、(b)は試験機にとシ
つけて試験溶接を行なりているところ、(、)は試験後
の試験板形状を示す。第2図は、ダブルビード法パリス
トレイン試験の説明図でおる。 第  7  図 (b) (C)
Figure 1 shows a conceptual diagram of the burr strain test, in which (1) shows the shape of the test piece, and (b) shows the test welding being carried out on the testing machine. ) indicates the shape of the test plate after the test. FIG. 2 is an explanatory diagram of the double bead Paris strain test. Figure 7 (b) (C)

Claims (1)

【特許請求の範囲】[Claims] Ni 30〜45 % 、 No 0.4 %以下、8
10.25%以下、co、oss以下、 Cr O,2
〜0.4 %でかつ(Or −0,1)$≦co≦Cr
 %で6J)、Po、005S以下、80.001%以
下、Oo、003%以下、NO,002−以下で残部が
実質的1cIP@である溶接性・耐食性の優れた高N1
合金。
Ni 30-45%, No 0.4% or less, 8
10.25% or less, co, oss or less, CrO,2
~0.4% and (Or -0,1)$≦co≦Cr
% 6J), Po, 005S or less, 80.001% or less, Oo, 003% or less, NO, 002- or less, and the balance is substantially 1cIP@ High N1 with excellent weldability and corrosion resistance
alloy.
JP19844681A 1981-12-11 1981-12-11 High Ni alloy with excellent weldability and corrosion resistance Expired JPS6058779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19844681A JPS6058779B2 (en) 1981-12-11 1981-12-11 High Ni alloy with excellent weldability and corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19844681A JPS6058779B2 (en) 1981-12-11 1981-12-11 High Ni alloy with excellent weldability and corrosion resistance

Publications (2)

Publication Number Publication Date
JPS58100661A true JPS58100661A (en) 1983-06-15
JPS6058779B2 JPS6058779B2 (en) 1985-12-21

Family

ID=16391221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19844681A Expired JPS6058779B2 (en) 1981-12-11 1981-12-11 High Ni alloy with excellent weldability and corrosion resistance

Country Status (1)

Country Link
JP (1) JPS6058779B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033337A (en) * 1983-08-05 1985-02-20 Nisshin Steel Co Ltd High ni-fe alloy for electronic parts
JPS61113746A (en) * 1984-11-07 1986-05-31 Nippon Mining Co Ltd Material for shadow mask
JPS61113747A (en) * 1984-11-07 1986-05-31 Nippon Mining Co Ltd Material for shadow mask
JPS6240343A (en) * 1985-08-19 1987-02-21 Nippon Kokan Kk <Nkk> Fe-ni alloy and its manufacture
JPS6425944A (en) * 1987-04-27 1989-01-27 Nippon Mining Co Shadow mask material
JPH01100247A (en) * 1987-10-12 1989-04-18 Kubota Ltd Austenitic corrosion-resisting cast steel
JPH1036948A (en) * 1996-07-25 1998-02-10 Nkk Corp Iron-nickel base invar alloy excellent in weld high temperature cracking resistance
CN108265233A (en) * 2018-01-23 2018-07-10 上海康晟航材科技股份有限公司 Corrosion-resistant invar alloy

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033337A (en) * 1983-08-05 1985-02-20 Nisshin Steel Co Ltd High ni-fe alloy for electronic parts
JPH0148343B2 (en) * 1983-08-05 1989-10-18 Nisshin Steel Co Ltd
JPS61113746A (en) * 1984-11-07 1986-05-31 Nippon Mining Co Ltd Material for shadow mask
JPS61113747A (en) * 1984-11-07 1986-05-31 Nippon Mining Co Ltd Material for shadow mask
JPS6240343A (en) * 1985-08-19 1987-02-21 Nippon Kokan Kk <Nkk> Fe-ni alloy and its manufacture
JPS6425944A (en) * 1987-04-27 1989-01-27 Nippon Mining Co Shadow mask material
JPH0251973B2 (en) * 1987-04-27 1990-11-09 Nippon Mining Co
JPH01100247A (en) * 1987-10-12 1989-04-18 Kubota Ltd Austenitic corrosion-resisting cast steel
JPH1036948A (en) * 1996-07-25 1998-02-10 Nkk Corp Iron-nickel base invar alloy excellent in weld high temperature cracking resistance
CN108265233A (en) * 2018-01-23 2018-07-10 上海康晟航材科技股份有限公司 Corrosion-resistant invar alloy

Also Published As

Publication number Publication date
JPS6058779B2 (en) 1985-12-21

Similar Documents

Publication Publication Date Title
CA2420010C (en) Metal material having good resistance to metal dusting
EP0834580B1 (en) Alloy having high corrosion resistance in environment of high corrosiveness, steel pipe of the same alloy and method of manufacturing the same steel pipe
CN100467624C (en) Method for producing stainless steel having improved corrosion resistance
US6322642B1 (en) Process and steel for the manufacture of a pressure vessel working in the presence hydrogen sulfide
Brooks et al. Selection of wrought austenitic stainless steels
US10513756B2 (en) Nickel-based alloy
US4325748A (en) Method for producing steel plate having excellent resistance to hydrogen induced cracking
CA2454478C (en) Nickel alloy and manufacturing method for the same
Chakrabarti et al. Effect of process parameters on clad quality of duplex stainless steel using GMAW process
US3957544A (en) Ferritic stainless steels
Varol et al. Welding of duplex stainless steels
JPS58100661A (en) High ni alloy with superior weldability and corrosion resistance
Kotecki Some pitfalls in welding of duplex stainless steels
EP0546549A1 (en) Line pipe having good corrosion-resistance and weldability
US5858128A (en) High chromium martensitic steel pipe having excellent pitting resistance and method of manufacturing
JPS5950437B2 (en) Covered arc welding rod for Cr-Mo based low alloy steel
US4578320A (en) Copper-nickel alloys for brazed articles
JPH02185940A (en) Alloy foil for liquid-phase diffusion joining capable of joining in oxidizing atmosphere
Eun et al. Types and requirements of materials and corrosion
Brinkman Long-term creep-rupture behavior of Modified 9Cr-1Mo steel base and weldment behavior
JP2001246495A (en) Welding material and method for producing welded joint
JPS61104054A (en) High-strength and high-toughness welded clad steel pipe for line pipe
Jha et al. Metallographic analysis of embedded crack in electron beam welded austenitic stainless steel chemical storage tank
JP7423852B1 (en) Fe-Ni alloy, alloy tube, and manufacturing method thereof
KR102321299B1 (en) Austenitic stainless steel plate having excellent corrosion resistance and manufacturing method for the same